Implementing fault tolerant agreement in

JaCaMo

Endre Fiilop!

E6tvos Lorand University, Budapest, Hungary

Abstract. Implementing algorithms in multi-agent frameworks can be
challenging, because the special requirements of distributed systems meet
with the incomplete information, openness assumption, and social issues,
all of which are present in certain multi-agent systems. The issue is fur-
ther aggravated by the fact that the software engineering environment
did not have as much time to mature as it had in case of other program-
ming paradigms. In this article an implementation of agreement is given
which is based on the Byzantine Fault Tolerance algoritm, and its im-
provement which adapts the original one to asynchronous environments.
The implementation also takes reusability into account by providing a
source code library which provides an API for its consumers. After detail-
ing the key aspects of the implementation, software engineering aspects,
security and practical considerations are analyzed.

Keywords: Multi-agent systems, Agreement - Fault tolerant behaviour
- Social interaction

1 Acknowlegement

This work was supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

2 Fault tolerant agreement

The motivation behind this implementation is the open, and hetegeneous nature
of certain multi-agent systems, where the individual agents are not necessarily
under control of a single authority[4] In such systems reaching total agreement
is a desirable goal, however sometimes it may not be feasible. By reducing the
scope of the agents, who come to an agreement at the end of the agreement
process, some degree of coordinated behaviour can be achieved.

2.1 Byzantine behaviour

The Byzantine Generals Problem([3] is well studied field of distributed comput-
ing, and in its original form it gives necessary requirements for replicating data
between distributed nodes of computation in a fault tolerant way. The group of

2 Endre Fiilop

distributed systems problems where there are processors that send inconsistent
information to other processors, thus appearing to be working for some nodes,
and faulty for some others, are called byzantine, becase of their resemblence to
the Byzantine Generals problem. The implementation is based on the algorithm
introduced in Lamports original paper, but takes the newer practical algorithm
[2] into account, so that it is more fitting for the inherently asynchronous nature
of the multi-agent framework environment.

2.2 Byzantine Generals Problem

The Byzantine Generals Problem is the following: there are generals surrounding
the enemy city. They are in such distance away from each other, that they can
only communicate by sending messengers. The battle can only be won if enough
of the generals agree on the same course of action. If all generals were loyal the the
agreement would be trivial, however there are some traitors amongs them, who
want to sabotage the attack. The base problem assumes a perfect communication
channel between every participant. It is shown in the paper, that with simple
oral messages if the number of traitors is less then one third of all generals,
then there is an algorithm which guarantees, that at the end of the process, all
the loyal generals agree upon the same plan of action, and this small number
of traitorous generals cannot misguide them. The algorithm is initiated by a
particular general, the commanding general. It is permitted for the commanding
general to be traitor, and the algoritm has the same guarantees. The algorithm
can further be improved by using cryptographically signed messages, and its
applications in not fully-connected communication graphs is further examined.

2.3 Practical Byzantine Fault Tolerance

The original Byzantine Fault Tolerance[3] have requirements, which make it
impractical to apply in a setting, where communication is performed in an asyn-
chronous manner. The timing estimates of receiving a message, and the decide-
ability of the fact that whether a general sent a message or not is tied together,
and therefore the algoritm is implicitly synchronous. The pBFT [2] algrithm how-
ever does not make any assumptions about the timing of the communication,
and its liveness properties can be shown in case an uncooperative or malfunc-
tioning participant can delay messages of even correct one, but not indefinitely.
The main idea behing the algorithm is that after the correct amount of messages
is sent, the agreement between the correct participants eventually emerges. So
each node in the network waits for a predefined amount of the same choice before
accepting it as the result of the agreement. The paper further analyzes optimiza-
tions of the algorithm, however the implementation here does not concern itself
with them, as expressing even the base algorithm in the framework not trivial.
In the future, more advanced versions of the algorithm can be examined in the
context of multi-agent systems as well.

Implementing fault tolerant agreement in JaCaMo 3

3 Implementation

3.1 Implementation with agents

The original and also the practical Byzantine Fault Tolerance algoritms were
created to solve a fault tolerance problem in a non-autonomous system. However
in multi-agent systems agents are autonomous, and not only faults can hinder an
agreement attempt, but agents themselves can choose not to cooperate if their
goals and desires dictate. Based on the requirements of the original versions of
the algoritms, the agreement of the majority of the agents can be guaranteed, if
the number of non-cooperative agents is less then one third of the agents total
amount. Non-cooperation, however can be deliberate, or can be a malfunction on
the agents part. The main motivation to use byzantine algoritms in multi-agent
systems is to agree on something common, and they are most applicable when
the agents are motivated to come to an agreement.

