
aML � a Macro Language
revised formal de�nition

Zsolt G. Hernáth

Technical Report

DOI:10.21862/2021.aML

Faculty of Informatics

Eötvös Loránd University

Budapest

January 13, 2021

DOI: 10.21862/2021.aML

About aML

aML is a context sensitive language in which macro names and invocations of macros
together with their embedding context are freely electable so far as they can be charac-
terized by regular languages. Due to the above features, aML is not simply for extending
programming languages, but much rather for singling particular phrases of formerly is-
sued text and make them become macro invocations of subsequently implemented macro
de�nitions. The basis of aML is FORMAL [5, 6]1 de�ned in Eötvös Loránd University
Computer Centre in the middle of 80s. FORMAL in many aspects broke away the phi-
losophy of early time macro languages and the expansion methods applied with them.

The �rst formal de�nition of aML [1, 2], � from now on referred to as prototype de�nition
has got ready in May 2010 for the STDL schema transformation language de�ned and
implemeted in SZOMIN08 poroject (2009-2011). In the prototype de�nition the above
mentioned regular languages were proposed to be given a conveniently modi�ed minimal
subset of POSIX regular expression language2. To the minimal subset selected we did not
take over the $ end-of-line meta-symbol, but, at the same time, there was a particular
need of the character representations of keys ENTER and TAB which are not supported
by POSIX. For them, therefore, we took over escapes \n and \t from the C programming
language. Another deviation from POSIX was that matching patterns a.*b and a.+b
aML needs lazy quanti�cations instead of greedy3. Alterations were accomplished by a
C++ implementation of macro processor modules completed by the end of 2010.

A subset of the prototype de�nition following out STDL schema transformations was im-
plemented also in C. The C implementation disapproved the regular expression language
worked out for the prototype de�nition. Instead, it followed out a minimal language with
uni�ed syntax and pattern matching concept of what is called semi-greedy quanti�cation.

1FORMAL has originally been de�ned as a macro language for FORTRAN IV in 1980. It aimed at
introducing new data types, control �ow constructions unavailable in FORTRAN IV, and also C-like
operations ++ and −−.

2The POSIX based regular expression language for aML has been worked out by Peter Bauer. For
lack of formal speci�cation both the POSIX subset and the deviations from POSIX were only outlined
by de�nitions [1, 2].

3In lazy quanti�cation pattern a.*b matches all strings started with letter a and ending with the
closest b �lowing a, opposit to greedy quanti�cation, when the farthermost letter b ensuing letter a is
matched.

i

ii

De�ciencies and Contradictions in Prototype De�nition

By tests made with C implementation light was thrown on a number of de�ciencies e.g. in
load and target directives, in macro parameter references and link-indicator and also on
contradictions between name classes and the syntax of macro-directive. All those and also
the C implementation of the aML regular expression language brought us to the decesion
of putting down a revised formal de�nition of aML.

Role and Treatment of Backslash

Apart from escapes \n and \t backslash plays a joint and several escaping role in the
prtotype de�nition. Outputting any escape but \n and \t the escaped character without
the preceding backslash appears purely on the all-time target segment4. Escapes \n and \t
on output appears as ENTER and TAB (ASCII-7 octal codes 012 and 011), respectively.

Such a treatment of backslash brings on trouble in all host languages where backslash plays
particular role, e.g. when a host language is a markup language, or the C programming
language because of C escapes. In order to aML could be used in as wide range of host
languages as possible, aML had to be furnished with a dynamic escape treatment. The
dynamic backslash handling is followed out by introducing a new directive � the escape-
directive.

By escape-directive one can specify the set of characters which are outputted as escape
sequences (i.e characters preceded by backslash), and also those characters which preceded
by backslash appear on output according to their escape interpretation speci�ed. For
example, the

#escape{[A(a)-Z(z)r\\]}

speci�es that each capitals preceded by backslash as smaller case letters, and \r and \\
without alteration as \r and \\ have to be outputted.

Introducing the escape-directive brought us to dissolve hidden inconsistencies coming
from the inadequate syntax of macro-, load-, and target-directive proposed by the
prototype de�nition.

Recognition of Macro Invocations

Developing the prototype de�nition we thought that the e�ciency of regognizing macro
invocations can be increased by specifying those representatitve contexts in which macro
invocations are worth to be looked for. The prototype de�nition, therefore provides for

4A text �le for output in the operating system's �le system assigned by the latest target-directive.

iii

the embed-directive. STDL transformation tests showed that the embed-directive did not
ful�ll the expectations hoped.

E�ciency tests made by the C implementation manifested that the best e�ciency can be
achieved by matching arbitrary character sequences closed by elements of name classes.
Such text fragments as regular languages can, however, be easily and automatically gener-
ated for each declared name class, namely, the embed-directive subvention is unnecessary.

File Names in Operating Sytem Environment

The actual input and output of the aML macro processor are determined by the recently
performed load-directive and target-directive, respectively. Any of them speci�es a name
of a �le in the operating system environment. According to the prototype de�nition
syntax, names of �les are delimited by whitespaces. Since most of nowadays used operating
systems allows whitespaces inside �le names, the syntax of load and target directives
was desired to be changed. Syntax changed allowes leading, trailing and intermediate
whitespaces building �le nemes. Composing �le names, escapes are also allowed. Handling
escapes used happens according to the escape-directive recently applied.

Name Classes and Macro Names

The prototype de�nition syntax of macro-directives brings forth a hidden inconsistency be-
tween declarable name classes5 and macro names delimited by whitespaces: e.g. no macro
named ENTER can be de�ned according to the prototype de�nition syntax, though name
class with the (only) name ENTER can be declared as #embedded{"\n"}. Assuming no
escape-directive changed the treatment of escapes \n and \t, the below macro de�nition

#macro [\n]

{

#invoked as "^[\t]*&"

{

}

}

is to eliminate empty lines of a text �le.

The aML regular expression language

The development of a regular expression language based on the extended POSIX but
signi�cantly di�erent from the extended POSIX syntax was primarily due to the symbol

5Name classes are regular languages. Elements of the set union of name classes can be used as macro
names.

iv

representations \n and \t and the need of aML macro parameter declaration and reference
expressions.

Since C escape sequences \n and \t are character representations, there is a need to use
them as elements of symbol classes (i.e inside POSIX bracket expressions) which violate
POSIX regular expression syntax. As two other extension of symbol classes, expressions
[] and [ˆ] represent the empty set6 and its counterpart i.e any character of the whole
terminal alphabet, respectively. The latter is a synonym for the . POSIX meta-symbol.

As for macro parameter expressions, both declarations and references are headed and also
terminated by the symbol $. A declaration does furthermore describe a codomain for the
declared parameter.

The regular expression language developed for aML follows a precept of matching called
semi-greedy. The appellation semi-greedy refers to the degree of avidity of quanti�ers +
and *. When concatenated quanti�ed patterns in a sub-expression are disjoint, quanti�ers
are greedy, otherwise lazy or guarded greedy. Guarded greedy quanti�ers are at most as
much greedy only that the rest of expression could still be matchable, provided the entire
expression can be matched at all.

Connection to Operating System

Planning the prototype de�nition of aML practical claims of XML schemata transforma-
tions were primarily in focus, and theoretical aspects were not considered at all. Among
others we do not think about a direct connection from the macro processor to the all-time
operating system, though STDL7 transformation steps create temporary �les which in
lack of connection to all-time operating system can not be removed by themselves. By
the newly introduced system-directive an operating system command can be carried out.

Macro Parameter References, Context and Link Indicators

A macro de�nition in aML is a (possible empty) sequence of context-sensitive rewriting
rules. On the left-hand side of rewriting rules not only scalar (ordinary, unstructured) but
also structured parameters can be declared. There are two sorts of structured parameters:
record and vector. They are relations in relational algebraic sense and can be nested into
each other in arbitrary depth.

Records are tuple of separated �elds, which depending on their declarations may carry
either scalar or structured valeues. A record parameter can be referred to the entire record
as if were scalar parameter, or by �elds. The latter corresponds to a relational algebraic
projection.

6 The empty set might occasionaly represent the empty symbol.
7Schema Transformation Description Language

v

Vectors are sets of binary relations between the set of their elements and the set of
indexes of their elements. Vectors of vectors are called multi-dimensional vectors. Multi-
dimensional vectors are not arrays. Elements of the innermost vector are scalars or records,
while elements of higher dimensions are vectors containing occasionally di�erent number
of elements. Similarly to record parameters, a vector parameter can be referred to as it
were scalar, or as to vector, where row or column continuous ordering of elements for each
dimension has to be prescribed. A reference to a vector parameter as vector results in
the series of values of all elements of the vector in a particular order. In case of multi-
dimensional vectors the order of elements in the series depends on in which dimension
which ordering of elements is speci�ed. A column continuous ordering in any dimension
distributes the series of element values over more mere lines.

The prototype de�nition does not clarify the in�uence of the context indicator when vector
parameter references result in more than one line, and how vectors of di�erent dimension
are linked by the link-indicator.

The in�uence of the context indicator on vector parameter references, of course, must not
depend on whether values are distributed over one or more single lines, ensured by the
statement preservation principle which states:

one embedding statement read in remains one statement after its parameter
references have been substituted by their actual values, independently of the
value substistutions result in one or more single lines.

The link-indicator performs a relational algebraic projection to vector elements in the
outer join of vectors of occasionally di�erent dimension, and di�erent number of elements
in di�erent dimensions. Scalars linked are considered as zero-dimensional vectors, but
the outer join is controlled by at least 1-dimensional vector from left to right. The join
condition is a partial equality between element indexes. Element indexes are ordered
tuples. A partial equality between element indexes is hold, if walking down from the
highest towards the lowest dimension the indexes are equal to each other. The appearance
and the sequence of linked vector elements depend on whether row or column continuous
order is speci�ed for each dimension.

Prototype De�nition Extensions

Associate Grammars

aML in use lives in symbiosis with two other languages. One of them is the host language,
and the other one is a regular expression language. Though aML strongly depends on its
all-time host language, and its regular expression language, it does not consider its own
grammar either as a sub-grammar of that of the host language, or as the main-grammar
of its regular expression language grammar

vi

This paper describes all three garammars separately. Dependeces between separately
de�ned grammars are denoted by applying quasi-terminal symbols. Any non-terminal
symbol of a grammar may appear as a quasi-terminal symbol in a grammar that depends
on it. Quasi-terminal symbols in the dependent grammar are not elements of the terminal
alphabet. Their quasy-terminality is indicated by letter T in the superscript of the non-
terminal symbol.

The escape-directive and the sytem-directive

By the escape directive the treatment of those escape sequences can be con�gured which
appear on the output, or in macro names and in �le names close to the operating system.
This means that apart from the escapes \n and \t backslash keeps its joint and several
escaping role in regular expressions and in escape settings. Escapes \n and \t used in
regular expressions and in escape-settings are considered as reserved character represen-
tations for characters mapped to keys ENTER and TAB, respectively.

The primary motivation for introducing the sytem-directive was to allow aML embedding
to be processed from aMl embedding. By the system-directive a connection with the
operating system can be established and maintained for executing one operating system
command from aML embedding.

