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Introduction
Some notations:

• The set of real numbers: R;

• The set of natural numbers: N := {0, 1, 2, . . .} ;

• The set of positive integers: N+ := {1, 2, 3, . . .} ;

• The set of integers: Z := N ∪ {−x ∈ R : x ∈ N};

• The set of rational numbers: Q :=

{
p

q
∈ R | p, q ∈ Z, q 6= 0

}
;

• The set of complex numbers: C := {z = x+ iy ∈ C
∣∣∣ x, y ∈ R}

(i is the imaginary unit);

• The points of the plane: R2 := {(x, y) | x, y ∈ R} ;

• The points of the space: R3 := {(x, y, z) | x, y, z ∈ R} .



1. Functions, Operations with functions

1.1. Theoretic review

To define the notion of a function, first we need the Cartesian product of two sets, and

the subsets of this Cartesian product: the so called relations.

Ordered pairs

Definition: Let x, y be two ”objects” or ”elements”. The set

(x; y) := {{x}; {x; y}}

is called an ordered pair, where x is the first component and y is the second component. It
can be proved, that two ordered pairs (x; y) and (a; b) are equal to each other if and only
if x = a and y = b. In formula:

(x; y) = (a; b) ⇐⇒ x = a ∧ y = b.

Cartesian product of sets

Definition: Let ∅ 6= A,B two arbitrary, nonempty sets. In this case the set:

A×B := {(x; y)
∣∣∣ x ∈ A ∧ y ∈ B}

is called the Cartesian product of the sets A and B. So the elements of A×B are ordered
pairs, whose first component is from A, and the second component comes from B.

Remarks:

1. If A = B, then A×A is denoted by A2. For example the geometric plane is the set:

R2 = R× R.

We can also introduce the Cartesian product of 3 sets, as the set of ordered triplets,
with elements from the given three sets, in the given order. In this manner

R3 := R× R× R

denotes the usual set of the 3−dimensional points of the space.

2. For example:
(2; 1); (−2; 0); (0; 0); (0;−π) ∈ R2

are points of the plane and

(1; 2; 3); (−1; 0; 7) ∈ R3

are two points of the space.
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3. If A := {1; 2} and B := {−1; 3; 7}, then

A×B = {(1;−1); (1; 3); (1; 7); (2;−1); (2; 3); (2; 7)}

and
B × A = {(−1; 1); (−1; 2); (3; 1); (3; 2); (7; 1); (7; 2)}.

4. As we can see here, usually:
A×B 6= B × A,

so the Cartesian product is not commutative.

5. The following set consists of those points of the plane, where the second component
is the square of the first component, which takes as values all the real numbers:

P := {(x;x2) ∈ R2
∣∣∣ x ∈ R}.

We know, that this set consists all the points of the parabola defined by the equation:

y = x2 (x ∈ R),

or the points of the graph of this function. We can also say, that by giving a rule,
for example (in this case):

y = x2

between the components of (x; y) we mark out some points from R2. These points
give us the set:

P = {(x; y) ∈ R2 | y = x2 (x ∈ R)} ⊆ R2.

We can also say, that between the two components x and y of the points of this set
there is a connection, a relation: namely y = x2. See the lower illustration :
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Let us give now the definition of a general relation.

Relations

Definition: Consider the nonempty sets A and B. All the nonempty subsets

∅ 6= R ⊆ A×B

are called relations. The elements of R are ordered pairs, whose components are said to be
in relation R. So if (x; y) ∈ R, then we say that x is in relation R with y. In the previous
example P is a parabola and for the point (x; y) ∈ P we have: the first component x is in
relation P with y means that the second component is the square of the first one.

Remarks:

1. Let A,B := N and

R := {(n;m) ∈ N2
∣∣∣ m = 2n (n ∈ N)}.

Here an ordered pair (n;m) is in relation R (or in notation n R m), if the second
component is double the first one. Illustrate all the points of R in the plane.

2. L := {(x; y) ∈ R2
∣∣∣ y = 2x (x ∈ R)}. In this case L is a line on R2. Illustrate all

points of L in the plane. Here it is:

3. Let now C := {(x; y) ∈ R2
∣∣∣ x2+y2 = 1} ⊆ R2. In this case C is the unit circle with

center at (0; 0). Observe, that: (0; 1) ∈ C and (0;−1) ∈ C, so the first component
equal to 0 is in relation C with two points 1 and −1 (two choices for x = 0).
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Here is our set, a circle:

In the previous example of parabola P :

∀ x ∈ R ∃ ! y ∈ R : (x; y) ∈ P.

In this case: to all the first components x there is one and only one y, so that they
are in relation P . These type of relations are called: functions.

Functions

Definition: Let ∅ 6= A,B be two arbitrary nonempty sets. The relation

∅ 6= f ⊆ A×B

is called a function if:
∀ (x; y) ∧ (x; z) ∈ f =⇒ y = z.

Definition: Let ∅ 6= A,B be two sets and f ⊆ A×B a function.

Df = {x ∈ A
∣∣∣ ∃ y ∈ B : (x; y) ∈ f} ⊆ A

is the domain of definition or simply the domain of f , and

Rf = {y ∈ B
∣∣∣ ∃ x ∈ Df : (x; y) ∈ f} ⊆ B

is the range of values or simply the range of f .

Remarks:
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1. If f ⊆ A×B is a function, then we say that f assigns to values from A (maybe not
to all of them) one and only one value from B (Take care, the domain of definition
for f must not be the whole set A, its only a subset of it). We will use the following
notation to express this:

f ∈ A −→ B ⇐⇒ f ⊆ A×B is a function and Df ⊆ A.

When Df = A, then we will use the following notation:

f : A −→ B,

which means, that f ⊆ A×B is a function and Df = A.

2. Usually the range of values Rf of a function f is not the whole set B, it is only a
subset of it. If Rf = B we say that f is surjective.

3. Let f : A −→ B be a function and (x; y) ∈ f one of its ordered pairs. We say, that
y is the function value assigned to the x and we will denote this by:

y = f(x).

Here are the usual notations to give/define a function:

f : A −→ B y = f(x), or

y = f(x) (x ∈ Df ), or

Df 3 x 7−→ y := f(x) ∈ B, or

f := {(x; y) ∈ Df ×B
∣∣∣ y := f(x)}.

For example: The upper ”parabola” function f can be given as follows:

y = x2 (x ∈ R), or

f(x) := x2 (x ∈ R), or

f : R −→ R f(x) := x2, or

f : R 3 x 7−→ x2 ∈ R, or

f := {(x;x2) ∈ R2
∣∣∣ x ∈ R}, or

f := {(x; y) ∈ R2
∣∣∣ y = x2}.
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4. Using the above notations the range of values of a function f : A −→ B can be
given as:

Rf := {f(x) ∈ B
∣∣∣ x ∈ Df}.

For example for the function f : R −→ R, f(x) := x2 we get:

Rf = {x2 ∈ R
∣∣∣ x ∈ R} = (?) = [0; +∞).

The question mark above shows, that we need to prove the equality of these two
sets, which will be done in the next chapter later.

5. If A = B := R, then the functions f ∈ R −→ R are called real-to-real or real-real
functions.

6. Let f ∈ R −→ R be a real-real function. The following set in R2 is called the graph
of f :

graph(f) :=
{

(x; f(x)) ∈ R2
∣∣∣ x ∈ Df

}
⊂ R2.

Some basic functions

Here is a list of some basic functions we will need later, so we recommend to everybody
to review/study them.

1. Constant functions: with a fixed a ∈ R:

f(x) := a (x ∈ R).

Here is the graph:
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2. Linear functions (first order polynomials/lines): with a, b ∈ R, a 6= 0:

f(x) := ax+ b (x ∈ R).

3. Quadratic functions (second order polynomials/parabolas): with a, b, c ∈ R, a 6= 0:

f(x) := ax2 + bx+ c (x ∈ R).

4. Power functions: with n ∈ N:

f(x) := xn (x ∈ R).

Especially the cases when n = 0, 1, 2, 3.

Here are the graphs for the given special n values:

5. Root-functions: fix an 1 ≤ n ∈ N and

f(x) := 2n
√
x (x ∈ [0; +∞)) ∧ g(x) := 2n+1

√
x (x ∈ R).

Especially the cases when n = 1: the square-root and the cube-root functions.



12 1. Functions, Operations with functions

Here are the graphs:

6. Some special fraction functions, namely with an 1 ≤ n ∈ N:

f(x) :=
1

xn
(x ∈ R \ {0}).