3.2 Practical Byzantine Agreement implementation

If there are n uncooperative agents, then there must be at least 2n+1 cooperative
agents. If this requirement does not hold, then the algoritm cannot guarantee
agreement. Fach of them knows that for which fact which other agents they
have to agree with. They also know the default value of the agreement, should
the agreement process fail. The supposed treshold of traitors is also known by
them, however this one is optional, as all of the agents could very well use the
lowest possible value which can be computed from the size of the agreement
group. The commanding agent is one of the m = 3n + 1 total agent, who can
be chosen randomly. The commanding agent sends its choice everybody else,
and its role is finished. Every cooperative agent, when receiving a message with
a choice, sends the same choice to every other agent, except from whom the
message was received. The cooperative agents also keep track of the different
choices they encountered, and their inremental popularity, which is a running
total per choice. At the moment a message with choice ¢ would increment its
corresponding counter in the belief base of the agent to match the the value of
n + 1, the agent decides that the agreed choice is c. However it does not stop
sending messages until the right amount messages are sent by him. The stop
criterion is detailed later. Eventually every cooperative agent should come to
the conclusion, that the agreed choice is c.

3.3 The framework

JaCaMol1] is a framework for developing multi-agent applications. It brings sev-
eral other frameworks under the same umbrella, unifying their tools, and capabil-
ities, and provides glue between the different components. It uses Jason for agent-
orinented, CArtAgO for environment-oriented, and Moise for organization-oriented
progragramming, and also provides meaningful tooling for monitoring and de-
bugging some aspects of the multi-agent system under development.

4 Endre Fiilop

It is natural in the BDI paradigm to represent the factual knowledge of
agents separately from the functional knowledge. The functional knowledge is
what enables an agent to achieve its goals, and in the Jason framework it is
modelled with plans. Plans are declarative sequences of actions that should be
taken by an agent responding to an event. There are multiple ways for an event
to be emitted. Belief base updates trigger events by default, and these updates
can be consequences of the agent percieving the external environment, making
mental notes, and also acquiring and failing goals.

The agent-framework makes it possible to model the problem with many
tools, however this implementation uses only one such tool, the Jason part of
JaCaMo. This is a conscious decision, as expressing how to communicate the
intent to come to an agreement is best implemented where it is most idiomatic.
The environment part of the framwork not used for this implementation, neither
is the organization. This also means that this implementation does not pose any
constraints on those parts on any project that would like to reuse the solution,
and even the agent part is implemented in a non-intrusive way.

3.4 Agreement library

The implementation is in form of a source code library, which provides the
necessary plans that an agent must have in order participate in the agreement
process. The plan descriptions can be distributed in a .wsl file, and can be
included in other agent’s description files via the preprocessor. There are however
other requirements for the libarry to work.

The algorithm is ultimately specified by a plan for an achievement goal named
byzantine_agree, which has two parameters, the topic of the agreement, which
can be used to identify the object of agreement at hand, and the choice that
is chosen by the commanding general. When an agent choses to pursue this
goal, the plan library will contain the necessary implementation to initiate the
agreement algoritm. The commanding agent role is identified by having this goal
at the beginning. The choice of the commanding general is not crucial in our
case, but in order to be able to handle a traitorous commander, there is some
necessary context information that must be present at every agent participating
in the agreement.

Every participant should know what kind of topics exist, and which agree-
ment group should decide the outcome. Also to provide a convenient API, there
is a agreement_treshold belief that can be specified. This signifies the believed
upper threshold of non-cooperative participants in the group. This parameter
could also be inferred from the size of the agreement group, however it allows
for less communication to be used if the specific agreement instance requires less
redundancy.

Listing 1.1. An example initial state of the belief base

agreement_group (topic(default), [a, b, c, d, el).
agreement_treshold(topic(default), 1).

Implementing fault tolerant agreement in JaCaMo 5

The main entrypoint for the algoritm designates how the commanding agent
should start the agreement. It has two parameters, the topic, and the choice
of the commander. Because the commander will not receive further messages
during the agreement, and the decision of the final choice is given in this im-
plementation in a reactive manner, the result of the agreement is finalized in
its belief base. Then the belief base is consulted for relevant targets of commu-
nication for the triggering topic. The variable AG is unified with a list of agent
names, who are belived to part of the agreement group. Then the achievement
goal byzantine_agree_rec is triggered as a subgoal of the entrypoint.

Listing 1.2. Main entrypoint
+!byzantine_agree (TOPIC, FACT) [source(self)] <-
+final_fact (TOPIC, FACT)
7agreement_group (TOPIC, AG)
!byzantine_agree_rec (TOPIC, FACT, AG, 0).