Zsolt G. Hernáth

Contents

About aML i
De�ciencies and Contradictions in Prototype De�nition ii

Role an Treatment of Backslash . ii
Recognition of Macro Invocations . ii
File Names in Operating System Environment iii
Name Classes and Macro Names . iii
The aML regular expression language . iii
Connecting Operating System . iv
Macro Parameter References, Context and Link Indicators iv

Prototype de�nition Extensions . v
Associate Grammars . v
The escape-directive and the system-directive vi

1 Introduction 2
1.1 The aML-philosophy . 2

1.1.1 Embedding Text Layout . 3
1.1.2 Host Language Phrases as Macro Invocations 3
1.1.3 Free-syntax Embedding and Limitations 4
1.1.4 Macro De�nitions and Macro Expansion 4

1.2 Terminology and Associate Grammars . 5
1.2.1 Host Language By aML Eye . 5
1.2.2 Regular Expression Language for aML 6
1.2.3 aML Grammar . 10

2 aML Basics 11
2.1 Lexical Elements . 11

2.1.1 Characters . 11
2.1.2 aML Comments . 15

2.2 Parameter and Function Expressions . 16
2.2.1 Macro Parameter Declaration and Reference 16
2.2.2 Regular Expression Function . 20

1

CONTENTS 2

2.2.3 Parameter Evaluation . 20
2.3 Name Classes, Macro Names and Rule Names 20

2.3.1 Name Classes . 21
2.3.2 Names . 21

2.4 Statement Classes and Statements . 21
2.4.1 Lines . 22
2.4.2 Declared Statement Classes . 23

2.5 Embedding and Embedding Contexts . 23
2.5.1 Directive Embedding . 24
2.5.2 Macro Invocations . 25
2.5.3 aML Embedding . 28

3 Directives and Indicators 29
3.1 Directives . 29

3.1.1 The embedded-directive . 29
3.1.2 The escape-directive . 30
3.1.3 The expand-directive . 31
3.1.4 The host-directive . 31
3.1.5 The invoked-directive . 32
3.1.6 The load-directive . 33
3.1.7 The macro-directive . 33
3.1.8 The o�-directive . 34
3.1.9 The on-directive . 35
3.1.10 The statement-directive . 35
3.1.11 The system-directive . 35
3.1.12 The target-directive . 35
3.1.13 The term-directive . 36

3.2 Indicators . 36
3.2.1 Comment Indicators . 36
3.2.2 Context Indicator . 37
3.2.3 Link Indicator . 37

4 Process of aML Embedding 40
4.1 The aML Macro Processor . 40

4.1.1 Input . 40
4.1.2 Output . 41

4.2 Recognition of aML Embedding . 42
4.2.1 Recognizing and Handling aML Comments 42
4.2.2 Recognizing and Handling Regular Expression Functions 42
4.2.3 Recognizing and Handling Directives 42
4.2.4 Recognizing and Handling Macro Invocations 42

CONTENTS 3

4.3 Processing aML Embedding . 47
4.3.1 Performing Directives . 47
4.3.2 Statement Preservation Principle 48
4.3.3 Expounding Macro Embedding . 49

Chapter 1

Introduction

Macro languages, in general, are used to extend host languages by introducing new control
�ow constructions, data types and operations, originally not de�ned by them (RATFOR
[3], FORMAL [4]). Another reason might be simply shorten host language texts by using
parameterized abbreviations for host language text fragments. In the early period of their
evolution, macro languages di�erentiated two categories of macros, namely, macro func-
tions and macro statements. Di�erentiation was consequently made both in de�nitions
and invocation.

- A de�nition of a macro function represents a particular fragment of a host language
statement or instruction. Expounding an invocation of a macro function embedded
by a statement, the invocation is replaced by the text speci�ed in the de�nition.

- A de�nition of macro statement contains a sequence of statements that may contain
host language statements with occurrent invocations of macro functions and also
macro statements. An invocation of a macro statement shapes a statement, and
represents the sequence of statements the de�nition contains. Expounding the invo-
cation, the invocation is substituted by the pure host language text the statements
in the de�nition expand.

aML in many aspects rejects the philosophy of early time macro languages and the expan-
sion methods applied with them. In addition, in aML what are called primal macros1can
also be de�ned. Invocations to primal macros expand macro de�nitions.

1.1 The aML-philosophy

In the aML-philosophy, notions of macro function and macro statement in the classical
sense are not di�erentiated. In general, macro invocations within one statement form

1An appellation by Dean Zoltán Horváth

4

1.1. THE AML-PHILOSOPHY 5

invocations of macro functions. Nevertheless, any of them may de facto expand as either
a pure macro function, or a macro statement in the classical sense, or a mixture of those.

The expansion of macro invocations is context-sensitive. Context-sensitivity is based on,
and also controlled by invocation contexts. In aML, a macro de�nition is a possible empty
list of rewriting rules. The left-hand sides of rules declare contexts where macro invoca-
tions are acceptable, whilst the rigth-hand sides contain text lines the invocations shall be
substituted with. Substituted text lines are allowed to take over the all-time invocation
context from either side by applying context indicators. The latter is what one has to
apply to implement classical sensed macro functions in aML, and called a context presev-
ing.

Context preserving needs to specify how far back and ahead relevant text fragments are to
be considered as invocation contexts. The range of invocation contexts for di�erent host
languages may, however, be di�erent, so that aML introduces the notion of host language
statement, and provides lingual means to specify what kinds of or which text fragments
constitute statements for the host language considered.

aML supports declarations of parameterized rewriting rules for macro de�nitions. For-
mal parameters are considered as symbolic refrences to particular texts � fragments of
invocation contexts. References are set when a macro invocation is detected. Neither the
references, nor the referenced texts shall be altered during expansion. Rewriting rules
can be furnished with unstructured and structured formal parameters. Unstructured for-
mal parameters are called atoms or scalar parameters. Structured parameters are either
records or vectors, both of them are relational algebraic relations.

Analogously with other macro languages, aML does primarily pro�er directives for macro
processor control. Directives are used e.g. to declare or alter macro de�nitions, or switch
their visibility o� and on. In addition to directives, aML o�ers three indicators which
are low-level operations. They are in their precedencial order the comment indicator, the
context indicator and the link indicator.

1.1.1 Embedding Text Layout

In aML-philosophy, a host language embedding is assumed to be a text stream generated
by nesting text �les called embedding data stream. Processing embedding data streams,
each of them is considered as a sequence of context-free host language units called state-
ments. Statements are the widest language units delimit the visible text context of their
macro invocations.

1.1.2 Host Language Phrases as Macro Invocations

The aML breaks away the classical macro technique philosophy. Instead of embedding
invocations to prede�ned or in advance user de�ned macros, particular phrases in host

1.1. THE AML-PHILOSOPHY 6

language texts are considered and interpreted as invocations of subsequently established
adequate macro de�nitions. This constitutes a particularly great signi�cance when a
reedition of formerly issued read-only text is to be made up.

1.1.3 Free-syntax Embedding and Limitations

aML provides free syntax for embedding macro invocations into host laguege texts at
three levels:

• aML provides means to declare what or which host language constructions shall be
considered as statements by assuming that they can be characterized by some sort of
their initial and terminal sub-strings generated by regular grammars; furthermore,
allows host statements to embed an arbitrary number of macro invocations.

• aML does not de�ne the set or regular language of acceptable macro names as its
own lexical elements, but rather provides means to specify name classes as symbols
generated by regular grammars.

• aML does not �x macro name relative positions of actual parameters in macro invo-
cations. Those can rather be de�ned freely on the left-hand side of rewriting rules
in macro de�nitions. The only thing that aML postulates is that di�erent macro
invocations in the same host language statement can not share actual parameters
either partly, or as a whole.

The degree of the applicable free syntax embedding is limited by how properly the above
categories can be de�ned by using regular grammars.

1.1.4 Macro De�nitions and Macro Expansion

A macro de�nition in aML assigns an arbitrary number of but at most 256 rewriting rules
to a unique name called macro name. Each rewriting rule is context-sensitive in the sense
that its left-hand side is an invocotation pattern, i.e a macro invocation together with an
embedding context. Macro invocations are primarily identi�ed by macro names.

The expansion of macro invocations is a recursive procedure. It lasts until generated texts
are �nally free from substituable macro invocations. The expansion of a macro invocation
may be context preserving or context independent, and also the mixture of those. It is
controlled in the right-hand side of the rewriting rule. The expansion of macro invocations
within one statement takes place strictly from left to right, and in the case of a context
preserving substitution neighbouring macro invocations are expounded in interaction with
each other.

1.2. TERMINOLOGY AND ASSOCIATE GRAMMARS 7

1.2 Terminology and Associate Grammars

Formalism used thorough this paper is in general the usual terminology of Formal Lan-
guage Theory. The terminal alphabet of the descriptive language is always obtained from
the terminal alphabet of the grammar to be described by adding the empty symbol (ε),
if needed.

Elements of the non-terminal alphabet show themselves in boldface style. Polysyl-
labic non-terminal-symbols are rather hyphened than underscored. Neighbouring non-
terminal symbols on the right-hand side of production rules are separated by one space.
Production rules are of form left-hand-side =⇒ %, where % is an element of the free
semi-group supported by the set union of the terminal and the non-terminal alphabets.
Whenever production rules with the same left-hand side follow directly each other in con-
sequtive lines, their left-hand side together with the relation symbol =⇒ appears only in
the �rst line. If a serie of production rules enumerated blanks or larger subsets of the ter-
minal alphabet, POSIX-like bracket expressions are used instead on the right-hand sides
of production rules. POSIX-like bracket expressions carrying non-terminals indicate
optionality. They may be quanti�ed. Square brackets and quanti�ers show themselves in
bold. Quanti�ers from extended POSIX may also be used in bold.

When aML is in use two associate languages are also in use. One of them is the host
language which carries aML embedding, the other one is a regular expression language
by which name classes, embedding statements and macro invocations together with their
embedding contexts can be described. Associate grammars closely depend on each other.
To de�ne them separately, any of them needs to quote production rules of some other.

aML neither stabilize nor recommend any particular host language, namely it does not
consider its own grammar a sub-grammar of the host languege actually in use. aML
integrates its regular expression grammar, but does not consider that as a sub-grammar
of its own grammar. Considering all above, grammars of associate languages on the one
hand are expeted to be de�ned separately, but to do that, dependencies between them
have to be capable to be described in separately de�ned grammars, on the other hand.

Introducing the notion of quasi-terminal symbols, dependencies can adequately be spec-
i�ed in separately de�ned grammars as followes. A quasi-terminal is some non-terminal
symbol of a grammar the dependent grammar depends on, but behaves as terminal sym-
bol of the dependent grammar. If non-terminal is a non-terminal symbol of a grammar
the dependent grammar depends on, the corrspondent quasi-terminal symbol in the de-
pendent grammar appears as non-terminalT .

1.2.1 Host Language By aML Eye

Let S denote the terminal alphabet of the host language, CASCII−8 and SASCII−8 in turn
the closed decimal code interval [1, 253] of ASCII-8 code table, and the set of symbols

1.2. TERMINOLOGY AND ASSOCIATE GRAMMARS 8

coded by the elements of CASCII−8, respectively. aML assumes S ⊆ SASCII−8. Let I and
J be �nite index sets, Hi(i ∈ I) and Tj(j ∈ J) regular languages over S, and furthermore

H =
⋃
i∈I

Hi and

T =
⋃
j∈J

Tj.

Let Sε denote the terminal alphabet of the descriptive grammar. aML assumes the host
language is given by the grammar G(Sε, N, embedding-text,H, T ,P), where N is the
non-terminal alphabet, symbol embedding-text ∈ N is the start symbol of the grammar,
and P is the set of production rules, as listed below:

embedding-text =⇒ embedding-statement

embedding-text embedding-statement

embedding-statement =⇒ (H 3)h embedding-fragment t(∈ T)
embedding-fragment =⇒ ε

host-symbol

embedding-fragment host-symbol

host-symbol =⇒ embedding-symbol

embedding-symbol-code-representation

embedding-symbol =⇒ s(∈ S).

embedding-symbol-code-representation =⇒ c(∈ CASCII−8).

According to the grammar above, aML assumes that host language statements are iden-
ti�able by their pre�x and su�x generated by regular languages.

1.2.2 Regular Expression Language for aML

The language de�ned here is derived from a minimal subset of extended POSIX regular
expression language, and called aML regular expression language. The extended POSIX
subset chosen containes the dot (.) that matches any symbol in the terminal alphabet, the
hat (^) that matches the start position of the string, parentheses for composing captured
(sub-)expressions of form (expression), the choice operator | that matches either the
expression before or the expression after the operator, the quanti�ers ?, +, * and the
extended POSIX bracket expression.

In aML there is strong need for the character representations of the ENTER and the
TAB keys, which are unavailable in POSIX regular expression language.2. For them,

2POSIX metacharacter $ matches the position right before the end-of-line character.

1.2. TERMINOLOGY AND ASSOCIATE GRAMMARS 9

therefore, aML takes over escapes \n and \t from the C programming language. Due
to the above, the syntax of POSIX bracket expression has been in signi�cant degree
changed: in bracket expressions presence of escapes is allowed, and for position-based
characters like hats (^) or closing brackets (]) and hyphens (-), their escaped occurence
is acceptable. To document the dependence of aML regular expression language on aML
the quasi-terminals regular-expression-functionT , macro-parameter-declarationT ,
macro-parameter-referenceT and parameter-referenceT are introduced.

Grammar

The aML regular expression grammar is given as G(T,N, regular expression, Qr, P),
where T and N are the terminal and the non-terminal alphabet, regular-expression∈ N
is the start symbol, Qr is the set of quasi-terminals introduced above, and P is the set of
production rules. T is assumed be the set of symbols of ASCII-8 code table, and given as
T = TM

⋃
TO, where TM = {\, ^, -, (,), [,], . ?, +, *}, and TO = T − TM .