Especially the cases when n = 1, 2.

See their graphs below:
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7. Exponential functions: with base 0 < a 6= 1:

f(x) := ax (x ∈ R).

See their graphs below:

Special case whith a = e:

f(x) := ex (x ∈ R).

See its graph below:
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8. Logarithmic functions: with base 0 < a 6= 1:

f(x) := loga(x) (x ∈ (0; +∞)).

See their graphs below:

Special case, when a = e:

f(x) := lnx := loge(x) (x ∈ (0; +∞)).

Another important case is when a = 10:

f(x) := lgx := log10(x) (x ∈ (0; +∞)).

See their graphs below:
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9. The basic trigonometric functions: sin, cos, tan, cot. See the graphs of sin and cos
functions below:

See the graph of the tan function below:
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See the graph of the cot function here:

10. Absolute-value function:

f(x) := Abs(x) := |x| =
{
−x, if x < 0;
x, if x ≥ 0.

See its graph below:
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11. Integer-part function or floor-function:

f(x) := [x] (x ∈ R);

where [x] := is the closest integer to x which is not greater then x. For example:

[3.75] = 3; [−1.22] = −2; [1.22] = 1; [−0.176] = −1; [2] = 2;

[
√

2] = 1; [e] = 2; [π] = 3; [5/3] = 1.

See its graph below:

12. Fractional-part function: f(x) := {x} := x− [x] (x ∈ R). See its graph below:
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13. Sign/Signum function:

f(x) := Sign(x) :=


−1, if x < 0;
0, if x = 0;
1, if x > 0.

See its graph below:

14. The Dirichlet function:

D(x) :=

{
1, if x ∈ R ∩Q;
0, if x ∈ R \Q.

Operations with functions

Equality of functions

Definition: Consider the sets ∅ 6= A,B,C,D and the functions f ∈ A −→ B and
g ∈ C −→ D. We say, that f = g (the two functions are equal, or they are the same) if
and only if:

Df = Dg ∧ (∀ x ∈ Df = Dg : f(x) = g(x)).

For example:

1. If
f(x) =

√
x3 (x ∈ [0; +∞)); g(x) = x ·

√
x (x ∈ [0; +∞)),

then we have Df = Dg = [0; +∞) and

f(x) = |x| ·
√
x = (x ≥ 0) = x ·

√
x = g(x) ∀ x ∈ [0; +∞) =⇒ f = g.
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2. When

f(x) =
√
x2 (x ∈ R); g(x) = x (x ∈ R),

then Df = Dg = R, but f(x) =
√
x2 = |x| 6= g(x) = x, if x ∈ (−∞; 0) =⇒ f 6= g.

3. Consider now

f(x) = x− 1 (x ∈ R); g(x) =
x2 − 1

x+ 1
(x ∈ R \ {−1}).

In this case when −1 6= x ∈ R, then g(x) =
(x− 1) · (x+ 1)

x+ 1
= x− 1 = f(x), but

Df = R 6= Dg = R \ {−1} =⇒ f 6= g.

Arithmetic operations with functions

Definition: Consider the sets ∅ 6= A,B and the functions

f ∈ A −→ R and g ∈ B −→ R

and c ∈ R a fixed real number. We can define the following new functions (supposing,
that the given domains of definitions are not empty):

Dc·f := Df ∧ (c · f)(x) := c · f(x) (∀ x ∈ Dc·f );

Df+g := Df ∩Dg 6= ∅ ∧ (f + g)(x) := f(x) + g(x) (∀ x ∈ Df+g);

Df−g := Df ∩Dg 6= ∅ ∧ (f − g)(x) := f(x)− g(x) (∀ x ∈ Df−g);

Df ·g := Df ∩Dg 6= ∅ ∧ (f · g)(x) := f(x) · g(x) (∀ x ∈ Df ·g);

Df/g := {x ∈ Df ∩Dg

∣∣∣ g(x) 6= 0} 6= ∅ ∧ f

g
(x) :=

f(x)

g(x)
(∀ x ∈ Df/g).

The given functions are the following:

1. c · f the scaled or constant-times-function,

2. f + g the sum-function,

3. f − g the difference-function,

4. f · g the product-function,

5. f/g the quotient-function.

Examples:
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1. Consider the following functions:

f(x) =
√
x− 1 (x ∈ [1; +∞)); g(x) = sinx (x ∈ [0; 2π]).

We have now:

D2·f = [1; +∞) ∧ (2 · f)(x) = 2 · f(x) = 2 ·
√
x− 1 (x ∈ [1; +∞));

Df+g = [1; +∞) ∩ [0; 2π] = [1; 2π] ∧ (f + g)(x) := f(x) + g(x) =
√
x− 1 + sin x;

Df−g = [1; +∞) ∩ [0; 2π] = [1; 2π] ∧ (f − g)(x) := f(x)− g(x) =
√
x− 1− sinx;

Df ·g = [1; +∞) ∩ [0; 2π] = [1; 2π] ∧ (f · g)(x) := f(x) · g(x) =
√
x− 1 · sinx;

Df/g = {x ∈ [1; 2π]
∣∣∣ sinx 6= 0} = [1;π) ∪ (π; 2π) ∧ f

g
(x) :=

f(x)

g(x)
=

√
x− 1

sinx
;

Dg/f = {x ∈ [1; 2π]
∣∣∣ √x− 1 6= 0} = (1; 2π] ∧ g

f
(x) :=

g(x)

f(x)
=

sinx√
x− 1

.

Compositions of functions

Definition: Consider the sets ∅ 6= A,B,C,D and the functions

f ∈ A −→ B and g ∈ C −→ D.

We can define the new function f ◦g, the composition of f and g (in this order) as follows:

Df◦g := {x ∈ Dg

∣∣∣ g(x) ∈ Df} 6= ∅ ∧ (f ◦ g)(x) := f(g(x)) (x ∈ Df◦g).

For example:

1. Find f ◦ g for the above given functions

f(x) =
√
x− 1 (x ∈ [1; +∞)); g(x) = sinx (x ∈ [0; 2π]).

Df◦g = {x ∈ [0; 2π]
∣∣∣ sinx ∈ [1; +∞)} = (?) =

{π
2

}
∧

∧ (f ◦ g)(x) := f(g(x)) =
√

sinx− 1
(
x ∈

{π
2

})
.

Here (?) stays for solving the following equation on interval [0; 2π]:

sinx ∈ [1; +∞) ⇐⇒ sinx = 1 ⇐⇒ x =
π

2
+ 2kπ (k ∈ Z).

From these values only π/2 is in the interval [0; 2π], so f ◦ g can be defined in only
one point:

Df◦g = {π/2} ∧ (f ◦ g)(π/2) =
√

sin(π/2)− 1 = 0.

In this case the graph of f ◦ g consists of only one point, namely (π/2; 0).
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2. Lets evaluate the composition in reversed order g ◦ f :

Dg◦f = {x ∈ Df

∣∣∣ f(x) ∈ Dg} = {x ∈ [1; +∞)
∣∣∣ √x− 1 ∈ [0; 2π]} = (?) = [1; 1+4π2] ∧

∧ (g ◦ f)(x) = g(f(x)) = sin(
√
x− 1) (x ∈ [1; 1 + 4π2]),

where (?) denotes again the solving process of the upper inequalities on [1; +∞):
√
x− 1 ∈ [0; 2π] ⇐⇒ 0 ≤

√
x− 1 ≤ 2π ⇐⇒ 0 ≤ x− 1 ≤ 4π2 ⇐⇒

⇐⇒ 1 ≤ x ≤ 1 + 4π2.

Taking the intersection with [1; +∞) we get the set [1; 4π2].

3. Remark: as we could see here, it is not alway true that:

f ◦ g = g ◦ f,

which means, that the composition of functions is not commutative (there are cases
when it is, but usually not).

Transformations of functions

Here are some basic transformations we will consider to be known.

1. The transformations of the argument x

(a) Shifting the variable x along the x−axes with value a ∈ R (the graph of f is
shifted with a along the x−line to left when a > 0 and to right when a < 0):

g(x) := f(x+ a) (x+ a ∈ Df );

g(x) := f(x− a) (x− a ∈ Df ).

(b) Mirroring to the y−axes (take the reflection of the graph of f to the y−axes):

g(x) := f(−x) (−x ∈ Df ).

(c) Dilatation along x with a constant a > 0:

g(x) := f(a · x) (a > 0 ∧ a · x ∈ Df ).