The message sending and verification logic is most densely concentrated in
the implementation of the main recursor byzantine_agree_rec. The plan has
a context named byzantine_valid_request, which is a predicate, and decides
whether the incoming request should be taken into consideration. This is neces-
sary in order for the implementation to be robust. Some of the precautions taken
by this implementation are specific to the theoretical algorithm, but others are
given for further hardening.

In case the plan is deemed relevant, the source of the current message is noted
by the agent. Then an achievement goal of incrementing an internal counter
for the received choice: byzantine_fact_count_increment. This goal will also
detect if a big-enough count is reached. Then there is a conditional recursive
invocation of this goal. This means that the goal is triggered in the targets of
the .send built-in communication primitive.

Listing 1.3. Main recursor

+!byzantine_agree_rec (TOPIC, FACT, AG, STEP) [source (SOURCE)]
byzantine_valid_request (TOPIC, AG, STEP, SOURCE) <-

+agreement_message_for_step (TOPIC, STEP, SOURCE);
!byzantine_fact_count_increment (TOPIC, FACT);
7agreement_treshold (TOPIC, TRESHOLD) ;
if (STEP <= TRESHOLD) {

.my_name (ME) ;

.difference (AG, [ME, SOURCE], OTHERS);

.send (OTHERS, achieve,

byzantine_agree_rec (TOPIC, FACT, OTHERS, STEP + 1)

)

}.

It is supposed, that the cooperative agents share the same, or equivalent
implementation for this goal, and byzantine behaviour emerges mainly by over-
riding this plan, sending spurious and false messages.

6 Endre Fiilop

The validation is implemented as rule in the Jason language, and is designated
to check that specific invariant properties hold in each step of the algorithm. One
of the invarint properties is that messages should be received only from members
of the agreement group, or in the very special case of the commanding agent from
self. Another invariant is that the targets of the communication should be a
valid subset of the initially believed agreement group. The third property defines
a variant property, the length of the target agreement group should be decresing
with each step. The fourth part of the validator expression is a countermeasure
against message flooding, as each participant is allowed to send at most one
message to every other participant is each step.

Listing 1.4. Main recursor validation
byzantine_valid_request (TOPIC, AG, STEP, SOURCE) :-
// Consult the belief-base for relevant information.
agreement_treshold (TOPIC, TRESHOLD) [source(self)] &
agreement_group (TOPIC, INITIAL_AG) [source(self)] &

// Only accept messages from members of the initial
// agreement group.
(.member (SOURCE, INITIAL_AG) | SOURCE = self) &

// The target agreement group is a subset of the initial.
.difference (AG, INITIAL_AG, DIFF) & .empty(DIFF) &

// The size of the target agreement group is correct with
// respect to the announced step.
.length (AG) == .length(INITIAL_AG) - STEP &

// There is no double vote for this specific topic-step
pair

// from the source.

not agreement_message_for_step(TOPIC, STEP, SOURCE) [source(
self)].

Counting is the facts is done by providing 2 alternative plans, one for the
case where the fact was not counted before, and one where the already counted
number must be incremented. The check for agreement is done in both cases,
because if the treshold is 0, then the agreement can be considered final after the
arrival of the first message.

Listing 1.5. Count

+!byzantine_fact_count_increment (TOPIC, FACT) [source(self)]
byzantine_fact_count (TOPIC, FACT, N)[source(self)] <-

-+byzantine_fact_count (TOPIC, FACT, N + 1);
!byzantine_try_settle (TOPIC).

+!byzantine_fact_count_increment (TOPIC, FACT) [source(self)]

Implementing fault tolerant agreement in JaCaMo 7

not byzantine_fact_count (TOPIC, FACT, _)[source(self)] <-

+byzantine_fact_count (TOPIC, FACT, 1);
!byzantine_try_settle (TOPIC).

If there is a majority choice with a count greater than the presupposed num-
ber of faulty agents, then the agent considers the agreement done, however its
responsibility to relay the message is not neglected.

Listing 1.6. Deciding on an agreement

+!byzantine_try_settle (TOPIC) [source(self)]
agreement_treshold (TOPIC, TRESHOLD) [source(self)] <-

!byzantine_majority_choice (TOPIC, CHOICE, COUNT);
if (COUNT > TRESHOLD) {

+final_fact (TOPIC, CHOICE)
}.

It also interesting to provide an alternative plan for main recursive goal, be-
cause if this is triggered, the agent can be sure that at least one non-cooperative
or faulty agent exists in the system.

Listing 1.7. Detecting error with alternative plan
+!byzantine_agree_rec (TOPIC, FACT, AG, STEP) [source (SOURCE)]

<-
.print("Illegal message received: ",

FACT, " from ", SOURCE, " in step ", STEP, "!"
).