Symbols

symbol =⇒ meta-symbol

normal-symbol

meta-symbol =⇒ m (∈ TM)

normal-symbol =⇒ single-symbol

symbol-class

single-symbol =⇒ common-symbol

\common-symbol
\meta-symbol

common-symbol =⇒ o (∈ TO)

symbol-class =⇒ .

[single-symbols]

[̂ single-symbols]

[]

[̂]

single-symbols =⇒ single-symbol

single-symbol hyphen single-symbol

single-symbols single-symbol

hyphen =⇒ −

1.2. TERMINOLOGY AND ASSOCIATE GRAMMARS 10

A symbol in regular expressions represents always an element of some set of symbols. Any
common-symbol identi�es the set the only element of which is the common-symbol
itself. For any symbol, other than n and t, the sequence \symbol is called escaping,
which represents either the symbol itself or the common-symbol-reprezentation of a
meta-symbol. Escapes \n and \t are used as reserved character representations of
ENTER and TAB keys, respectively3.

A symbol-class is either an aML bracket-expression, or the meta-symbol dot (.). The
symbol-class [] is the empty set. The empty set is not identical with the empty symbol4.
The symbol-class [^] is the complemnetary set of the empty set, which is the whole
terminal alphabet and is equivalent with the meta-symbol . .

POSIX derived expressions

derived-expression =⇒ normal-symbol

(derived-expression)

derived-expression quanti�er

POSIX-like-expression =⇒ ε

derived-expression

POSIX-like-expression|POSIX-like-expression

(POSIX-like-expression) [quanti�er]

quanti�er =⇒ at-most-one

at-least-one

zero-or-at-least-one

at-most-one =⇒ ?

at-least-one =⇒ +

zero-or-at-least-one =⇒ *

Posix derived expressions de�nes the minimal subset of te extended POSIX regular ex-
pression language taken over and partly rede�ned.

3The escapes \n and \t are not common-symbols. They are mere character representations for
common-symbols of key ENTER and TAB.

4The empty symbol is not an element of the terminal alphabet. The empty set is a possible represen-
tation of the empty symbol.

1.2. TERMINOLOGY AND ASSOCIATE GRAMMARS 11

Function expressions

function-sub-expression =⇒ POSIX-like-expression

regular-expression-functionT

(function-sub-expression) [quanti�er]

function-expression =⇒ function-sub-expression

function-expression | function-expression

(function-expression) [quanti�er]

Regular expressions

macro-expression =⇒ function-expression

macro-parameter-declarationT [at-most-one]

macro-parameter-referenceT

parameter-referenceT

(parameter-referenceT)[quanti�er]

regular-expression =⇒ macro-expression

regular-expression | regular-expression

(regular-expression) [quanti�er]

regular-expression regular-expression

Choice operator | is a left-to-right or right-to-left associative operator depending on the
direction of matching patterns5. The left-to-right resp. right-to-left associativity law has
a great importance when the empty symbol is matched. For a left-to-right comparision,
patterns (|A) and (A|) both match the empty symbol in any case, independently of the
character string to be matched. Any character string starting with capital A is matched
by both pattern above, but the empty symbol is also matched. Due to left-to-right
associativity law, pattern (|A) produce the empty match, whilst pattern (A|) results in
matching character A. Matching zero number of characters in a sub-expression quanti�ed
by ? or * results in matching the empty symbol.

Semi-Greedy Quantifcation and Pattern Matching

Matching regular expression patterns, generally two exaggerated kind of quanti�cations
are in use: greedy and lazy. Greedy quanti�ers match as many symbol as they can, while
lazy quanti�ers match the necessary least number of symbols. In POSIX regular expres-
sion language quanti�ers are greedy. Our aML regular expression language quanti�ers are

5In aML regular expression pattern matching may take place in any direction

1.2. TERMINOLOGY AND ASSOCIATE GRAMMARS 12

semi-greedy. The semi-greedy qunti�cation6 is a combined balance between the greedy
and lazy quanti�cation. The combined balance between greed and laziness is not simply
a golden mean, but pattern dependent. There are patterns by which quanti�ers perform
greedy match, and also others matched lazy, and in addition, there are such patterns as
well which are matched guarded greedy. A guarded greedy pattern match is at most as
much greedy only as the rest of the pattern could still be matched, provided the entire
pattern can be matched at all. The actual behaviour of semi-greedy quanti�ers, i.e when
and where they follow out greedy, lazy, or guarded greedy pattern match can easily be
characterized by neighburing quanti�ed sub-expressions.

Let s and g be quanti�ed single-symbol, or symbol-class or quanti�ed parenthesized
sub-expression composed from them like (.)* or ([A-Z0-9])+. Let S and G denote
the non-empty sets of symbols of s and g, respectively. A semi-greedy quantifocation is
greedy, or lazy, if S

⋂
G = ∅, or S ⊃ G is held, respectively. In any other cases semi-greedy

quanti�cations are guarded greedy.

1.2.3 aML Grammar

Due to the dependency between the aML grammar and its co-grammars quasi-
terminal symbols embedding-symbolT , embedding-symbol-code-representationT ,
quati�erT , regular-expressionT and their set denoted as Qa is now introduced.

Let Ta denote the terminal alphabet of aML, S, and SASCII−8 be the sets de�ned
in (1.2.1). Let furthermore T = Ta

⋃
S

⋃ {ε} be the terminal alphabet of the de-
scriptive grammar, and assume F denote the set of names of �les in the �le sys-
tem of the all-time operating system. The grammar which descibes aML is given as
G(Tε, N, embedding-data-stream, Qa,F , P), where N is the non-terminal alphabet,
embedding-data-stream is the start symbol and P is the set of production rules pre-
sented in subsequent chapters.

From now, throughout the formal de�nition a number of redundant non-terminals and
production rules are introduced in order to give more accurate detailes via semantic an-
notations provided informally. Beyond commentaries the most complex syntactical and
semantic aML constructions are illustrated by a number of examples.

6Hope, adjective semi-greedy is not engaged so far. If still, sorry for robbing it in this sense.

Chapter 2

aML Basics

2.1 Lexical Elements

The set of terminal symbols of aML is de�ned as the union of the persistent aML terminal
alphabet and the set of terminal symbols of the all-time embedding language. The persis-
tent terminal alphabet of aML consists of ordinary and special symbols. Special symbols
are indicators, costumes and delimiters. All of them may clash symbols of the host
language actually in use. Such con�icts are, however, context-dependent. aML postulates
that in any context where delimiters, costumes and indicators occur, it interprets
them according to their role in the context. aML has been planned that the above con-
texts with few exceptions are primarily the bodies of macro de�nitions. Resolving symbol
con�icts can be done by using backslash.

2.1.1 Characters

symbol =⇒ ordinary-symbol

embedding-symbolT

delimiter

costume

indicator

Ordinary Symbols

ordinary-symbol =⇒ [-_ *+? ! /= |<> , ; : 0-9A-Za-z]

white-space

13

2.1. LEXICAL ELEMENTS 14

Delimiters

Delimiters are embedding rules for particular grammatical units by marking their initial
and terminal positions.

delimiter =⇒ [[] ' "() { } [: :] .]

Delimiters used to mark the initial and the terminal position of the same grammatical
units, and with one exception have to constitute homogeneous pairs. The only odd de-
limiter is called the continuation symbol, and represented by dot (.). Homogeneous pairs
are "", ' ', (), [], {} and [::].

The pair "" called quotation delimits regular expressions. So does the pair '' in particu-
lar contexts as well. (cf Macro Parameter Declaration and Reference(2.2.1), Reg-
ular Expression Function(2.2.2), The embedded-directive(3.1.1), The invoked-
directive(3.1.5), The statement-directive(3.1.10) and The term-directive(3.1.13)).

Grammatical units delimited by pairs "" are line sensitive, i.e they are not allowed to con-
tain ENTER character inside. The continuation symbol is used to split double quoted
quotations longer than one line into more physical lines. Each line except the last shall
contain a continuation symbol that directly follows the right-hand sided quotation mark.
Between a continuation symbol and the quotation mark that opens the next quotation
fragment, only white-spaces shall occur.

The pair () separates function names from parameter-lists in term declarations and
from value-lists in regular-expression-functions. It may also be used in macro-
parameter-declarations, where particular sub-expressions are delimited (cfMacro Pa-
rameter Declaration and Reference(2.2.1), Regular Expresion Functions(2.2.2)
and The term-directive(3.1.13)).

Pairs [] are used to delimit macro names in macro de�nitions, and to declare and refer-
ence vector parameters (cfMacro Parameter Declaration and Reference(2.2.1) and
The macro-directive(3.1.7)).

Delimiters { }marks o� the beginning and the end of directive bodies (cfDirectives(3.1)).

Finally the pair [::] indicates the beginning and the end of long-lines which include oc-
casionally more than one physical lines but which are still treated as a single line (cf aML
Comments(2.1.2), Lines(2.4.1)).

Costumes

Similarly to delimiters, costumes are also embedding rules for particular lexical elements.

2.1. LEXICAL ELEMENTS 15

costume =⇒ parameter-symbol

directive-symbol

macro-symbol

card

function-symbol

back-slash

parameter-symbol =⇒ %

$

directive-symbol =⇒ #

macro-symbol =⇒ &

card =⇒ ~

function-symbol =⇒ @

back-slash =⇒ \

The parameter-symbol $ is used to enclose macro-parameter-declarations and
macro-parameter-references.

Using the parameter-symbol % is more complex. To indicate parameter-tags of record
parameters, the name of the tag shall be headed by %, and to indicate references to function
parameters, parameter-names shall be surrounded by % symbols (cf Macro Parameter
Declaration and Referenece(2.2.1), The term-directive(3.1.13)).

The directive-symbol marks o� directives. Though a directive symbol together with
a valid directive identi�er does only constitute a performable aML directive, checking
a directive-symbol, the macro processor treats it, as if a performable aML directive
were needed to be controlled (cf Directives(3.1), Recognizing and Handling Direc-
tives(4.2.3)).

A macro-symbol indicates the position of the macro-name on the left-hand side of
rewriting rules. Exactly one macro-symbol shall occure in each rewriting rule (cf The
invoked-directive(3.1.5)).

A card is a synonym for the macro-symbol, but used di�erently both syntactically and
in semantic sense. It can be used in any side of rewriting rules and even any number of
times. Its any occurance represents the macro name of the macro invocation the rewriting
rule is just being applied for.

The function-symbol is an embedding rule for regular-expression-functions (cfReg-
ular Expresion Functions(2.2.2)).

The back-slash plays a joint and several escaping role.

2.1. LEXICAL ELEMENTS 16

Indicators

Indicators represent low-level aML operations (cf aML comments(2.1.2), Context In-
dicator(3.2.2), Comment Indicator(3.2.1), Link Indicator(3.2.3)).

indicator =⇒ comment-opener

comment-terminator

context-indicator

left-link-indicator

right-link-indicator

comment-opener =⇒ {:

comment-terminator =⇒ :}

context-indicator =⇒ . . .

left-link-indicator =⇒ {*

right-link-indicator =⇒ *}

White Space Characters

gaps =⇒ ε

gap

white-space =⇒ gap

new-line

gap =⇒ blank-or-horizontal-tab

gap blank-or-horizontal-tab

blank-or-horizontal-tab =⇒ blank

horizontal-tab

blank =⇒ []

horizontal-tab =⇒ \t
new-line =⇒ \n

In regular expressions derived from regular-expressionT and in escape-settings of
escape-directive \n and \t are reserved character representations for characters mapped
to keysENTER andTAB, respectively. Outside the above contexts they are real escapes.
Their treatment can be prescribed by escape-settings in escape-directive (cf Regular
Expression Language for aML(1.2.2), The escape-directive(3.1.2)).

2.1. LEXICAL ELEMENTS 17

2.1.2 aML Comments

aML comments may stand anywhere in aMl embedding. Though the non-terminal symbol
aML-comment may stand in more places on the right-hand side of production rules than
anyone could imagine, from now on, for clarity of the rules, we will still omit it.

aml-comment =⇒ comment-opener commentary comment-terminator

commentary =⇒ ε

commentary-symbol

commentary commentary-symbol

commentary-symbol =⇒ ordinary-symbol

embedding-symbolT

delimiter

costume

comment-opener

context-indicator

left-link-indicator

right-link-indicator

Example for Comments

#embedded{"Example for Comments"}

#macro [{:Here a macro named "Example for Comments" will be defined.

This comment does hopefully desmostrate well what "anywhere"

really means.:}Example for Comments{:Please, realize, this

squere bracket syntactical unit is to mark off the initial

and final position of the macro name: Example for Comments.