Remarks: When a < 0 we can do first the multiplication by −a (see the
positive case) and after this we take a reflection to y−axes. In both cases the
”measure” of the dilatation (related to the x axes) is 1/|a|.

(d) ”Cut and reflect” (We omit/cut off the x < 0 part of the graph of f and the
right-hand side of it (when x ≥ 0) gets reflected on the y axes):

g(x) := f(|x|) =

{
f(−x) , if x < 0;
f(x) , if x ≥ 0;

(|x| ∈ Df ).
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2. Transformations of the function values y

(a) Shifting the values of the function along the y−axes with a constant c ∈ R
(we shift the values of f with c along the y−axes , if c > 0 upwards, if c < 0
downwards):

g(x) := f(x) + c (x ∈ Df );

g(x) := f(x)− c (x ∈ Df ).

(b) Reflecting/mirroring the graph of f to the x−line:

g(x) := −f(x) (x ∈ Df ).

(c) Dilatation of the values along the y−axes with the constant c > 0:

g(x) := c · f(x) (c > 0 ∧ x ∈ Df ).

Remark: When c < 0 first we make the multiplication by −c > 0 and then
we mirror all the points of the graph to the x−line.

(d) Cutting and mirroring:

g(x) := |f(x)| =
{
−f(x) , if f(x) < 0;
f(x) , if f(x) ≥ 0;

(x ∈ Df ).

For example: As a good practice for your own, sketch the graphs of the following func-
tions (starting with f) and then make all the indicated step-by-step transformations:

1. Consider the function f(x) :=
√
x (x ≥ 0) :

1 ≤ x 7−→
√
x− 1; −1 ≤ x 7−→

√
x+ 1; 0 ≤ x 7−→

√
2x; 0 ≤ x 7−→

√
x− 1;

0 ≤ x 7−→ 2 ·
√
x; 0 ≤ x 7−→ −

√
x; 0 ≥ x 7−→

√
−x; 0 ≤ x 7−→

√
x+ 2;

R 3 x 7−→
√
|x|; 0 ≤ x 7−→ |

√
x|.

See the indicated graphs below:
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See the more graphs below:

Last graph here:

2. Consider the function f(x) := x3 (x ∈ R) :

R 3 x 7−→ (x− 2)3; R 3 x 7−→ (x+ 1)3; R 3 x 7−→ (2x)3; R 3 x 7−→ x3 + 1;

R 3 x −→ 2 · x3; R 3 x 7−→ −x3; R 3 x 7−→ (−x)3;

R 3 x 7−→ x3 − 8; R 3 x −→ (|x|)3; 0 ≤ x 7−→ |x3|.
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3. Consider the function f(x) := |x| (x ∈ R) :

R 3 x −→ |x− 2|; R 3 x 7−→ |x+ 1|; R 3 x 7−→ |2x|; R 3 x 7−→ |x| − 1;

R 3 x −→ 2 · |x|; R 3 x 7−→ −|x|; R 3 x 7−→ | − x|; R 3 x 7−→ |x|+ 2;

R 3 x −→ ||x| − 1|.

See some transformations and their graphs below:

See more graphs below:
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Some more transformations and graphs:

4. Consider the function f(x) := sinx (x ∈ R) :

R 3 x −→ sin(x− π/3); R 3 x 7−→ sin(x+ π/2); R 3 x 7−→ sin(2x);

R 3 x −→ 2 · sinx; R 3 x 7−→ − sinx; R 3 x 7−→ sin(−x); R 3 x −→ sinx− 2;

R 3 x −→ 1 + sin x; R 3 x −→ | sinx|; R 3 x −→ sin(|x|).

See some transformations and their graphs below:
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See more graphs below:

Some more transformations and graphs:
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One more transformation:

Some interesting graphs:
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Try to see, why the following graph looks like this:

Try to find out, why the following graph looks like this:

5. Consider the function f(x) := cos x (x ∈ R) :

R 3 x −→ cos(x+ π/3); R 3 x 7−→ cos(x− π); R 3 x 7−→ cos(2x);

R 3 x −→ 4·cosx; R 3 x 7−→ −1

2
·cosx; R 3 x 7−→ cos(−x); R 3 x −→ cosx−1;
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R 3 x −→ 2 + cos x; R 3 x −→ | cosx|; R 3 x −→ cos(|x|).

6. Consider the function f(x) := ex (x ∈ R) :

R 3 x −→ ex−1; R 3 x 7−→ ex+2; R 3 x 7−→ ex − 1; R 3 x 7−→ ex + 5;

R 3 x −→ 2 · ex; R 3 x 7−→ −ex; R 3 x 7−→ e−x;

R 3 x −→ |1− ex|; R 3 x −→ e|x|.

See some transformations and their graphs below:

See more graphs below:
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See the following transformation and graphs:

An interesting graph:
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One more transformation:

Two more interesting graphs:
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Here is the second one:

7. Consider the function f(x) := lnx (x ∈ (0; +∞)) :

−1 < x −→ ln(x+1); 2 < x 7−→ ln (x−2); 0 < x 7−→ lnx−1; 0 < x 7−→ 5+lnx;

0 < x −→ 2 · lnx; 0 < x −→ ln (2x); 0 < x 7−→ −lnx; 0 > x 7−→ ln (−x);

0 < x −→ |lnx|; R \ {0} 3 x −→ ln |x|.

See some transformations and their graphs below:
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See more graphs below:

See the following transformations and graphs:
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More graphs:

A few more graphs:
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Two more interesting graphs:

Here is the second one:
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8. Consider the function f(x) :=
1

x
(x ∈ R \ {0}) :

R \ {−1} 3 x −→ 1

x+ 1
; R \ {1} 3 x −→ 1

x− 1
; R \ {0} 3 x −→ 1

x
− 1;

R \ {0} 3 x −→ 1 +
1

x
; R \ {0} 3 x −→ 2

x
; R \ {0} 3 x −→ 1

2x
;

R \ {0} 3 x −→ 1

−x
; R \ {0} 3 x −→ 1

|x|
; R \ {0} 3 x −→

∣∣∣1
x

∣∣∣.
See some transformations and their graphs below:

See more graphs below:
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See the following transformations and graphs:

More graphs:
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A few more graphs:

Two more interesting graphs:
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Here is the second one:

Finally here are a few graphs of some transformated functions. Try to find the
step-by-step way to get the final graphs:
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Rational fraction’s graph:

Transformated power-function’s graph:
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Trigonometric function:

Another trigonometric function:
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A logarithmic transformation:

Exponential transformation and absolute value included:
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Square-root and absolute value:

Absolute value combined with fraction:
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Trigonometric transformation with absolute values:

Linear combination of transformed absolute values:
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Rational fraction with absolute value:

Cubic function with absolute value:
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1.1.1. Checking questions to the theory and its use

1. Define the notion of a function.

2. Define the quotient function g/f .

3. Define the composition function g ◦ f .

4. Define the graph of a function f : A −→ B.

5. Define the range of values Rf of a function f ∈ A −→ B.

6. Illustrate in the plane all the points of the set (1; 2]× [−1; 1).

7. Give a function f : R −→ R for which the function f 2 := f · f is equal to f . Give
another one as well, when f 2 6= f .

8. Suppose, that the product of the functions f and g is the constant 0 function, so:

f · g : R −→ R (f · g)(x) = 0 (x ∈ R).

Is it true, that f or g is the constant 0 function?

9. Consider the functions f(x) :=
√
x− 1 (x ∈ [1; +∞)) and g(x) := x − 1 (x ∈ R).

Is it true, that f 2 = g? What restriction of g will be equal to f 2?

10. Give the function f ◦ f if f(x) := 3x (x ∈ R). What is (f ◦ f)(0) and (f ◦ f)(−1) ?

11. Give the functions f ± g, f · g, f/g and g/f if:

f(x) :=
1

x2 − 1
(x ∈ R \ {−1; 1}) ∧ g(x) :=

√
ex − 1 (x ∈ [0; +∞)).

12. Give the functions f ◦ g and g ◦ f if:

f(x) :=
√
x (x ∈ (0; +∞)) ∧ g(x) := x2 (x ∈ R).

13. Give the largest set D ⊆ R so, that f defines a function:

f(x) :=
ln(3−

√
x)√

1− sinx
(x ∈ D).

14. Sketch the graph of the function:

f(x) := 2|x| (x ∈ R).