Listing 1.8. Usage of the libarary in the commander

/* Initial beliefs and rules */

agreement_group (topic (default), [a, b, c, d4]).
agreement_treshold(topic(default), 1).

/* Initial goals */

+!start <-
!byzantine_agree (topic(default), choice).

/* Plans */

{ include("inc/agreement.asl") }

4 Analysis of noncooperative behaviour

There are multiple ways for an agent to be non-cooperative when participat-
ing in an agreement group. The various kinds of behaviours that such agents
can produce can be classified into three categories, non-conforming behaviour,
detectable misbehaviour, undetectable misbehaviour.

8 Endre Fiilop

4.1 Non-conforming behaviour

If the agent lacks the basic building blocks of the algoritm, then it is possible
that its participation in the agreement algorithm is only nominal. One such
example could be, when the agent is not responsive, or does not even have plans
for handling goal that are dictated by the agreement process.

Listing 1.9. Example of non-conforming behaviour

/* Non-cooperative, passive x*/
/* +!byzantine_agree_rec (FACT, AG, TRESHOLD, STEP) [source(S)]
<-
print ("Not doing anything!").
*/

4.2 Detectable misbehaviour

Every agent is classified to misbehave in a detectable manner, if its messages
trigger the alternative plan of the main recursive goal byzantine_agree_rec.
This practically means that agents who are active, but manipulate the the target
agreement group, the value of current step for an ongoing agreement cause the
trigger of the alternative plan.

Listing 1.10. Example of detectable misbehaviour

/* Non-cooperative, does not increment step */
+!byzantine_agree_rec (TOPIC, FACT, AG, STEP) [source(S)]
byzantine_valid_request (TOPIC, AG, STEP, SOURCE) <-

+agreement_message_for_step (TOPIC, STEP, SOURCE);
!byzantine_fact_count_increment (TOPIC, FACT);
7agreement_treshold (TOPIC, TRESHOLD) ;
if (STEP <= TRESHOLD) {
.my_name (ME) ;
.difference (AG, [ME, SOURCE], OTHERS);
.send (OTHERS, achieve,
byzantine_agree_rec (TOPIC, FACT, OTHERS, STEP)
);
}.

4.3 TUndetectable misbehaviour

There are ways for a misbehaving agent to participate in the agreement process
and appear to be fully cooperative for some subset of other participants. The
key difference here is that the agent does not try to manipulate the structure of
the agreement algoritm, it only tries to misinform the other participants with
incorrect declaration of which choice it received, or which turn it is currently
voting for.

Implementing fault tolerant agreement in JaCaMo 9

Listing 1.11. Example of undetectable misbehaviour
/* Non-cooperative, byzantine x/
+!byzantine_agree_rec (TOPIC, FACT, AG, STEP) [source(S)]
byzantine_valid_request (TOPIC, AG, STEP, SOURCE) <-

+agreement_message_for_step (TOPIC, STEP, S);
!byzantine_fact_count_increment (TOPIC, FACT);
if (STEP <= TRESHOLD) {
.my_name (ME) ;
.difference (AG, [ME, S], OTHERS);
for (.member (X, AG)) {
.random (R)
.if (R < 0.5) {
.send (X, achieve, byzantine_agree_rec (TOPIC,
malicious_fact(targeted_for (X)), OTHERS, STEP + 1))

} else {
.send (X, achieve, byzantine_agree_rec (TOPIC,
FACT, OTHERS, STEP + 1));

5 Conclusion

Byzantine algoritms are mainly used in distributed systems to provide a solution
for fault tolerance with as little redundancy as possible. Multi-agent systems are
also distributed in the sense, that not only the execution of logic, but also the
decision making is decentralized, and therefore byzantine algrithms can provide
benefits for lower layers of implementation, as well as the upper levels, where
the cognitive modelling of autonomous behaviour happens. There are many more
advanced exmaples of implementing byzantine algoritms in traditional systems,
however in multi-agent systems the special characteristics of software engieneer-
ing solutions, like frameworks and languages make the implementation not as
straigtforward. The JaCaMo framework is very capable at providing a sandbox,
where experimental multi-agent solutions can be studied. As further improve-
ment, based on the experience gained, more modern byzantine algoritms could be
considered, where the exponential amount of messages could be reduced already
mentioned in the pBFT paper. Another valuable extension would be, to use the
organization-oriented aspects of JaCaMo to provide an automated commander
selection solution.

References

1. Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with jacamo. Science of Computer Programming 78(6), 747-761
(2013)

10 Endre Fiilop

2. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI. vol. 99,
pp. 173-186 (1999)

3. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 4(3), 382-401 (1982)

4. Wooldridge, M.: An introduction to multiagent systems. John Wiley & Sons (2009)