The name has already been specified tightly between this and

the prceding comment.:}]

{

#invoked as "&{:This invocation pattern states:

Any occurence of Example for Comments anywhere

in an embedding statement is an invocation of

the macro named 'Example for Comments', and

expands the below text with context preserving:}"

{

...An example for aML comments and context preserving...

}

}

2.2. PARAMETER AND FUNCTION EXPRESSIONS 18

2.2 Parameter and Function Expressions

Regular expressions play a basic role in aML. One of the most important features of the
language is that the free syntax of aML macro calls is limited insofar as they can be
described in regular expressions. Parameter and function expressions are particular aML
phrases representing captured regular expressions. They are de facto macro parameter
declarations and references together with regular expression functions.

2.2.1 Macro Parameter Declaration and Reference

Macro parameter declarations are formal parameter declarations for rewriting rules.
They are typi�ed in the sense that they specify the set of acceptable actual values
called domain. Domains are regular sub-expressions derived from regular-expressionT .
Macro parameter declarations are captured sub-expression of left-hand sides of rewriting
rules which are in deed regular expressions derived from regular-expressionT . Macro
parameter declarations may be quali�ed optional by declaring them with quanti�er ?.

Domains are allowed to be composed from domain segments. Such domains are called
structured domains. Segments of structured domains can be further, i.e, recursively
structured. A structured domain may constitute a record or a vector. Both of them
are relational algebraic relations. Unstructured domains are also called scalar domains.
Scalar domains declare sets of mere character string values.

Records are n-tuples for some �xed number n(≥ 1). Items of tuples are separated by
declared delimitations. Vectors are special records. Items of vectors are called elements.
Elements have a common domain, and they are separated by the same delimitation. The
number of elements (the size of the vector) is not in advance declared. It is determined
dynamically when the value (list of elements) for the vector parameter is matched.
Vectors are ordered sets of binary relations between their elements and the indexes of
their elements.

Vectors whose elements are structured as vector are called multi-dimensional vectors.
Multi-dimensional vectors are not arrays. For some n(> 1) elements of an n-dimensional
vector are indexed by n indexes. The �rst index is for the �rst, the nth is for the nth

dimension. The elements of the innermost vector depending on their declaration are
scalars or records. For some 1 < i <= n, the elemnts of the vector in the ith dimension
are i-1 dimensional vectors, consisting of occasionally di�erent number of elements.

Macro parameter declarations are only accepted on the left-hand sides of rewriting-rules
de�ned for macro de�nitions. In any other contexts they in most cases are parsed but
either cause an error or treated as ordinary-texts.

2.2. PARAMETER AND FUNCTION EXPRESSIONS 19

macro-parameter-declaration =⇒ $parameter-name selector$

parameter-name =⇒ identi�er

identi�er =⇒ [0-9A-Za-z_-]+

selector =⇒ atom

record

vector

atom =⇒ ('domain')

record =⇒ {gaps tag-selectors gaps }

tag-selectors =⇒ tag-selector

tag-selectors gaps delimitation gaps tag-selector

tag-selector =⇒ parameter-tag selector

parameter-tag =⇒ %identi�er

vector =⇒ [gaps element gaps delimitation gaps |gaps vector-termination]

element =⇒ selector

vector-terminaton =⇒ delimitation

delimitation =⇒ 'domain'

domain =⇒ regular-expressionT

The vector-termination must not be an actual or derived empty symbol, furthermore
neither delimitations nor vector-terminations must clash atoms.

Macro parameters are not variables, rather symbolic references to ordinary-texts. As-
signments of referenced values take place when invocations of macros are matched. A
macro parameter declared on the left-hand side of a rewriting rule can only be referenced
on its right-hand side.

A macro-parameter-reference may refer to its entire scalar value, or to its structured
value according to the declaration. Badly formatted macro-parameter-references,
or those which are undeclared, are considered as ordinary-texts. (cf The invoked-
directive(3.1.5), The macro-directive(3.1.7)).

Records can be referenced by �elds. References to a �eld of structured domain may per-
tain to its entire scalar, or to its structured value. Vectors can not be referenced by
indexed elements. A reference to a vector parameter results in the series of all elements
in a particular order.

macro-parameter-reference =⇒ $parameter-name reference-type$

2.2. PARAMETER AND FUNCTION EXPRESSIONS 20

reference-type =⇒ atom-reference

record-reference

vector-reference

atom-reference =⇒ ε

record-reference =⇒ parameter-tag reference-type

vector-reference =⇒ [reference-type element-ordering]

element-ordering =⇒ row-ordering

column-ordering

row-ordering =⇒ ||

column-ordering =⇒ =

Referring to vector parameters element-ordering has to be speci�ed for each dimension.
Prescribing column-ordering the order of elements may be varied, and elements are
distributed over more mere lines. Neighbouring elements in one-dimensional vectors are
separated by one blank in a row-ordering reference. In column-ordering references,
separators are new-lines.

Example

#embedded{"A"}

#macro [A]

{

#invoked as "& $v[[[('[a-z]')'-'|'=']':'|'!']','|'\.']$"

{

...Series of elements of vector v appears as:...

...==...

...$v[[[||]=]||]$...

}

}

(W) Empty string (sub-)match may cause undesired pattern match

line 4 in segment STDIN

A a-b-c-d=:e-f-g=:h-i=!,j-k-l=:m-n=:o=!,p-q-r-s-t-u-v-x-y-z=!.

Series of elements of vector v appears as:

==

a b c d j k l p q r s t u v x y z

e f g m n

h i o

Example shows a name class declaration, a macro de�nition named A, an invocation of
macro A, and the result of the invocation. Macro A declares a three-dimensional vector

2.2. PARAMETER AND FUNCTION EXPRESSIONS 21

parameter named v. Processing the macro de�nition, the aML processor sends a warning
onto stderr indicating an empty left-shade-decl. When the macro invocation matched,
the values for the elements of parameter v together with their element indexes are mapped
as follows:

a[0,0,0], b[1,0,0], c[2,0,0], d[3,0,0], e[0,1,0], f[1,1,0], g[2,1,0], h[0,2,0],

i[1,2,0], j[0,0,1], k[1,0,1], l[2,0,1], m[0,1,1], n[1,1,1], o[0,2,1], p[0,0,2],

q[1,0,2], r[2,0,2], s[3,0,2], t[4,0,2], u[5,0,2], v[6,0,2], x[7,0,2], y[8,0,2],

z[9,0,2].

Mapping of element indexes is controlled by delimitations and vector-terminations,
speci�ed for dimensions.

In case of referring to multi-dimensional vectors the order of elements and their view can
easily be determined inductively. Suppose, v is an n-dimensional vector and for some
1 < i <= n the order of the elements, and their view in the (i− 1)th dimension is already
known. Recall that the ith dimension is a vector whose elements are (i− 1)-dimensional
vectors. Elements of the vector of ith dimension will be listed in their view below each
other or next to each other depending on whether column-ordering or row-ordering
is speci�ed for the ith dimension.

In our example, the 3d dimension is an 1-dimensional vector with 2-dimensional vector
elements. The delimitation of elements is the comma (,) which occurs two times in
the invocation, i.e the vector has three elements whose indexes are 0, 1 and 2. Since
element-ordering in the d dimension is row-ordering, its elements are replaced beside
each other separated with one blank.

The refernce to the 2nd dimension is column-ordering. The vector-termination and
delimitation are the characters = and -, respectively.

Referencing of the 1st dimension is row-ordering. The delimitation is the hyphen, and
vector-termination is the equality sign. Considering all of these, values of elements of
the 3d dimension are row-ordering row vectors in column-ordering views as follows:

0-indexed element:

a b c d

e f g

h i

1-indexed element:

j k l

m n

o

the only row vector in column-continuous view indexed by 2

p q r s t u v x y z

2.3. NAME CLASSES, MACRO NAMES AND RULE NAMES 22

The row-ordering elements of the 3d dimension are placed beside each other in such a
way as to the column-ordering row vectors of those are sparated by one blank:

a b c d j k l p q r s t u v x y z

e f g m n

h i o

which is in deed the result of invocation of macro A in the example.

2.2.2 Regular Expression Function

regular-expresion-function =⇒ nametag(gaps [value-list] gaps)

nametag =⇒ @identi�er

value-list =⇒ value

value gaps ,gaps value-list

value =⇒ 'regular-expressionT '

Regular expression functions are parametrized symbolic referenes to parameterized terms
can be de�ned by the term-directive. Inside left-hand-sides of rewriting-rules
they result in regular (sub-)expressions, whilst in other contexts they are treated as
ordinary-texts (cf Regular Expression Language for aML(1.2.2), Parameter
Evaluation(2.2.3), The invoked-directive(3.1.5), The term-directive(3.1.13)).

2.2.3 Parameter Evaluation

Parameter evaluations are procedures when particular texts are made temporarily refer-
able by declared identi�ers. They take always place, whenever macro invocations are
matched or regular expression functions are performed.

Parameter evaluation for a macro invocation are controlled by the regular expression which
itself is the matched left-hand side of the rweriting rule in the macro de�nition. Param-
eters of regular expression functions are evaluated from left to right. Correspondence
between parameters and function arguments are positional (cf Regular Expression
Language for aML(1.2.2), Macro Parameter Declaration and Reference(2.2.1),
Regular Expression Function(2.2.2), The term-directive(3.1.13)).

2.3 Name Classes, Macro Names and Rule Names

aML does not de�ne by default the set of the acceptable macro names as its own lex-
ical elements. The set of acceptable macro names are the union of name-classes. A

2.4. STATEMENT CLASSES AND STATEMENTS 23

name-class is a regular language de�ned by a regular expression can be derived from
regular-expressionT , and declared with the embedded-directive (cf iRegular Expres-
sion Language for aML(1.2.2), The embedded-directive(3.1.1)).

2.3.1 Name Classes

name-class =⇒ name-class-reference

name-class-quotation

name-class-reference =⇒ regular-expression-function

name-class-quotation =⇒ " regular-expressionT "

A name-class-quotation may be splitted into more than one line by using the con-
tinuation symbol (.). A name-class containing the empty symbol is unacceptable (cf
Delimiters(2.1.1), The embedded-directive(3.1.1)).

2.3.2 Names

Names in aML are macro-names and rule-nmes, i.e names of rewriting-rules. A
name is a macro-name, if it is declared by a macro-directive. Escapes in macro-names
are interpreted according to the last time established escape-setting.

A macro-name is recognisable, if it is an element of a declared name-class, unless it
is splitted by borders of declared-statement-class-statements. At any particular
time unrecognisable macro-names can be made recognisable by posteriorly declared
adequate name class (cf Statement Classes and Statements(2.4), The embedded-
directive(3.1.1), The escape-directive(3.1.2), The invoked-directive(3.1.5), The
macro-directive(3.1.7)).

2.4 Statement Classes and Statements

Statements are the widest text frames delimit the visible text context of their macro in-
vocations. By default, aML de�nes three statement classes: mere line, long-line and
directive-line. All of them are context-dependent. A mere line is a single line termi-
nated by the ENTER character. A long-line is a sequence of single lines following each
other, enclosed by the delimiter pair [::]. A directive-line is a mere line which apart
from leading white space characters starts with the directive-symbol which is directly
followed by an aML directive keyword.

Besides the default statement classes aML provides also the power of declaring additional
what are called declared-statement-classes which are regular languages de�ned by

2.4. STATEMENT CLASSES AND STATEMENTS 24

the statement-directive (cf Host Language By aML Eye(1.2.1), Deleimiters(2.1.1),
Costumes(2.1.1) and The statement-directive(3.1.10)).

2.4.1 Lines

inner-single-line =⇒ inner-directive-line

ordinary-inner-embedment

outer-single-line =⇒ outer-directive-line

host-embedment

ordinary-inner-embedment =⇒ incomplete-embedment

embedment

host-embedment =⇒ ordinary-text

outer-macro-invocation

host-embedment host-embedment

incomplete-embedment =⇒ left-embedment

right-embedment

middle-embedment

left-embedment =⇒ embedment context-indicator

right-embedment =⇒ context-indicator embedment

middle-embedment =⇒ context-indicator embedment context-indicator

embedment =⇒ ε

ordinary-text

text-reference

inner-macro-invocation

link-indicator

embedment embedment

ordinary-text =⇒ ordinary-symbol

embedding-symbolT

ordinary-text ordinary-text

text-reference =⇒ card

text-reference macro-parameter-reference

text-reference regular-expression-function

link-indicator =⇒ left-link-indicator embedment right-link-indicator

long-line =⇒ [: [context-indicator] embedment* [context-indicator] :]

2.5. EMBEDDING AND EMBEDDING CONTEXTS 25

Lines cover the three default statement classes.