15. Sketch the graph of the function:

f(x) :=
x− 1√
x− 1

(1 6= x ∈ (0; +∞)).
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16. Define the notion of the ordered pair (a; b).

17. Define the domain of definition Df of a function ∅ 6= f ⊆ A×B.

18. Find A × B if A := {1} and B := [0; 3]. Illustrate all the points of A × B in the
Cartesian coordinate system.

19. Give A×B when A := (−1; 1] and B := {2}. Draw the points of this set A×B in
R2.

20. What does the notation f ∈ A −→ B mean?

21. What do we mean by the notation f : A −→ B?

22. Give the definition of a relation.

23. When do we say, that the functions f and g are equal to each other?

24. Give the functions f ◦ g and g ◦ f if:

f(x) := ln(−2− x) (x ∈ (−∞;−2)) ∧ g(x) := cos x (x ∈ R).

25. What is the definition of the Cartesian / Descartes product of two sets?

26. Define the square-root and the cube-root functions and draw their graphs as well.

27. Draw the graph of the identity function (f(x) := x (x ∈ R)).

28. Give the graph of the function:

f(x) := 2− 3x (x ∈ R).

29. Give the graph of the function:

f(x) := 2− x2 (x ∈ R).

30. Define the sum-function f + g.

31. What is the definition of the difference-function g − f .

32. Define the product-function f · g of two functions f and g.

33. Give the definition and the graph of the absolute-value function.

34. Give the definition and the graph of the sign function.

35. Give the definition and the graph of the integer-part function.

36. Give the definition and the graph of the constant 5 function.
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37. Give the graph of the reciprocal function

f(x) :=
1

x
(x ∈ R \ {0}).

38. Give the graph of the function

f(x) :=
1

x2
(x ∈ R \ {0}).

39. Give the graph of the cube-function

f(x) := x3 (x ∈ R).

40. Sketch the graphs of

f(x) := sinx (x ∈ R) ∧ g(x) = cos x (x ∈ [0; 3π]).

41. Sketch the graphs of:

f(x) := tgx (x ∈ (−π/2;π/2)) ∧ g(x) = ctgx (x ∈ R \ {kπ
∣∣∣ k ∈ Z}).

42. Sketch the graphs of the following functions in the same coordinate system:

f(x) := ex (x ∈ R) ∧ g(x) = ln (x) (x ∈ (0; +∞)).

43. Sketch the graphs of the following functions in the same coordinate system:

f(x) := 2−x (x ∈ R) ∧ g(x) = log1/2 (x) (x ∈ (0; +∞)).

44. Draw the graph of the function:

f(x) := 1 + (x− 3)3 (x ∈ R).

45. Draw the graph of the function:

f(x) := |1− x2| (x ∈ R).

46. Draw the graph of the function:

f(x) := g(x+ 1) (x > −1), where g(x) = log2(x) (x > 0).

47. Draw the graph of the function:

f(x) := g(x− 4) (x ∈ R), where g(x) = 3
√
x (x ∈ R).

48. Draw the graph of the function:

f(x) := |g(−x)| (x ∈ R), where g(x) = 2x+ 1 (x ∈ R).



1.2. Exercises 49

49. Draw the graph of the function:

f(x) := −1 + 2 · cos(x− π) (x ∈ R).

50. Draw the graph of the function:

f(x) :=
∣∣∣2− 1

x

∣∣∣ (x ∈ R \ {0}).

51. Draw the graph of the function:

f(x) :=
∣∣∣2−√1− x

∣∣∣ (x ∈ (−∞; 1]).

1.2. Exercises

1.2.1. Exercises for class work

Domain of definition

1. Give the largest set D ⊂ R for which the following expressions define a real-real
funcion f :

(a) f(x) :=

√
2x3 − 1

x
(x ∈ D) ;

(b) f(x) :=
√

lg (x2 − 5x+ 7) (x ∈ D) ;

(c) f(x) :=
√

2x − ex +
√

3x − ex (x ∈ D) ;

(d) f(x) :=

√
16− x2

lg(sinx)
(x ∈ D) .

Equality of functions

2. Are the following functions equal or not:

(a) f(x) :=
√
x (x ∈ [0; +∞)); g(x) :=

4
√
x2 (x ∈ R)?

(b) f(x) :=
√
x (x ∈ [0; +∞)); g(x) :=

4
√
x2 (x ∈ [0; +∞))?

(c) f(x) :=
√
x2 (x ∈ R); g(x) := |x| (x ∈ R)?
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(d) f(x) :=
√
x2 (x ∈ R); g(x) := (

√
x)2 (x ∈ [0; +∞))?

Can we say, that f |[0;+∞) = g?

(e) f(x) := ln(x2) (x ∈ R \ {0}); g(x) := 2 · lnx (x ∈ (0; +∞))?

(f) f(x) := ln(x2) (x > 0); g(x) := 2 · lnx (x ∈ (0; +∞))?

(g) f(x) :=
x

|x|
(x ∈ R\{0}) ∧ f(0) := 0; g(x) :=

|x|
x

(x ∈ R\{0}) ∧ g(0) := 0?

(h) f(x) := elnx (x ∈ R+); g(x) := ln(ex) (x ∈ R)?

(i) f(x) :=
1− cosx

2
(x ∈ [0; π/2]); g(x) := sin2 x

2
(x ∈ [0; π])?

Is it true, that f = g|[0;π/2]?

Sketch the graphs of these functions.

Transformations and graphs

3. Draw the graphs of the following special functions and using this graph give their
range of values Rf as well:

(a)

f(x) := Abs(x) := |x| =
{
−x, if x < 0;
x, if x ≥ 0.

(b) f(x) := [x] (x ∈ R); where [x] := the greatest integer number not greater then
x. (Integer part function);

(c) f(x) := {x} := x− [x] (x ∈ R); (Fractional part function);

(d) Sign or Signum function:

f(x) := Sign(x) :=


−1, if x < 0;
0, if x = 0;
1, if x > 0.

(e) Dirichlet function:

D(x) :=

{
1, if x ∈ R ∩Q;
0, if x ∈ R \Q.

(f) Riemann function:

R(x) :=


1

q
, if x =

p

q
∈ Q, p, q ∈ Z ∧ (p; q) = 1 ∧ q > 0;

0, if x ∈ R \Q.

4. Give the graphs of the following functions. Write down the transformational steps
as well.
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(a) f(x) := 2(x+ 3)2 − 1 (x ∈ R);

(b) f(x) := −x2 + 5x+ 3 (x ∈ R);

(c) f(x) := x3 − 3x2 + 3x+ 1 (x ∈ R);

(d) f(x) := |x2 − 5x+ 6| (x ∈ R);

(e) f(x) := |2− |x− 1|| (x ∈ R);

(f) f(x) :=
x+ 3

x+ 5
(−5 6= x ∈ R);

(g) f(x) :=
4x− 1

2x− 1

(
1

2
6= x ∈ R

)
;

(h) f(x) :=
x

1 + |x|
(x ∈ R);

(i) f(x) :=

√
5x− 1

4
+ 2

(
1

5
≤ x ∈ R

)
;

(j) f(x) := 2−
√

1− x (x ∈ (−∞; 1]);

(k) f(x) :=
√
|x| (x ∈ R);

(l) f(x) := sin
(
x− π

4

)
+ sin

(
x+

π

4

)
(x ∈ R);

(m) f(x) := sin x−
√

3 · cosx (x ∈ R) ;

(n) f(x) := cos2 x (x ∈ R) ;

(o) f(x) := tg
(π

4
− x
)

(x ∈ (−π/4; 3π/4)) ;

(p) f(x) := 3 · 23x−1 (x ∈ R) ;

(q) f(x) := e−x (x ∈ R) ;

(r) f(x) := ln(1− x) (x ∈ (−∞; 1)) ;

(s) f(x) := ln
e

x
(x ∈ (0; +∞)) ;

(t)

D(x) :=

{
x2 − 2x+ 1, if x ∈ R ∩Q;
x3 − 3x2 + 3x− 1, if x ∈ R \Q.

Operations with functions

5. Consider the functions f and g. Find the given function h and where is possible
draw the graphs of f, g and h:

(a) f(x) := x (x ∈ R); g(x) := sin x (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
.
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(b) f(x) := D(x) (x ∈ R); g(x) := 1−D(x) (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
.

Here D is the Dirichlet function.

(c) f(x) := |x| (x ∈ R); g(x) := x (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
.

(d) f(x) := sin x (x ∈ R); g(x) := cos x (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
.