2.4.2 Declared Statement Classes

A declared-statement-class is speci�ed by two regular expressions. One for matching
the head and the other matching of the tail of the statement. Any of them may be missing
except both yet neither of them shall derive the empty symbol (cf Host Language By
aML Eye(1.2.1), The statement-directive(3.1.10)).

declared-statement-class =⇒ context-declaration

context-declaration =⇒ open-context

closed-context

open-context =⇒ left-context

right-context

left-context =⇒ border context-indicator

right-context =⇒ context-indicator border

closed-context =⇒ border context-indicator border

border =⇒ border-quotation

border-reference

border-quotation =⇒ " regular-expressionT "

border-reference =⇒ regular-expression-function

A border-quotation may be splitted into more than one line following the rule for
division of quotations.

2.5 Embedding and Embedding Contexts

The aML embedding are directives and macro invocations in embedding-data-streams.
The former control the input, and output, change the processing environment of the aML
macro processor, and also ensures connection to the all time operating sytem. The latter
in turn are to be expounded (cf Macro Invocations(2.5.2), Directives(3.1)).

Dierctives with few exceptions are context sensitive only in the sense that the embedding
contexts for particular directives are limited di�erently. The outer-directives are, for
instance, applicable only outside macro de�nitions, whilst inner-directives anywhere.
Few of them, however, depend on their embeding context as well. The output target
of the host-directive, for example, depends on if it has been performed by the expand-
directive. In contrast, expounding macro invocations of a statement are context-sensitive

2.5. EMBEDDING AND EMBEDDING CONTEXTS 26

in any sense. The non-terminal embedding-statement is used only to symplify seman-
tic explanations (cf Directive Embedding(2.5.1), Macro Invocations(2.5.2), The
expand-directive(3.1.3), The host-directive(3.1.4), Context Indicator(3.2.2)).

embedding-statement =⇒ inner-embedding

outer-embedding

inner-embedding =⇒ inner-single-line

long-line

outer-embedding =⇒ outer-single-line

declared-statement-class-statement

declared-statement-class-statement =⇒ host-embedment+

aML distinguishes between the embedding that are carried on the right-hand-sides of
the rewriting-rules, and those which embedded outside them. The former is called
inner-embeddding, the latter in turn outer-embeddding (cf Lines(2.4.1), Declared
Statement Classes(2.4.2), aML Embedding(2.5.3).

2.5.1 Directive Embedding

In comparision with inner-directives the permissible embedding contexts for the
invoked-directive and expand-directive is strongly limited. The invoked-directive may
only be adopted by the macro-directive. Thex expand-directive is accepted only in
right-hand-sides of rewriting-rules. Using outer-directives inside macro de�nitions
are forbidden.

inner-directive-line =⇒ expand-directive

invoked-directive

inner-directive

outer-directive-line =⇒ outer-directive

inner-directive

inner-directive =⇒ host-directive

load-directive

macro-directive

o�-directive

on-directive

system-directive

target-directive

2.5. EMBEDDING AND EMBEDDING CONTEXTS 27

outer-directive =⇒ embedded-directive

escape-directive

statement-directive

term-directive

The expand-directive is sensible for free occurrences of symbol } in its inner-embeding.
An occurrence of symbol } is called bound if it closes a directive body. Unbound instances
are called free. The host-directive considers any non-escaped occurence of symbol } as
closing of its host-embedding.

The expand-directive parses and performs directives and macro invocations included by
its inner-embeding. Unless free occurrences of symbol } are escaped, the �rst one ends
the processing of the inner-embedding.

The host-directive neither parses nor performs its host-embedding, so that the �rst
occurence of symbol } which is not escaped ends the output of its host-embedding up.

2.5.2 Macro Invocations

macro-invocation =⇒ outer-macro-invocation

inner-macro-invocation

left-shade =⇒ outer-left-shade

inner-left-shade

right-shade =⇒ outer-right-shade

inner-right-shade

outer-macro-invocation =⇒ outer-left-shade macro-name outer-right-shade

outer-left-shade =⇒ outer-left-context

outer-left-context =⇒ ε

ordinary-text

outer-right-shade =⇒ outer-left-shade

inner-macro-invocation =⇒ inner-left-shade macro-name inner-right-shade

inner-left-shade =⇒ inner-left-context

inner-left-context =⇒ outer-left-context

text-reference

inner-right-shade =⇒ inner-left-shade

2.5. EMBEDDING AND EMBEDDING CONTEXTS 28

Nonterminals macro-invocation, left-shade and right-shade cannot be derived from
the start symbol. They are introduced only to simplify semantic annotations.

Unless left-shade-decl resp. right-shade-decl are parameter-free, a left-shade resp.
a right-shade carries the left-hand resp. the right-hand sided macro parameter values
of an outer-macro-invocation or an inner-macro-invocation.

A left-shade resp. a right-shade of a macro-invocation shall be matched by a
left-shade-decl resp. a right-shade-decl of a rewriting-rule of themacro-de�nition
identi�ed by the macro-name, and registered in the macro library (cf Statement
Classes and Statements(2.4), Lines(2.4.1), aML Embedding(2.5.3)). The invoked-
directive(3.1.5), The macro-directive(3.1.7), Recognizing and Handling Macro
Invocations(4.2.4), Expounding Macro Embedding(4.3.3)).

An embedding-statement may embed an arbitrary number of macro invocations. For
the right-hand-sides of rewriting-rules applied in expounding macro invocations em-
bedded by one embedding-statement, the following shall be held

• The right-hand-side of the rewriting-rule applied for the left-most resp. right-
most macro invocation may embed an arbitrary number of lines being imprefect
from the left resp. from the right.

• In the case of neighbouring macro invocations, the right-hand-side of the
rewriting-rule applied for the left-hand-sided neighbour shall contain exactly so
many lines being imperfect from the right, as many lines being imperfect from the
left are embedded by the right-hand-sided neghbour.

Example

Example illustrates the implementation of a macro de�nition when the right-hand-side
of its only rewriting-rule is partly generated by applying the expand-directive. Suppose
there is a �le named ZZZ in the parent directory of the one where the aML processor has
been started from. File ZZZ contains two macro de�nitions, each of them with one anonym
rewriting rule. In the last line of the �le both macros are invoked. Since both will be
the inner-macro-invocations of the macro de�nition named A, the context-indicators
speci�ed on both sides are treated as ordinary-texts. The content of the �le:

#macro [B]

{

#invoked as "&"

{

...Q...

}

}

2.5. EMBEDDING AND EMBEDDING CONTEXTS 29

#macro [C]

{

#invoked as "&"

{

...W...

}

}

...B-C...

Let us type in the following aMl text on the standard input:

#embedded{"B|C"}

#macro [A]

{

#invoked as "&"

{

#expand

{

#load{../ZZZ}

}

#system{date}

...W...

}

}

Parsing macro de�nition named A the expand-directive loads �le ZZZ. Closing of the
standard input, the macro library is displayed as

aML Macro Library

=================

Macro A

Rules{anon[0.0]:visible }

Definition:

#macro [A]

{

#invoked as "&"

{

...Q-W...

#system{date}

...W...

}

}

2.5. EMBEDDING AND EMBEDDING CONTEXTS 30

Macro B

Rules{anon[0.0]:visible }

Definition:

#macro [B]

{

#invoked as "&"

{

...Q...

}

}

Macro C

Rules{anon[0.0]:visible }

Definition:

#macro [C]

{

#invoked as "&"

{

...W...

}

}

Loading �le ZZZ macro de�nitions named B and C are registered in the macro library,
their invocations in turn are loaded into the right-hand-side of the rewriting-rule of
macro named A. Finally the macro de�nition named A is also put up in the macro library.

2.5.3 aML Embedding

The aML considers a host language embedding as embedding-data-streams nested in
an arbitrary depth. An embedding-data-stream is a data �le in the all-time operat-
ing system environment, and named by an embedding-data-straem-name (cf Host
Language By aML Eye(1.2.1), The load-directive(3.1.6)).

embedding-data-stream =⇒ outer-embedding*

The host language text by aML eye are possible empty sequence of outer-single-lines
and declared-statement-class-statements.

Chapter 3

Directives and Indicators

3.1 Directives

Dierectives are to control the macro processor, and access the all time operating system.
Each directive consists of the directive-symbol followed by a directive keyword and a
directive body enclosed by the delimiter pair { }.

A common syntactical rule is that the line carrying the directive symbol can only adopt
blanks and horizontal tabs preceding the directive-symbol, and the body closing }

symbol can only be followd by white space characters terminated by new-line.

Apart from the above, and apart from those white-spaces which are obliged to use
by expand-directives, invoked-directives, and host-directives, white-spaces can be used
freely in directives.

3.1.1 The embedded-directive

The embedded-directive is used to declare name-classes, and can be applied any number
of times in any embedding-data-stream. A declared name-class can not be removed
or swithched o� (cf Name Classes, Macro Names and Rule Names(2.3), Directive
Embedding(2.5.1)).

embedded-directive =⇒ #embeddedwsp {wsp name-classes wsp}

name-classes =⇒ name-class [wsp ,wsp name-classes]

wsp =⇒ white-space*

Since declared name-classes may overlap each other, the order of their declarations is
signi�cant (cf Recognizing and Handling Macro Invocations(4.2.4)).

31

3.1. DIRECTIVES 32

3.1.2 The escape-directive

The escape directive overrides escape rules currently being in force by de�ning new ones.
An escape-setting is an aML extension of POSIX bracket expression (cfOutput(4.1.2)).

escape-directive =⇒ #escapewsp{wsp escape-settings wsp}

escape-settings =⇒ ε

escape-setting [wsp escape-settings]

escape-setting =⇒ [escaped-symbols]

escaped-symbols =⇒ ε

escaped-symbol

escaped-symbol - escaped-symbol

escaped-symbols escaped-symbol

escaped-symbol =⇒ embedding-symbolT

embedding-symbolT (interpretation)

interpretation =⇒ embedding-symbolT

scale embedding-symbol-code-representationT

scale =⇒ ε

octal

decimal

hexadecimal

octal =⇒ O

o

decimal =⇒ D

d

hexadecimal =⇒ X

x

Escapes can be basically interpreted in three di�erent ways:

(1) as the escaped character preceded by backslash,

(2) as an embedding-symbolT occasionally given as a visible symbol or its ASCII-8
code representation,

(3) as the escaped character without the preceding backslash.

An embedding-symbolT without interpretation interpreted according to (1). Each
embedding-symbolT furnished by interpretation interpreted according to (2), and

3.1. DIRECTIVES 33

any other symbol (left out from escape-setting) are interpreted according to (3).

Preparing more than one escape-setting, escape rules are determined by the rightmost
escape-setting speci�ed.

When escape-settings is the empty symbol, i.e directive body is empty, the de-
fault escape rules are set. The default escape rules can also be achieved by applying
#escape{[n(o12)t(o11)().+-*?].

The escape-directive #escape{[a(A)-z(Z)r(o15)]} states that escaped smaller case let-
ters are interpreted as their correspondent uppercase letters, and escape \r is interpreted
as carriage return � the character coded by octal 15 in ASCII-8 code table.

3.1.3 The expand-directive

The macro-directive directs the inner-embeds on the right-hand-sides of their
rewiting-rules to the macro library without processing directives, indicators and macro-
invocations, unless those are inside the directive-body of an enxpand-directive (cf Em-
bedding and Embedding Contexts(2.5), The macro-directive(3.1.7)).

expand-directive =⇒ #expandwsp directive-body

directive-body =⇒ {wsp inner-embedding* wsp }

In the case of a non-empty1 directive-body the following shall be taken care of.

• Lines carrying the symbols of delimiter pair {} shall contain no fragments of the
text embedded by the directive-body;

• blanks and horizontal tabs preceding right-embedments, middle-embedments
and long-lines, and those which follow middle-embedments, left-embedments
and long-lines do not belong to the embedding text (cf Lines(2.4.1));

• with an eye on the above, the embedded text starts with the �rst (visible or invisible)
character of the line which directly follows the one carrying the body opener {

symbol, and ends with the newline character of the line directly followed by the one
which contains the body terminator } symbol.

3.1.4 The host-directive

The host-directive is used to hide directives, macro invocations, text-references and
indicators.

Unless the host-directive is performed by the expand-directive, host-embedding is

1For an empty directive-body, the constraints are obviously carried by the syntatic rule.

3.1. DIRECTIVES 34

directed onto the all-time target data stream without parsing and processing.

host-directive =⇒ #hostwsp {host-embedding wsp }

host-embedding =⇒ ε

host-embedding symbol

If the host-directive is performed by an expand-directive, host-embedding, which shall
be inner-embedding, is outputted onto the right-hand-side of the rewriting-rule
which brings the expand-directive to e�ect.