(e) f(x) :=
√
x− 1 (x ∈ [0; +∞)); g(x) := 1 (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
.

(f) f(x) := x (x ∈ R); g(x) := [x] (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
.

6. Consider the following functions:

f(x) :=
1

2
· ex (x ∈ R); g(x) :=

1

2
· e−x (x ∈ R);

i) Find the following functions:

(a) ch := f + g; sh := f − g; p := f · g; l :=
f

g
; t :=

g

f
.

(b) w := ch2 − sh2; v := 2 · ch · sh; r := ch2 + sh2.

ii) Prove, that for all y ∈ [1; +∞) the equation

ch(x) = y

can be solved (related to x) on the set of positive real numbers and give the solution
as well.

iii) Prove, that:
∀y ∈ R ∃ ! x ∈ R : shx = y.

What is x here.

7. Consider the functions f and g. Find the compositions f ◦ g and g ◦ f :

(a) f(x) := [x] (x ∈ R); g(x) :=
1

x
(x ∈ R \ {0});
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(b) f(x) := Sign(x) (x ∈ R); g(x) := ln(2− x) (x ∈ (−∞; 2));

(c) f(x) := ex (x ∈ R); g(x) := lnx (x ∈ R+). Is f ◦ g = g ◦ f?

(d)

f(x) =

{
0, ha x ∈ (−∞; 0);
2x, ha x ∈ [0; +∞);

; g(x) =

{
1− x2, ha x ∈ (−∞; 1);
x− 1, ha x ∈ [1; +∞).

8. Consider the given functions f , g and h. Find min{f, g}; max{f ; g} and min/max{f ; g;h}.
By definition

Dmin{f,g} = Df ∩Dg, min{f, g}(x) := min{f(x), g(x)}(x ∈ Dmin{f,g} 6= ∅).

Similarly

Dmax{f,g} = Df ∩Dg, max{f, g}(x) := max{f(x), g(x)}(x ∈ Dmax{f,g} 6= ∅).

(a) f(x) := |x| (x ∈ R); g(x) := |1− |x|| (x ∈ R);

(b) f(x) :=
1

x
(x ∈ R \ {0}); g(x) := 2x (x ∈ R);

(c) f(x) := 1 (x ∈ R); g(x) := x (x ∈ R); h(x) := x2 (x ∈ R).

Other types

9. Prove, that the function

f : (0; +∞) −→ R f(x) := x+
1

x
(x > 0)

is strictly monoton decreasing on the interval (0; 1] and is strictly monotone increas-
ing on the interval [1; +∞).

10. Prove, that the function

f : R −→ R f(x) :=
ex − 1

ex + 1
(x ∈ R)

is an odd function (∀x ∈ Df = R : f(−x) = −f(x)) and it is bounded as well.

11. Find all the functions f : R −→ R satisfying the following equation:

2 · f(x) + 3 · f(1− x) = 4x− 1 ( ∀ x ∈ R).
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1.2.2. Homework and more exercises to practice

Domain of definition

1. Find the largest possible set D ⊂ R for which the following expressions define a
function f :

(a) f(x) :=

√
3
√
x− 2

1− [x/9]
(x ∈ D) ;

(b) f(x) := log3+x(x
2 − 1) (x ∈ D) ;

(c) f(x) := 3

√
x

1− |x|
(x ∈ D) ;

(d) f(x) :=
ln(4− x2) +

√
1− x

ex − e−x
(x ∈ D) ;

(e) f(x) :=
√

ln (cos x) +
1

sinx
(x ∈ D) .

Equality of functions

2. Is f = g, if:

(a) f(x) :=
√
x4 + 2x2 + 1 (x ∈ R); g(x) := 1− x3 + (x2 − 3) · (x+ 1) (x ∈ R)?

(b) f(x) :=
√
x4 − 2x2 + 1 (x ∈ R); g(x) := (x2 − 1) · sign(1− |x|) (x ∈ R)?

(c) f(x) :=
x2 − 1

x+ 1
(x ∈ R \ {−1}); g(x) := x− 1 (x ∈ R)?

(d) f(x) :=
x3 − 1

x− 1
(x ∈ R \ {1}) ∧ f(1) := 3; g(x) := (x+ 1)2 − x (x ∈ R)?

(e) f(x) := ln |x| (x ∈ (−∞; 0) ∪ (0; +∞)); g(x) := ln(−x) (x ∈ (−∞; 0)?

(f) f(x) := ln
x+ 1

x
(x ∈ (−∞;−1) ∪ (0; +∞));

g(x) := ln(x+ 1)− lnx (x ∈ (0; +∞))? Is it true, thatf |(0;+∞) = g?

(g) f(x) := ln(cos2 x) (x ∈ (−π/2;π/2));

g(x) := ln(1 + sin x) + ln(1− sinx) (x ∈ (−π/2;π/2))?

What is the largest possible set on which we can extend f and g so, that f = g?

(h) f(x) := sin2 x+ cos2 x (x ∈ R); g(x) := 1 (x ∈ R)?

(i) f(x) := cos(2x) (x ∈ R);

g(x) := (1− tg2x) · cos2 x (x ∈ R \ {π/2 + kπ | k ∈ Z})?
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(j) f(x) := − cos(2x) (x ∈ (0; π)); g(x) := (1− ctg2x) · sin2 x (x ∈ (0;π))?

(k) f(x) := tgx+ ctgx (x ∈ R \ {kπ/2 | k ∈ Z}) ;

g(x) :=
2

sin(2x)
(x ∈ R \ {kπ/2 | k ∈ Z})?

(l) f(x) :=
√

1 + cos x (x ∈ R); g(x) :=
√

2 · cos
x

2
(x ∈ R)?

What relation is between f and g?

In case (a),(b),(c),(d),(e),(h),(i),(j) and (l) draw the graphs of f and g as well.

Transformations and graphs

3. Draw the graphs of the following functions and also give the transformational steps
as well:

(a) f(x) := 1− (2x− 4)2 (x ∈ R);

(b) f(x) := |3x− x2 − 2| (x ∈ R);

(c) f(x) := x2 + x+ 1 (x ∈ R);

(d) f(x) := 9− x3 + 6x2 − 12x (x ∈ R);

(e) f(x) := |x3 − 1| (x ∈ R);

(f) f(x) := |x3| − 1 (x ∈ R);

(g) f(x) := ||x− 2| − 1| (x ∈ R);

(h) f(x) := x · |x| (x ∈ R);

(i) f(x) :=
x+ 3

x+ 1
(−1 6= x ∈ R);

(j) f(x) :=
x− 4

3x− 3
(1 6= x ∈ R);

(k) f(x) :=
x

1− |x|
(x ∈ R \ {±1});

(l) f(x) :=

√
16x− 4

2
+ 1

(
1

4
≤ x ∈ R

)
;

(m) f(x) := 1−
√
x− 1 (x ∈ [1 +∞));

(n) f(x) :=
√
|x− 1| (x ∈ R);

(o) f(x) := |
√
|x| − 1| (x ∈ R);

(p) f(x) := cos
(
x− π

4

)
+ cos

(
x+

π

4

)
(x ∈ R);

(q) f(x) := sin |x− π|+ sin |x+ π| (x ∈ R);

(r) f(x) := sin x cosx+
1

2
· cos2 x− 1

2
· sin2 x (x ∈ R) ;
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(s) f(x) := sin4 x+
1

2
· cos(2x) (x ∈ R) ;

(t) f(x) := ctg
(π

2
+ x
)

(x ∈ (−π/2;π/2)) ;

(u) f(x) := e|x| (x ∈ R) ;

(v) f(x) := |ln (1 + x)| (x ∈ (−1; +∞)) ;

(w) f(x) := lg
100

x− 1
(x ∈ (1; +∞)) ;

(x) f(x) := Sign(x− 1) + x · Sign(x− 2) (x ∈ R ) ;

(y)

D(x) :=

{
x, if x ∈ R ∩Q;
x2, if x ∈ R \Q.

Operations with functions

4. For the following functions f and g find function h. Where is possible also draw the
graphs of f ; g;h:

(a) f(x) := x− 1 (x ∈ R); g(x) := cos x (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
?

(b) f(x) := −D(x) (x ∈ R); g(x) := D(−x) (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
?

Here D denotes the Dirichlet function.

(c) f(x) := |x− 1| (x ∈ R); g(x) := 1− x (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
?