The host-embedding enclosed by symbols { and } shall follow the rules stated
for the directive-body of the expand-directive (cf Embedding and Embedding
Contexts(2.5), The expand-directive(3.1.3), The target-directive(3.1.12), Out-
put(4.1.2)).

3.1.5 The invoked-directive

The invoked-directive is used to de�ne rewriting-rules for macro de�nitions (cf Macro
Invocations(2.5.2), The macro-directive(3.1.7)).

invoked-directive =⇒ #invokedwhite-space+ rule-declaration

rule-declaration =⇒ left-hand-sides wsp right-hand-side

left-hand-sides =⇒ [rule-name white-space+] aswhite-space+ left-hand-side

left-hand-sides white-space+ orwhite-space+ left-hand-sides

rule-name =⇒ identi�er

left-hand-side =⇒ invocation-context-pattern

invocation-context-pattern =⇒ "separator invocation-pattern separator"

invocation-pattern =⇒ left-shade-decl* macro-symbol right-shade-decl*

left-shade-decl =⇒ [macro-parameter-declaration] separator

right-shade-decl =⇒ separator [macro-parameter-declaration]

separator =⇒ ε

separator ordinary-text

separator text-reference

right-hand-side =⇒ directive-body

A rule-name is local to the macro-de�nition the invoked-directive is carried by. An
invocation-context-pattern is a regular expression, specifying a context pattern not
necessarily narrower than the associated statement where the macro invoked from.

3.1. DIRECTIVES 35

Each invocation-context-pattern shall contain one macro-symbol (&) which sym-
bolizes the macro name in the pattern. The macro-symbol is the base position of
matching the invocation-context-pattern. The pattern may also contain an arbitrary
number of cards; each is an occurence of the macro-name matched at the base poso-
tion (cf Costumes(2.1.1), Name Classes, Macro Names and Rule Names(2.3),
Embedding and Embedding Contexts(2.5), Recognizing and Handling Macro
Invocations(4.2.4)).

An invocation-context-pattern may be splitted into more than one line following the
rule of division of quotations (cf Delimiters(2.1.1)).

A left-shade-decl and right-shade-decl may declare formal parameters which may
be referenced in the directive-body. Undeclared macro-parameter-references are
treated as ordinary-texts. A separator is a possible empty, and in general also possi-
ble macro-parameter-declaration free regular subexpression (cf Macro Parameter
Declaration and Reference(2.2.1), Macro Invocations(2.5.2)).

3.1.6 The load-directive

The load-directive is used to hang up reading the embedding-data-stream the macro
processor is actually reading statements from. Processing goes on with reading statements
from the embedding-data-stream named by embedding-data-stream-name. The
nameless embedding-data-stream is the standard input.

load-directive =⇒ #loadwsp {embedding-data-stream-name}

embedding-data-stream-name =⇒ ε

�le-name∈ F

Syntactical rules of composing an embedding-data-stream-name depends only on the
all-time operating system environment. In order not to restricting syntactical rules of
composing �le names, aML syntax allowes white-spacees and escaped symbols anywhere
within �le names, even leading and trailing white-spacees as well. Escaped symbols in
�le-names are interpreted according to the recently applied escape-directive, or by the
default escape-setting (cf aML Grammar(1.2.3), Input(4.1.1)).

3.1.7 The macro-directive

A macro-directive is used to create or modify macro-de�nitions. A macro-de�nition
declares a macro-name or more, and a sequence of rewriting-rules associated with the
macro-name, or macro names declared. The right-hand-side of a rule-declaration
in a rewriting-rule speci�es what the matched macro invocation will be replaced with.

macro-directive =⇒ #macrowhite-space+ macro-de�nition

3.1. DIRECTIVES 36

macro-de�nition =⇒ names white-space* macro-body

names =⇒ [macro-name] [white-space* |white-space* names]

macro-name =⇒ symbol+

macro-body =⇒ {rewriting-rules*}

rewriting-rules =⇒ rewriting-rule [new-line+ rewriting-rules]

rewriting-rule =⇒ invoked-direktiva

Unless names are already registered, themacro-de�nition is put up in the macro library
under the names declared, otherwise the macro-body resides in the macro library is
updated. As for the macro-body, rules stated by expand-directive for directive-body
shall be followed (cf The expand-directive(3.1.3).

The order of rewriting-rules within a macro-de�nition is signi�cant: in the order
of declarations, the �rst matched is taken to expound the macro invocation (cf Name
Classes, Macro Names and Rule Names(2.3), The invoked-directive(3.1.5), Rec-
ognizing and Handling Macro Invocations(4.2.4)).

3.1.8 The o�-directive

The o�-directive is used to make rewriting rules invisible. An o�-directive can be applied
anywhere in an embedding-data-stream.

o�-directive =⇒ #o�wsp {rewriting-rule-name}

rewriting-rule-name =⇒ name-pre�x name-su�x

name-pre�x =⇒ ε

card

macro-name

name-su�x =⇒ ε

. rule-name

A rewriting-rule-name is composed from a macro-name and a rule-name local to
the macro-de�nition named by macro-name. A rewriting-rule-name unambigu-
ously identi�es a rewriting-rule, if both name-pre�x and name-su�x are speci�ed.
If name-pre�x is missing, the o�-directive has to be carried by the rewriting-rule is
actually being performed, and the rewriting-rule named as rule-name becomes invis-
ible within the macro-de�nition the rewriting-rule being processed is adopted by.
For an empty bodied o�-directive (both name pre�x and name-su�x are missing) the
rewriting-rule made invisible is the one which performs the empty bodied o�-directive
(cf The invoked-directive(3.1.5), The macro-directive(3.1.7)).

3.1. DIRECTIVES 37

If only name-pre�x is speci�ed, each rewriting-rule of the macro-de�nition named
by name-pre�x, becomes invisible.

Making invisible names to invisible is ine�ective.

3.1.9 The on-directive

The on-directive is used to make rule-names visible. It makes rewriting-rules visible
in the same way as the o�-directive makes them invisible (cf The o�-directive(3.1.8)).

on-directive =⇒ #onwsp {rewriting-rule-names}

Making visible names to visible is ine�ective.

3.1.10 The statement-directive

The statement-directive is used to declare statement-classes for host languages
(cf Declared Statement Classes(2.4.2)).

statement-directive =⇒ #statementwsp {wsp statement-classes wsp}

statement-classes =⇒ declared-statement-class [wsp ,wsp statement-classes]

Declared statement-classes may overlap each other, and the order of their declarations
are, therefore, signi�cant (cf Statement Classes and Statements(2.4), Input(4.1.1)).

3.1.11 The system-directive

The system-directive is used to connect the all-time operating system to execute one
command-line from an aML embedding.

system-directive =⇒ #systemwsp {command-line}

command-line =⇒ host-embedding

3.1.12 The target-directive

The target-directive is used to assign a target data stream for macro processor output.

target-directive =⇒ #targetwsp {target-data-stream-name}

target-data-stream-name =⇒ ε

STDERR

�le-name∈ F

3.2. INDICATORS 38

Unless the actual target data stream is the nameless standard output or the standard
error output named STDERR, the target-directive closes the target data stream actually
fed, and unless the target-data-stream-name is ε or STDERR, opens the one named
target-data-stream-name (cf Output(4.1.2)).

3.1.13 The term-directive

The term-directive is used to declare parameterized terms which can later be invoked as
regular expression functions (cf Regular Expression Function(2.2.2)).

term-directive =⇒ #termwsp {term-declarations}

term-declarations =⇒ term-declaration [wsp new-line term-declarations]

term-declaration =⇒ term-head= term-body

term-head =⇒ identi�er (wsp [parameter-list] wsp)

parameter-list =⇒ parameter-name [wsp ,wsp parameter-list]

term-body =⇒ "regular-expressionT"

parameter-reference =⇒ %parameter-name%

The term-body may be splitted into more than one line following the rule of division of
quotations (cf Delimiters(2.1.1)).

The non-terminal parameter-reference is introduced only to indicate the dependency
of the aML regular expression garammar from aML (cf Regular Expression Language
for aML(1.2.2))

Each parameter-name in term-head should appear as parameter-reference in the
term-body. Declared parameter-names are local to the regular expression term (cf
Regular Expression Function(2.2.2) and Parameter Evaluation(2.2.3)).

3.2 Indicators

Indicators are precedence-dependent and context-sensitive low-level operations. They are
the comment indicators, the context-indicator and the link-indicator in descending
order of their precedences. The latter two are only recognisable inside right-hand-sides
of rewriting-rules, whilst the former anywhere except inside host-embedding of host-
directives (cf The expand-directive(3.1.3), The host-directive(3.1.4), Performing
Directives(4.3.1)).

3.2.1 Comment Indicators

The comment indicators provide embedding of aML-comments into aML texts. The
commit-opener and commit-terminator together is a unary operation, resulting in

3.2. INDICATORS 39

a 0-lengthed (i.e empty) string (cf aML comments(2.1.2), The host-directive(3.1.4),
Input(4.1.1)).

3.2.2 Context Indicator

The context-indicator is the only indicator that may appear also in declarative cues.
In declarative role they are used to declare statement-classes.

In operational cues, context-indicators appeare in incomplete-embedments or may
appeare in long-lines, indicating a need of a completion process from the sides where
context-indicators stand. Expounding macro invocations, the left-hand sided embed-
ding contexts can not be always staticly de�ned, but always computable (cf Lines(2.4.1),
Expounding Macro Embedding(4.3.3)).

3.2.3 Link Indicator

The link indicator is a relational algebraic extension of the concatenation. Its operands
may be macro-parameter-references of reference-type vector-reference (vectors)
and ordinary-texts (scalars). Scalars are also considered as zero-dimensional vectors.

Recall that vectors are relational algebraic relations. The link indicator implements a
projection to the vector elements in the relational agebraic outer join between vectors
occasionally of di�erent dimensons and di�erent number of elements in di�erent dimen-
sions. The join condition is a partial equality between vector element indexes. The join
is controlled by the at least one dimensional vectors from left to right.The partial index
comparision takes place within a comparision range which is the smaller dimension of
vectors of di�erent dimensions. Index tuple items are compared for equality from the
outermost dimension towards the innermost within the comparision range.

The order of the resulted element join is determined by the element-orderings applied
in the all-time leftmost non-null dimensional vector. The resulted element join is a mere
line, i� element-orderings in each dimension of each vector are row-ordering (cf
Macro Parameter Declaration and Reference(2.2.1), Macro Invocations(2.5.2)).

Example

The example shows a statement and a name class declaration, a macro de�nition named
Class, a macro invocation of macro Class, and the result outputted on to stdout. Reg-
istering the macro-de�nition in the macro library, the aML processor sends a warning
on to stderr indicating the empty left-shade-decl.

The statement class de�ned is a closed-context statement class. Its left-hand sided bor-
der is Class, and the closing border is modelled as };[\t\n]?. Its easy to see that the

3.2. INDICATORS 40

�ve-line macro invocation is an element of the closed-context statement class declared.

The name class declared consists of the only name Class. The only anonym rule of
the macro-de�nition places a right-shade-decl separator as [\t\n]*{[\t\n]*,
and contains two macro-parameter-declarations, one with name v and another one
with name p. The latter is only for capturing the closer symbol ';' of the macro in-
vocation lest that be part of the right-hand sided invocation context, which is �naly
linked by the right-hand sided context-inidicator to the lines <compound-object>,
<compound name="f" type="float"/>, and </compound-object>.

#statement{"Class"..."};[\t\n]?"}

#embedded{"Class"}

#macro [Class]

{

#invoked as "&[\t\n]*{[\t\n]*$v[{%X('[\t]*')''".

"%Y('int|float')' '%Z[('[a-f]')','|';']}".

"'\n'|'([\n\t]*})']$$p(';')$"

{

...<compound-object>...

...{* <compound name="$v[%Z[=]=]$" type="$v[%Y=]$"/>*}...

...</compound-object>...

}

}

(W) Empty string (sub-)match may cause undesired pattern match

line 11 in segment STDIN

Class

{

int a,b,c,d;

float e,f;

};

<compound-object>

<compound name="a" type="int"/>

<compound name="b" type="int"/>

<compound name="c" type="int"/>

<compound name="d" type="int"/>

<compound name="e" type="float"/>

<compound name="f" type="float"/>

</compound-object>

Parameter v is a one-dimensional vector with record elements. The delimitation of its
elements is \n and its vector-termination is ([\n\t]*}). Tags of the record named
%X, %Y and %Z are of reference-type atom, atom and vector, respectively, the elements

3.2. INDICATORS 41

of the latter are of reference-type atom. The record tag named %Z is a one-dimensional-
vector whose element delimitation and vector-termination are comma(,) and semi-
colon (;), respectively.

When the macro invocation matches the invocation pattern, declared parameters map
their values. Elements of vector parameters together with their index tuples are dynami-
cally created and mapped. The value and element index mapping is controlled by ordered
pairs of (value, delimitaion) and (value, vector-termination).

According to the above, vector parameter v has two elements: the value of v[0] is
\tint a,b,c,d; and the value of v[1] is \tfloat e,f;. Since elements of vector v are
records, and taking into account that parameter-tag named %Z is a one-dimensional
vector, the value mapping distributed over the parameter-tags are as follows:

v[%X0] maps the value \t

v[%Y0] maps the value int

v[%Z[0]0] maps the value a

v[%Z[1]0] maps the value b

v[%Z[2]0] maps the value c

v[%Z[3]0] maps the value d

v[%X1] maps the value \t

v[%Y1] maps the value float

v[%Z[0]1] maps the value e

v[%Z[1]1] maps the value f

Apart from scalars the two-dimensional v[%Z[=]=] vector and the one-dimensional v[%Y=]
vector are linked. The comparision range is 1. The outermost index of element values a,
b, c, d in vector v[%Z[=]=], and of element value int in vector v[%Y=] is 0. Simlarly, the
outermost index of element values e, f in vector v[%Z[=]=], and of element value float
in vector v[%Y=] is 1. Thus, the result of the linking looks as:

<compound name="a" type="int"/>

<compound name="b" type="int"/>

<compound name="c" type="int"/>

<compound name="d" type="int"/>

<compound name="e" type="float"/>

<compound name="f" type="float"/>

Chapter 4

Process of aML Embedding

4.1 The aML Macro Processor

The aML macro processor is controlled by a dinamically changable processing environ-
ment. Processing a host language text that embeds aML directives and macro invocations,
the macro processor may generate a sequence of output �les in the all-time operating sys-
tem environment producing a pure text, i.e a host language text that may contain aML
directives and macro invocations according to the all-time processing environment of the
macro processor.

The initially empty processing environment consists of the only augmentative dictio-
naries for regular expression functions, name and statement classes, and the augmen-
tative, but also diminishable and alterable macro library. The all-time state of this
processing environment is determined by host language text embedding being pro-
cessed (cf The embedded-directive(3.1.1), The macro-directive(3.1.7), The o�-
directive(3.1.8), The on-directive(3.1.9), The statement-directive(3.1.10), The
term-directive(3.1.13)).

4.1.1 Input

Host language text embedding shall be implemented as embedding-data-streams
nested in arbitrary depth. There is a LIFO maintained by the input handler of the
macro processor to administer nested embedding-data-streams, containing the one ac-
tually processed on the top. Operations push and pop are established by load-directive
and the end of �le symbol of the embedding-data-stream being processed.

The all-time host language text embedding is considered as a context-free sequence of
host language statements. Host language statements are outer-embedding, and per-
haps inner-embedding, the latter inside directive bodies. Between outer-embedding
and inner-embedding there is a pretty strong analogy. What for inner-embedding

42

4.1. THE AML MACRO PROCESSOR 43

are long-lines, for outer-embedding are declared-statement-class-statements of
statement-classes. Similarly, inner-single-lines for inner-embedding correspond to
outer-single-lines for outer-embedding.

Recognition of statements by matching statement classes is governed by a precedence rule.
On the top of the prcedence hiararchy directive-lines stand, on the bottom of prece-
dence hierarchy host-embedments and ordinary-inner-embedments. Between the
two statement classes precedence of declared-statement-classes are splitted according
to the order of their declarations (cf Statement Classes and Statements(2.4), The
statement-directive(3.1.10)).

In case of closed-context statement classes, whenever a left-hand sided border detected
the input handler keeps on reading in until the corresponding right-hand sided border,
or a higher precedenced right-hand sided border, if any, is matched. Similarly, in case
of right-context statement classes reading in is kept on until one of the right-hand
sided borders of right-context statement classes, or a higher precedenced statement
class, if any, is matched. In case of left-context statements, the end of the statement
is determined by matching the next left-context, or closed-context statement or a
directive-line-like statement1.

The input handler recognizes comment indicators and escaped symbols. Whereas the
aML-comments are �ltered out, backslashes are kept.

4.1.2 Output

Processing a host language text embedding, the aML macro processor generates a
pure host language text. A pure host language text is a text that may contain un-
performed directives, unexpounded macro invocations, and regular expression func-
tions occasionally recognizable in the processing environment actually obtained. Es-
capes are interpreted according to the recently performed escape-directive or the de-
fault escape-setting. The generated pure host language text appeares as a se-
quence of �les in the operating system environment. Any output �le created and
closed by target-directive can be treated as an embedding-data-stream by apply-
ing the load-directive (cf The load-directive(3.1.6), The target-directive(3.1.12),
Recognizing and Handling Regular Expression Functions(4.2.2)).

1A directive-line-like statement is a line which apart from leading blanks and horisontal-tabs
starts with a directive-symbol

4.2. RECOGNITION OF AML EMBEDDING 44

4.2 Recognition of aML Embedding

4.2.1 Recognizing and Handling aML Comments

Comment indicators outside host-embedding of host-directives are recognized, and �l-
tered out by the input handler (cf Input(4.1.1), The host-directive(3.1.4), aML Com-
ments(2.1.2)).

4.2.2 Recognizing and Handling Regular Expression Functions

Unless regular expression functions are outside left-hand-sides of rewriting-rules, their
recognition takes place by matching the function-symbol (@).

Regular expression functions are symbolic references to parametrized terms. Their ex-
pansions (replacing them by their de�nitions) takes place recursively. During the de�ni-
tion replacement, parameter-references are replaced by the corresponding elements of
the value-list cfRegular Expresion Functions(2.2.2, Parameter Evaluation(2.2.3),
The term-directive(3.1.13)).

If the number of elements of a value-list is equal to the number of elements of the
parameter-list, values and parameter-names of the same position within their own
lists are assigned to each other (cf Regular Expresion Functions(2.2.2), The term-
directive(3.1.13)).

If the value-list is shorter, than the parameter-list, valueless parameters obtain the
empty (0-lengthed) character string. A warning diagnostic message is also generated. In
reverse case values beyond the expected ones, are ignored in an accompaniment of a
warning diagnostic message.

4.2.3 Recognizing and Handling Directives

The recognition of directives takes place by matching a directive-line statement. Rec-
ognized aML dierectives are brought into e�ect, by invoking associated directive inter-
preters. Each directive has its own interpreter controlled by the associated sub-grammar
(cf Lines(2.4.1), Directives(3.1)).

4.2.4 Recognizing and Handling Macro Invocations

A host language statement may contain an arbitrary number of macro-invocations.
Some of them may be cought partly or as a whole by others as parameters, and there-
fore notions visibility and ken play an essentially important role in recognizing them.
A macro-invocation is said being recognisable, if its de�nition contains a visible
rewriting-rule the left-hand-side of which can be matched by it.

4.2. RECOGNITION OF AML EMBEDDING 45

The visibility is a property of declared rewriting-rules. The ken is the visible range
within the statement from the position of a recognisable macro-name in both direction
in which its left-shade and right-shade can be matched at all by the left-shade-decl
and right-shade-decl declared in one of its visible rewriting-rules.

Visibility

The visibility of declared rewriting-rules may be obstructed only by the o�-directive.

Ken

The ken of the leftmost recognisable macro-name whithin the statement is the state-
ment boundary in both directions, inclusive.

The ken of the rightmost or an intermediate recognisablemacro-name leftwards is deter-
mined by the closest preceding already matchedmacro-invocation, or in lack of that the
left-hand sided statement boundary, and rightwards is the statement boundary, inclusive.

For neighbouring macro-invocations, the left-shade of its right-hand sided neighbour
must not overlap the macro parameter values adopted by the right-shade of the lef-hand
sided neighbour, i.e the ken of the right-hand sided neighbour leftwards is the macro pa-
rameter value free tail of the right-shade of the left-hand sided neighbour, inclusive.

Due to the above, a macro-invocation can be and is, in fact, detected, if

(1) the macro-name is recognisable, and its macro-de�nition contains at least one
visible rewriting-rule (cf The macro-directive(3.1.7), The o�-directive(3.1.8),
The on-directive(3.1.9, The statement-directive(3.1.10), Visibility(4.2.4));

(2) there is a visible rewriting-rule in themacro-de�nition named bymacro-name,
the left-hand-side of which yields a macro-symbol-based match within the ken
of the macro-name in question (cf The invoked-directive(3.1.5), The macro-
directive(3.1.7), Ken(4.2.4))).

Condition (1) is the requirement to explore those locations within statements where
macro-invocations are worth looking for. Hence an ordered set of what are called
name-class search patterns is established, in order to locate the next leftmost place
in the statement where a macro-invocation candidate resides. A name-class search
pattern is the narrowest special closure of the name-class which matches any element
belongs to the name-class, but steps over anything else. The ordering of name-class
search patterns is determined by the order of the declarations of name-classes. Match-
ing the set of name-class search patterns results in a list of all elements found from
name-classes. If the list is empty, the statement is macro-invocation free (cf The
embedded-directive(3.1.1), Expounding Macro Embedding(4.3.3)).

4.2. RECOGNITION OF AML EMBEDDING 46

Condition (2) postulates that a macro-symbol-based match within the ken of the
macro-name requires that the left-shade-decl and right-shade-decl shall match the
left-shade and the right-shade, respectively. The match comparison is performed
from the macro-symbol in both directions towards the statement boundaries. If the
left-shade-decl or right-shade-decl or both containmacro-parameter-declarations,
values from left-shade and right-shade are assigned to them (cf Macro Parame-
ter Declaration and Refrence(2.2.1), Parameter Evaluation(2.2.3), Expounding
Macro Embedding(4.3.3)).

The following examples illustrates the above rules.

Example 1

#embedded{"A"}

#macro [A]

{

#invoked as "$p('abc')$&$q('abc')$~"

{

...p(p)-q(q)...

}

}

abcAabcAabcAabcA

p(abc)-q(abc)Ap(abc)-q(abc)A

Example 1 de�nes the macro named A. The macro de�nition contains only one anonym
rewriting rule, where A declares macro parameters named p left to, and q right from
the macro name. The latter is followed by a card. The de�nition is followed by an
outer-single-line carrying name A four times, and �nally the substituded result of
macro invocations on the standard output.

The leftmost matched invocation is constituted by the leftmost occurence of A. Its both
declared macro parameters are assigned to the value abc. The invocation results in
a left-embedment, namely p(abc)-q(abc).... To complete the left-embedment,
the macro processor looks for the next (leftmost) invocation in the outer-single-line.
The next invocation is composed by the 3d occurence of A. Its ken both leftward and
rightward is started with letter A, namely, leftward the 2nd and rightward the rightmost.
Expounding the invocation produce the embedment p(abc)-q(abc)Ap(abc)-q(abc)A
which is in turn identical with the result on stdout.

Example 2

#term{p() = "[A-Za-z][A-Za-z0-9]*"}

4.2. RECOGNITION OF AML EMBEDDING 47

#embedded{"$|A"}

#macro [$]

{

#invoked as "&"

{

...Caught...

}

}

#macro [A]

{

#invoked as "&$p('@p()')$"

{

...p(p)...

}

}

A$

p(Caught)

The example presents a term declaration, a name class declaration, two macro de�nitions,
furthermore, a statement consisting of invocation of macros A and $, and �nally the result
of the statement.

Due to invocation contexts declared by invoke-directives, invocation of macro named A is
unrecognisable, since its invocation context expects a character string as parameter value
from the right-hand side which shall start with a letter and may contain letters an �gures.

The invocation of macro named $ is, however, recognised and expounded: its invocation
context is the empty symbol from both sides.

The invocation of $ results in the middle-embedment

...Caught...

which is completed from both sides by the context indicator resulting in the line

ACaught

Since macro expansions are recursive processes, the line resulted shall be again checked
whether it contains macro invocations. Invocation A is now already recognised and even
matched. Its expansion results in the line

p(Caught)

4.2. RECOGNITION OF AML EMBEDDING 48

Example 3

#embedded{"A|$"}

#macro [$]

{

#invoked as "&"

{

...Caught...

}

}

#macro [A]

{

#invoked as "&$p('\$')$"

{

...p(p)...

}

}

A$

p(Caught)

Example 3 produces the same result as Example 2. The main di�erence between them is
the co-domain declaration of macro parameter p.