(d) f(x) := lnx (x ∈ (0; +∞)); g(x) := lnx2 (0 6= x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
h :=

g

f
?

(e) f(x) :=
√
x− 1 (x ∈ [1; +∞)); g(x) :=

√
1− x (x ∈ (−∞; 1]);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
?

(f) f(x) :=
1

ex
(x ∈ R); g(x) := ex (x ∈ R);

Find h := f + g; h := f − g; h := f · g; h :=
f

g
; h :=

g

f
?
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(g)

f(x) =

x · (x− 1), ha x ∈ Q;
x2

2
, ha x ∈ R \Q;

; g(x) =

x, ha x ∈ Q;
x2

2
, ha x ∈ R \Q.

Find: h := f ± g; h := f · g; h :=
f

g
; h :=

g

f
?

5. For the following functions f and g give f ◦ g and g ◦ f and sketch their graphs too:

(a) f(x) := |x| (x ∈ R); g(x) := sinx (x ∈ R);

(b) f(x) :=
√
x (x ∈ [0; +∞)); g(x) := x2 (x ∈ R). Is it true, that f ◦ g = g ◦ f?

(c) f(x) := [x] (x ∈ R); g(x) := cos(π · x) (x ∈ R);

(d) f(x) :=
x

1 + |x|
(x ∈ R); g(x) :=

x

1− |x|
(x ∈ (−1; 1)). Is it true, that f ◦g =

g ◦ f?

(e)

f(x) =

{
x2 + 6x, if x ∈ (−∞;−3);
−2x− 5, if x ∈ [−3; +∞);

; g(x) =

{
5x− 2, if x ∈ (−∞; 1];
x2 − 2x+ 4, if x ∈ (1; +∞).

6. For the following functions f ; g and h find min{f, g}; max{f ; g} and min/max{f ; g;h}.
Draw their graphs too:

(a) f(x) := |x| (x ∈ R); g(x) :=
√

1− x2 (x ∈ [−1; 1]);

(b) f(x) :=
√
|x| (x ∈ R); g(x) :=

∣∣∣1
x

∣∣∣ (x ∈ R \ {0});

(c) f(x) := x (x ∈ R); g(x) := x2 (x ∈ R); h(x) := x3 (x ∈ R).

Other types

7. Consider the following function:

f(x) =
3 + x

3− x
· logx2−x−2(9− x2) (x ∈ D),

where D ⊆ R denotes the largest real subset, for which f is well-defined. Give the
set D and then solve the inequality f(x) > 0 on it.

8. Consider the function

f : R −→ R f(x) :=
ex − e−x

ex + e−x
(x ∈ R).

Is it an odd or an even function? Is it bounded?
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9. Find all the functions f : R \ {0, 1} −→ R for which we have:

f(x) + f
(

1− 1

x

)
= 1 + x ( ∀ x ∈ R \ {0; 1}).

10. Find all the functions f : R −→ R which satisfy the following condition:

f(x+ y)− f(x− y) = 4xy ( ∀ x, y ∈ R).

11. Consider the parameter a ∈ [0; +∞) and the function f : (a; +∞) −→ R so, that

g(x) :=
1

x
· f(x) (x ∈ (a; +∞)) is a monoton decreasing function. Prove, that the

function f has the following property (is subadditive):

f(x+ y) ≤ f(x) + f(y) ( ∀ x, y ∈ (a; +∞)).

12. Consider the function f(x) := ax + b (x ∈ R), where a and b are real parameters.
Give the following function:

g := fn := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n−times

(1 ≤ n ∈ N).



2. Image, range of values, invertible
functions

2.1. Theory

From now on suppose that ∅ 6= A,B are arbitrary nonempty sets.

Image, range of values

Definition: Let f : A −→ B be a function and C ⊆ A a given set. We call the image of
C by the function f , in notation f [C] the following subset of B:

f [C] := {f(x) | x ∈ C} ⊆ B.

Remarks:

1. We define f [∅] := ∅.

2. It is clear, that the range of values Rf of a function f is the image of its domain Df

by f , so
Rf = f [Df ].

For example:

1. If f(x) := x2 (x ∈ R) and C := [−1; 2], what is the image-set f [C]?

Solution: According to the definition

f [[−1; 2]] = {f(x) | x ∈ [−1; 2]} = {x2 | − 1 ≤ x ≤ 2} = (?) = [0; 4],

where (?) stands for the following deduction:

If 0 ≤ x ≤ 2 =⇒ 0 ≤ x2 ≤ 4;

If − 1 ≤ x ≤ 0 ⇐⇒ 0 ≤ −x ≤ 1 =⇒ 0 ≤ x2 ≤ 1.

We get that:
If x ∈ [−1; 2] =⇒ x2 ∈ [0; 4],

which means that:
f [[−1; 2]] ⊆ [0; 4].

For the reversed order
[0; 4] ⊆ f [[−1; 2]]

we need to prove that:

∀ y ∈ [0; 4] : y ∈ f [[−1; 2]] ⇐⇒ ∀ y ∈ [0; 4] ∃ x ∈ [−1; 2] : x2 = y.
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For this reason fix a value y ∈ [0; 4]. We want to find an x ∈ [−1; 2], which satisfies
the following:

x2 = y ∈ [0; 4] ⇐⇒ x = ±√y.

It is clear that
x =
√
y ∈ [0; 2] ⊆ [−1; 2] will do.

We have also proved that:
[0; 4] ⊆ f [[−1; 2]].

2. Let f(x) := x2 (x ∈ R). Find the range of values Rf .

Solution: By definition

Rf = f [Df ] = {f(x) | x ∈ Df} = {x2 | x ∈ R} ⊆ [0; +∞),

since
∀ x ∈ R : y = x2 ≥ 0.

Let’s check now the reversed order:

[0; +∞) ⊆ Rf .

We have to chek that:

∀ y ∈ [0; +∞) : y ∈ Rf ⇐⇒ ∀ y ∈ [0; +∞) ∃ x ∈ R : x2 = y.

We take now a fixed value y ∈ [0; +∞) and want to find an x ∈ R for which we
have:

x2 = y ∈ [0; +∞) ⇐⇒ x = ±√y ∈ R.

As we can see above there are two real numbers x satisfying our wish, so

[0; +∞) ⊆ Rf .

These two cases mean that:
Rf = [0; +∞).

Pre-image or reversed image

Definition: Let f : A −→ B be a function and D ⊆ B be a given set. The pre-image or
the reversed image set f−1[D] of D by f is the following subset of A:

f−1[D] := {x ∈ Df | f(x) ∈ D} ⊆ A.

Remarks:

1. Consider by definition f−1[∅] := ∅.
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2. It is also clear, that the domain Df of definition for f is the pre-image of Rf by f ,
so

Df = f−1[Rf ].

For example:

1. Consider again the quadratic function

f(x) := x2 (x ∈ R) and the set D := [1; 2].

Find the pre/reversed image set f−1[D].

Solution: By definition we have:

f−1[[1; 2]] = {x ∈ Df | f(x) ∈ [1; 2]} = {x ∈ R | 1 ≤ x2 ≤ 2} = (?) =

= [−
√

2;−1] ∪ [1;
√

2],

where (?) for the following solution steps:

1 ≤ x2 ≤ 2 ⇐⇒ (x2 − 1 ≥ 0 ∧ x2 −
√

2 ≤ 0) ⇐⇒ x ∈ [−
√

2;−1] ∪ [1;
√

2].

2. Let now g(x) :=
1

x
(x ∈ R \ {0}) be another function. Find the pre-image set

g−1[(−1; 1]].

Solution: using the definition again:

g−1[(−1; 1]] = {x ∈ Df | g(x) ∈ (−1; 1]} =
{
x ∈ R \ {0} | − 1 <

1

x
≤ 1
}

= (?) =

= (−∞;−1) ∪ [1; +∞),

where (?) denotes the following solution:

−1 <
1

x
≤ 1 (x ∈ (−∞; 0) ∪ (0; +∞)) ⇐⇒

⇐⇒ ((x < 0 =⇒ x < −1 ∧ x ≤ 1) ∨ (x > 0 =⇒ x > −1 ∧ x ≥ 1)) ⇐⇒

⇐⇒ x < −1 ∨ x ≥ 1.

Invertible functions and inverse function

Definition: Let f : A −→ B be a function. We say, that f is invertible or injective or it
is a one-to-one function, if:

∀ x, t ∈ Df : x 6= t =⇒ f(x) 6= f(t).