According to the declaration of macro parameter p the leftmost, otherwise the only rec-
ognized macro invocation is now A. The expansion results in the middle-embedment

...p($)....

The complementary context is \t from the left-hand side and \n from the right-hand side.
After completion the resulted line is

p($)

Now macro invocation $ in the above line is recognizable. Its expansion results in the
middle-embendent

...Caught...,

which after completion produce looks as

p(Caught)

i.e produce the same output on stdout as did Example 2.

4.3. PROCESSING AML EMBEDDING 49

4.3 Processing aML Embedding

Processing of aML embeddigns means that statements read in are �ltered out from com-
ments and scanned through for directives and macro invocations. Directives are exe-
cuted, and macro invocations are expounded. Statements di�erent from the above are
outputted on the all-time target data stream (cf Input(4.1.1), Output(4.1.2), Recog-
nizing and Handling Directives(4.2.3), Recognizing and Handling Macro Invo-
cations(4.2.4)).

Directives with the exception of expand-directive and host-directive augment or alter the
aML processing environment. Indicators operate on the embedding context . Macro
embedding, either independently of or dependently on, and eithter together with or with-
out their context will be replaced by the associated right-hand-sides. Replacements
are controlled by particular expansion rules, and may take place either independetly of
or dependently on the invocation context, and also independently of or in interaction
with each other (cf Embedding and Embedding Contexts(2.5), Macro Invoca-
tions(2.5.2), Directive Embedding(2.5.1), Directives(3.1), Indicators(3.2)).

Execution of directives takes palce in one step. Performing directives apart from the
above exceptions produce no statements to be further processed. The expansion of macro
embedding can, however, start a recursive process: statements on the right-hand sides
of rewriting rules applied may embed directives, indicators and macro invocations to be
further processed.

4.3.1 Performing Directives

For each aML directive, the macro processor maintains an interpreter that parse and
execute the directive according to its sub-grammar and semantics. Each directive sub-
grammar is common in the sense that any directive starts with a directive name pre�xed
by the directive-symbol (#), and ends with the directive body delimited by the pair
{ }. Also a common syntactic rule for directives that the directive-symbol may only be
preceded, and the symbol closing the derective body (}) may only be followed by spaces,
tabs, or ENTER (cf Directives(3.1)).

The embedded-directive and statement-directive augment the dictionaries of name classes
and statement classes, respectively (cf Declared Statement Classes(2.4.2), The
embedded-directive(3.1.1), The statement-directive(3.1.10)).

The expand-directive may only be embedded by right-hand-sides of rewriting rules
in macro de�nitions (cf Embedding and Embedding Contexts(2.5), The expand-
directive(3.1.3), The invoked-directive(3.1.5)).

The host-directive prohibits executon of directives, indicators and also expansion of macro
invocations. Statements inside the host-embedding are outputted without parsing and

4.3. PROCESSING AML EMBEDDING 50

processing them. The target data stream is the right-hand-side of the rule-declaration
whenever the directive is performed by an expand-directive, otherwise the all-time target
data stream created and opened or just switched by the last time performed target-
directive � the standard output by default (cf The expand-directive(3.1.3), The host-
directive(3.1.4), The invoked-directive(3.1.5), The macro-directive(3.1.7)).

The invoked-directive de�nes rewriting-rules for macro de�nitions. Unless the
directive-body carries expand-directives, rewriting-rules are written without pro-
cessing onto its associated macro de�nition in the macro library (cf The expand-
directive(3.1.3), The host-directive(3.1.4), The invoked-directive(3.1.5), The
macro-directive(3.1.7)).

The macro-directive augments the macro library, or alters an already declared macro def-
inition (cf The expand-directive(3.1.3), The host-directive(3.1.4), The invoked-
directive(3.1.5), The macro-directive(3.1.7)).

The o�-directive and on-directive alter visibility of rewriting-rules in the macro li-
brary. (cf The invoked-directive(3.1.5), The macro-directive(3.1.7), The o�-
directive(3.1.9), The on-directive(3.1.9), Visibility(4.2.4)).

The load-directive and target-directive change the all-time input and output data stream
of the macro processor (cf The load-directive(3.1.6), The target-directive(3.1.12),
Input(4.1.1), Output(4.1.2)).

The statement-directive augments the statement class dictionary (cf Declared State-
ment Classes(2.4.2), The statement-directive(3.1.10), Input(4.1.1)).

The term-directive augments the dictionary of regular expression terms (cf Regular ex-
presion functions(2.2.2), The term-directive(3.1.13)).

4.3.2 Statement Preservation Principle

The statement preservaiton principle play a major role in expounding such macro invo-
cations where right-hand-sides of rewriting-rules contain incomplete-embedments
with link-indicators inside2. It states that an ordinary-inner-embedment remains
one statement after its macro-parameter-references, if any, are replaced by their
matched values, even if the replacement results in more then one line. It is obvous,
that according to the principle, macro-parameter-references with vector-reference
as reference-type result in long-lines.

The principle allows the aML macro processor to map matched values and indexes for
macro-parameter-references of reference-type vector-reference, and to perform
link-indicators immediatelly as soon as the macro invocation matched.

2The precedence of the context-indicator is higher than that of the link-indicator.

4.3. PROCESSING AML EMBEDDING 51

4.3.3 Expounding Macro Embedding

The expansion of macro invocations is a complex rewriting procedure carried out recur-
sively. Here only statements from statement-classes di�erent from directive-line are
considered. Such statements are ordinary-inner-embedments, host-embedments,
declared-statement-class-statements, and long-lines.

Reading of inner-single-lines in from right-hand-sides of rewriting-rules there are
nomacro-parameter-references for declared macro parameters, and no link-indicators
have to be delt with. All value substitutions of all macro-parameter-references,
and also performing link-indicators takes place immediately, when macro invocatios are
matched (cf Statement Preservation Principle(4.3.2)).

Parsing long-lines and ordinary-inner-embedments, the macro processor looks for
context-indicators and macro invocations. Completion of incomplete-embedments
precedes expansion of macro invocations included by them.

Parsing declared-statement-class-statements and host-embedments, only macro
invocations are looked for (cf Lines(2.4.1),Macro Invocations(2.5.2), Declared Sate-
ment Classes(3.1.10), Indicators(3.2)).

Macro invocations carried by one statement are expounded strictly from left to right.
Statements free from context-indicators and macro invocations are outputted. The
expansion of a statement starts always the expansion of the �rst matched, namely the
leftmost macro invocation of the statement (cfMacro Invocations(2.5.2), Input(4.1.1),
Output(4.1.2), Recognizing and Handling Macro Invocations(4.2.4), Statement
Preservation Principle(4.3.2)).

Expansion of a macro invocation takes place by reading of statements in one by one from
the right-hand-side of the rewriting-rule. All incomplete-embedments and also
long-lines in right-hand-sides of rewriting-rules that contain context-indicators
are indexed separately according to the sides of incompleteness. A middle-embedment
e.g. may be furnished with index n, and m from the left-hand and from the right-hand
side, respectively, where n and m may be di�erent non-negative whole numbers. Read-
ing of an incomplete-embedment in starts a context preseving expansion process. A
context preserving expansion process follows the below rules and constraints:

1. Statements which are free from context-indicators and macro invocations are
outputted.

2. For the leftmost invocation, an incomplete statements from the left is completed
from the left-hand-side with the initial fragment of statements. The initial fragment
starts with the �rst symbol of the statement and lasts till the leftmost symbol of
the leftmost macro parameter value to the left from the macro name, exclusive, if
any. Lacking left-hand-sided macro parameter values the initial fragment lasts till

4.3. PROCESSING AML EMBEDDING 52

the macro-name. The initial fragment might also be the empty (i.e 0-lengthed)
character string.

3. For the rightmost invocation, an incomplete statements from the right is completed
from the right-hand-side with the closing fragment of the statement. The closing
fragment starts with the �rst symbol follows the rightmost symbol of the rightmost
macro parameter value to the right from the macro name, if any, and lasts till the
last symbol of the statement. Lacking right-hand-sided macro parameter values the
closing fragment starts with the symbol immediately following the macro-name.
The closing fragment might also be the empty (i.e 0-lengthed) character string.

4. For the leftmost or any intermediate macro invocation, an incomplete statement
from the right indexed by j joins the incomplete statement from the left indexed by j
of the right-hand sided neighbour together with the separator between them. Until
the desired statement of the right-hand sided neighbour reached, all statements read
in are processed according to 1 - 5. Lacking the statement in question result in an
expansion error. A completed incomplete embedment constitutes one statement that
may belong to any default or declared statement class, or a sequence of embedments3

which is then imediatelly expounded according to 1 - 5.

5. Whenever the expansion of a macro invocation ends, the context preserving process
goes on with expounding the right-hand sided neighbour according to 1 - 5 if that at
all exists. The right-hand sided neighbour must not contain subsequent incomplete
statements from the left, otherwise an expansion error comes about.

3It occures when the context preserving expansion process touches long-lines.

Bibliography

[1] Hernáth Zsolt, Bauer Péter: aML � a Macro Language annotált formális de�níció
https://plc.inf.elte.hu/szomin_odf/repos/doc/aML/de�nition_hu/aml.pdf

[2] Zsolt G. Hernáth, Péter Bauer: aML � a Macro Language annotated formal de�nition
https://plc.inf.elte.hu/szomin_odf/repos/doc/aML/de�nition_en/aml.pdf

[3] Kernighan, Brian W.: RATFOR � A Preprocessor for a Rational Fortran,
Software�Practice and Experience, vol. 5., pp. 395-406., October 1975,
https://doi.org/10.1002/spe.4380050408

[4] Nagata, Hiroyasu: FORMAL: A language with a macro-oriented extension facility,
Computer Languages Volume 5, Issue 2, pp. 65-76, 1980,
https://doi.org/10.1016/0096-0551(80)90048-X

[5] Hernáth Zsolt: FORMAL: nyelvi környezett®l független magas szint¶ makronyelv ,
Információ elektronika 1984/3. 134.-143. oldal

[6] Hernáth, Zsolt: FORMAL: a high-level and extensible macro-language for extending
several basic languages, 4th Hungarian Computer Science Conference Abstracts, Gy®r
1985. Conference abstract, pp 40

[7] Wikipedia: M4 (computer language),
http://en.wikipedia.org/wiki/M4_(computer_language)

[8] Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26
November 2008, http://www.w3.org/TR/REC-xml/

[9] Extensible Markup Language (XML) 1.1 (Second Edition), W3C Recommendation 16
August 2006, edited in place 29 September 2006, http://www.w3.org/TR/xml11/

53

https://doi.org/10.1002/spe.4380050408
https://doi.org/10.1016/0096-0551(80)90048-X

	About aML
	Deficiencies and Contradictions in Prototype Definition
	Role an Treatment of Backslash
	Recognition of Macro Invocations
	File Names in Operating System Environment
	Name Classes and Macro Names
	The aML regular expression language
	Connecting Operating System
	Macro Parameter References, Context and Link Indicators

	Prototype definition Extensions
	Associate Grammars
	The escape-directive and the system-directive

	Introduction
	The aML-philosophy
	Embedding Text Layout
	Host Language Phrases as Macro Invocations
	Free-syntax Embedding and Limitations
	Macro Definitions and Macro Expansion

	Terminology and Associate Grammars
	Host Language By aML Eye
	Regular Expression Language for aML
	aML Grammar

	aML Basics
	Lexical Elements
	Characters
	aML Comments

	Parameter and Function Expressions
	Macro Parameter Declaration and Reference
	Regular Expression Function
	Parameter Evaluation

	Name Classes, Macro Names and Rule Names
	Name Classes
	Names

	Statement Classes and Statements
	Lines
	Declared Statement Classes

	Embedding and Embedding Contexts
	Directive Embedding
	Macro Invocations
	aML Embedding

	Directives and Indicators
	Directives
	The embedded-directive
	The escape-directive
	The expand-directive
	The host-directive
	The invoked-directive
	The load-directive
	The macro-directive
	The off-directive
	The on-directive
	The statement-directive
	The system-directive
	The target-directive
	The term-directive

	Indicators
	Comment Indicators
	Context Indicator
	Link Indicator

	Process of aML Embedding
	The aML Macro Processor
	Input
	Output

	Recognition of aML Embedding
	Recognizing and Handling aML Comments
	Recognizing and Handling Regular Expression Functions
	Recognizing and Handling Directives
	Recognizing and Handling Macro Invocations

	Processing aML Embedding
	Performing Directives
	Statement Preservation Principle
	Expounding Macro Embedding