Remarks:
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1. Saying it in words f is invertible, if and only if for all two different values from Df

their images are also different.

2. In practice we use many times the logical ”reversed” property, so:

f is injective ⇐⇒ ∀ x, t ∈ Df : f(x) = f(t) =⇒ x = t.

For example:

1. Consider the function
f(x) := 2x− 7 (x ∈ R).

Is f injective?

Solution: Let x 6= t ∈ R be two different arbitrary points in the domain of f .
Evaluate their difference:

f(x)− f(t) = (2x− 7)− (2t− 7) = 2 · (x− t) 6= 0 =⇒ f(x) 6= f(t),

which means that f is injective.

2. Let f be
f(x) :=

√
9− x2 (x ∈ [−3; 3]).

Is it invertible f now?

Solution: We can easily observe now, that:

−1 6= 1 ∈ [−3; 3] ∧ f(−1) = f(1) =
√

8 =⇒ f is not injective.

3. Change now the domain of f from the previous exercise like follows:

f(x) :=
√

9− x2 (x ∈ [0; 3]).

Is this function f invertible/injective now?

Solution: Let x, t ∈ [0; 3] and suppose that f(x) = f(t). Then we have:
√

9− x2 =
√

9− t2 =⇒ 9− x2 = 9− t2 ⇐⇒ x2 − t2 = 0 ⇐⇒

⇐⇒ (x− t) · (x+ t) = 0 =⇒ x = t,

because

If x, t ∈ [0; 3] =⇒ x+ t ∈ [0; 6] ∧ (x+ t = 0 ⇐⇒ x = t = 0).

We have proved that f is injective.

Definition: Let f : A −→ B be an invertible function. In this case the inverse or reversed
function f−1 is defined as:

Df−1 := Rf ∧ ∀ y ∈ Df−1 : f−1(y) := x ⇐⇒ f(x) = y.

Remarks:
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1. It can be seen that Rf−1 = Df .

2. In practice finding the explicite form for f−1(y) means to solve the equation f(x) = y
with a given value y ∈ Rf and the unknown value of x from Df (so we express x by
y).

For example:

1. Let
f(x) := 2x− 7 (x ∈ R)

be our invertible function. Give the reversed function f−1.

Solution: As we have seen before f is really injective. As a first step let’s find the
range of values Rf of f :

Rf = {f(x) | x ∈ Df} = {2x− 7 | x ∈ R} = (?) = R,

where (?) stays for:

∀x ∈ R : f(x) = 2x− 7 ∈ R, so Rf ⊆ R

and for the reversed order:

If y ∈ R =⇒ ∃ x ∈ R : y = 2x−7 ⇐⇒ ∃ x =
y + 7

2
∈ R : f(x) = y, so R ⊆ Rf .

We have proved that:

Df−1 = Rf = R ∧ f−1(y) =
y + 7

2
(y ∈ R = Df−1) .

2. Check if the following function is invertible or not, and give its inverse f−1 (find
Df−1 , Rf−1 and a formula for f−1(y) if y ∈ Df−1):

f(x) =
3x+ 2

x− 1
(x ∈ (1; +∞)).

• We need to check the statement:

∀ x, t ∈ Df : x 6= t =⇒ f(x) 6= f(t),

or:
if x, t ∈ Df : f(x) = f(t) =⇒ x = t.

Solution 1:

Consider x, t ∈ Df = (1; +∞) to be different points, so x 6= t and evaluate the
difference of the outputs:

f(x)− f(t) =
3x+ 2

x− 1
− 3t+ 2

t− 1
=

(3x+ 2) · (t− 1)− (3t+ 2) · (x− 1)

(x− 1) · (t− 1)
=
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=
5 · (t− x)

(x− 1) · (t− 1)
6= 0, it x 6= t =⇒ f(x) 6= f(t),

which means, that f is invertible (or injective).

Solution 2:

In our second formulation: if x, t ∈ Df = (1; +∞) two inputs, for which:

f(x) = f(t), then:

3x+ 2

x− 1
=

3t+ 2

t− 1
=⇒ (3x+ 2) · (t− 1) = (3t+ 2) · (x− 1) =⇒

=⇒ 3xt− 3x+ 2t− 2 = 3tx− 3t+ 2x− 2 =⇒ 5x = 5t =⇒ x = t,

so f is invertible.

• Find the inverse (or reversed) function f−1, by the following steps:

∗ Df−1 = Rf

∗ if x ∈ Df−1 , then f−1(x) = y ⇐⇒ y = f(x)

∗ Rf−1 = Df = (1; +∞).
:::::::::::::::::::::::

Evaluate the range of values of f first. By definition:

Rf = {y ∈ R
∣∣∣ ∃x ∈ Df : y = f(x)} =

{
y ∈ R

∣∣∣ ∃ x ∈ (1; +∞) : y =
3x+ 2

x− 1

}
.

For a fixed y ∈ R we have to solve for x ∈ (1; +∞) the equation:

y =
3x+ 2

x− 1
⇐⇒ y · (x− 1) = 3x+ 2 ⇐⇒ (y − 3) · x = y + 2.

If 3 6= y ∈ R, then:

∃ x =
y + 2

y − 3
(= f−1(y))

::::::::::::::::::::::::

is a solution of the given equation. We still have to fulfill the condition x > 1, so:

x =
y + 2

y − 3
> 1 ⇐⇒ y + 2

y − 3
− 1 > 0 ⇐⇒ 5

y − 3
> 0 ⇐⇒ y > 3.

Finally we get:

Df−1 = Rf = (3; +∞) ∧ f−1(y) =
y + 2

y − 3
(y > 3)

::::::::::::::::::::::::::::::::::::::::::::::::::

.
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Remark: We may first take the following form of f (which is also convenient for
sketching the graph of f):

y = 3 + 5 · 1

x− 1
(x > 1) ⇐⇒ x = 1 + 5 · 1

y − 3
(y > 3).

We also can see from our calculations, that if Df = R \ {1}, thenf is still invertible,
and in this case Df−1 = R \ {3}. The next graph is illustrating this situation.

Here are the graphs of f and f−1 in the same coordinate system (on the widest
possible range):

3. Examine the following function from point of view of invertibility. When it is injec-
tive give the inverse function as well.

f(x) = x2 − 2x+ 2 (x ∈ (−∞; 1]).

• Invertibility: we need to prove for example, that:

∀ x, t ∈ Df : x 6= t =⇒ f(x) 6= f(t).

Let x, t ∈ Df = (−∞; 1] and x 6= t two inputs. In this case:

f(x)− f(t)
:::::::::::

= (x2 − 2x+ 2)− (t2 − 2t+ 2) = x2 − 2x− t2 + 2t =

= (x2 − t2)− 2 · (x− t) = (x− t) · (x+ t− 2) 6= 0
:::

,

because with the given conditions on x, t we have x ≤ 1 and t < 1 (or conversely),
so:
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x+ t− 2 < 1 + 1− 2 = 0.

This implies f(x) 6= f(t), so f is invertible.

• To give f−1 we need to find:

∗ Df−1 = Rf

∗ if x ∈ Df−1 , then f−1(x) = y ⇐⇒ y = f(x)

∗ Rf−1 = Df = (−∞; 1].
::::::::::::::::::::::

First find the range of values of f :

Rf = {y ∈ R
∣∣∣ ∃x ∈ Df : y = f(x)} =

{
y ∈ R

∣∣∣ ∃ x ∈ (−∞; 1] : y = x2 − 2x+ 2
}
.

For a given y ∈ R, we have to solve the following equation with x ∈ (−∞; 1]:

y = x2 − 2x+ 2 ⇐⇒ x2 − 2x+ (2− y) = 0 ⇐⇒ x1,2 =
2±

√
4− 4 · (2− y)

2
=

= 1±
√
y − 1 ∈ R ⇐⇒ y − 1 ≥ 0 ⇐⇒ y ≥ 1.

If y ∈ [1; +∞), then the upper equation can be solved on the set of the real numbers,
but we still have to satisfy the following condition on x:

x1,2 = 1±
√
y − 1 ∈ (−∞; 1].

Assume, that y ≥ 1 and

x1 = 1 +
√
y − 1 ≤ 1 ⇐⇒

√
y − 1 ≤ 0 ⇐⇒ y ≤ 1,

which gives the single y = 1
:::::

value. For the second root as well:

x2 = 1−
√
y − 1 ≤ 1 ⇐⇒

√
y − 1 ≥ 0 ⇐⇒ y ≥ 1

:::::
,

which satisfies the condition.

So, when y = 1, then x1 = x2 = 1, and:

Df−1 = Rf = [1; +∞) ∧ f−1(y) = 1−
√
y − 1 (y ≥ 1)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

.

Remark: Sketch the graphs of f, f−1 in the same Cartesian coordinate system. The
upper evaluations and the graphs can be easily done, by using the perfect square
form of f and f−1:

y = (x− 1)2 + 1 (x ≤ 1) ⇐⇒ x = 1−
√
y − 1 (y ≥ 1).
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Here are the graphs of f and f−1 in the same coordinate system:

4. Is the following function invertible, and if it is, give f−1 as well:

f(x) :=
1−
√
x

1 +
√
x

(x ∈ [0; +∞)).

Solution: Let x, t ∈ [0; +∞) and suppose that f(x) = f(t). In this case:

1−
√
x

1 +
√
x

=
1−
√
t

1 +
√
t
⇐⇒ (1−

√
x)·(1+

√
t) = (1−

√
t)·(1+

√
x) ⇐⇒

√
x =
√
t =⇒

=⇒ x = t,

which shows us that f is injective. What is Rf? Consider the following form of the
values f(x):

If x ∈ [0; +∞), then : f(x) =
1−
√
x

1 +
√
x

=
2− 1−

√
x

1 +
√
x

=
2

1 +
√
x
− 1 > −1 =⇒

=⇒ Rf ⊆ (−1; +∞).

For the reversed direction let y ∈ (−1; +∞) an arbitrary value and we are looking
for a value x ≥ 0, for which we have:

f(x) = y ⇐⇒ 2

1 +
√
x
− 1 = y ⇐⇒ 2

1 +
√
x

= y + 1 ⇐⇒ (y 6= −1) ⇐⇒

⇐⇒
√
x =

2

y + 1
− 1.

This last equation can be solved considering the previous condition y > −1 as well,
if:

2

y + 1
− 1 ≥ 0

∣∣∣ · (y + 1) > 0 ⇐⇒ 2 ≥ y + 1 ⇐⇒ y ≤ 1.
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We’ve got that:

∀ y ∈ (−1; 1] ∃ x =

(
2

y + 1
− 1

)2

∈ [0; +∞) : f(x) = y =⇒

=⇒ (−1; 1] ⊆ Rf .

Turning back to our previous condition Rf ⊆ (−1; +∞) we prove that Rf ⊂ (−1; 1]
is true as well. For this is enough for example to see that:

∀ x ∈ [0; +∞)
2

1 +
√
x
− 1 ≤ 1 ⇐⇒ ∀ x ∈ [0; +∞) : 0 ≤

√
x.

So finally:
Rf = (−1; 1].

The reversed function is:

Df−1 = Rf = (−1; 1] ∧ f−1(y) =

(
2

y + 1
− 1

)2

(y ∈ (−1; 1]).

2.1.1. Checking questions to the theory and its use

1. Define the image set f [C] of a set C by a function f .

2. Define the pre-image set f−1[D] of a set D by a function f .

3. When do we call a function injective?

4. Give the definition of the reversed function f−1 for an injective function f .

5. Consider the function
f(x) := 3x− 1 (x ∈ R).

Find the image set f [[−3; 4)].

6. Consider the function
f(x) := |x| (x ∈ R).

What is the image set f [(−2; 1]].

7. Consider the function
f(x) := 3x− 1 (x ∈ R).

Find f−1[[−1; 5)].

8. Consider the function
f(x) := |x| (x ∈ R).

Find f−1[(1; 7]].
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9. Consider the function
f(x) := lnx (x ∈ (0; +∞)).

Give f−1[(−1; 1)].

10. Consider the function
f(x) := x2 + x− 3 (x ∈ R).

Find the sets f [C] and f−1[C], if C := {−1}.

11. Consider the function
f(x) := 1− 4x (x ∈ R).

Is f invertible? Give f−1, if it is.

12. Consider the function

f(x) := 1− 2x− x2 (x ∈ (−∞;−1)).

Is f injective? Give f−1 , if it is.

13. Consider the function

f(x) := |x− 1|+ (x2 − 4x+ 4) (x ∈ R).

Is f injective?

14. Consider the function
f(x) := 2x − 1 (x ∈ R).

Is f invertible? Give f−1 if it is.

15. Consider the function

f(x) := ln (x− 1) (x ∈ (1; +∞)).

Is f invertible? Give f−1 if it is.

16. Consider the function
f(x) := cos x (x ∈ R).

Is f invertible? Give f−1 if it is.

17. Consider the function

f(x) :=
1

1 + e−x
(x ∈ R).

Is f invertible? Give f−1 if it is.

18. Consider the function

f(x) := x3 − 3x2 + 3x+ 2 (x ∈ R).

Is f invertible? Give f−1 if it is.
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2.2. Exercises

2.2.1. Exercises for class work

Image, reversed image, range of values

1. Consider the following functions f and sets B,C. Find sets f−1[B] and f [C]:

(a) f(x) := 2x+ 1 (x ∈ R); B := [1; 2); C := (1; 2];

(b) f(x) := 2−
√
x (x ∈ [0; +∞)); B := [−1; 1]; C := [2; 9];

(c) f(x) := |1− |x− 2|| (x ∈ [−1; 4]); B := [1/4; 1/2); C := [−1; 2];

(d) f(x) := (
√

2)2x+1 (x ∈ R); B := [
√

2; 2); C := [−1; 1);

(e) f(x) :=
2− x
1− x

(1 6= x ∈ R); B := [1/2; +∞); C := [0; 1) ∪ (1; +∞);

(f) f(x) := [sin x] (x ∈ R); B := [−1; 0]; C := [−1; 0].

2. Give the range of values Rf for the following functions f :

(a) f(x) := 3x+ 1 (x ∈ [−2; 1]) ;

(b) f(x) := 1− 2x (−1 ≤ x < 3) ;

(c) f(x) := |x− 2| (x ∈ [−1; 4]) .

3. Give the range of values Rf for the following functions f :

(a) f(x) := x2 − 6x+ 5 (x ∈ R);

(b) f(x) := x2 − 6x+ 5 (−1 ≤ x ≤ 6);

(c) f(x) := 1− x2 (−2 ≤ x ≤ 3).

4. Consider the function f : R −→ R f(x) =
x2 − 4x+ 3

x2 − 2x+ 3
(x ∈ R). Give the range of

values Rf for f .

5. Consider the function f : R −→ R f(x) =
x2 + ax+ 1

x2 − x+ 1
(x ∈ R), where a ∈ R is a

real parameter. For what values of a is the condition Rf ⊂ [−3; 2] satisfied?
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6. Consider the following function f , where m ∈ R is a real parameter:

f(x) :=


1− x , if x ∈ (−∞;−1);
1− x2 , if x ∈ [−1; 1];
1 + x , if x ∈ (1; +∞).

Find f−1[(m; +∞)] depending on m.

invertible functions, the inverse function

7. Consider the function f :

f(x) :=

{ x+ 1

x− 1
, if x ∈ (1; +∞);

1, if x ∈ (−∞; 1].

Give the function g(x) := f(x + 1) − f(x − 1) (x ∈ R) and the sets g[[−1; 3]] and
g−1[[−1; 2]]. Is g invertible? Prove that the function g|(0;+∞) is invertible and give
its inverse!

8. Are the following functions invertible? Give f−1 if it exists (by giving Df−1 ;Rf−1

and f−1(x) for all x ∈ Df−1):

(a) f(x) := 2x− 1 (x ∈ R);

(b) f(x) := x2 − 2x+ 2 (x ∈ (−∞; 1]);

(c) f(x) := 1−
√

2− x x ∈ (−∞; 2];

(d) f(x) :=
x+ 1

x− 1
(x ∈ (1; +∞));

(e) f(x) :=
1

1 + x3
(x ∈ R \ {−1});

(f) f(x) := |x− 1|+ (x+ 2)2 (x ∈ R);

(g) f(x) :=
2x

1 + x2
(x ∈ R);

(h) f(x) :=
ex − e−x

2
(x ∈ R);

(i) f(x) := x · |x|+ 2x (x ∈ R).

2.2.2. Homework and more exercises to practice

Image, reversed image, range of values
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1. For the following functions f and sets B,C give f−1[B] and f [C] :

(a) f(x) := 4− 3x (x ∈ R); B := [−1; 2); C := (−1; 2];

(b) f(x) := 1 +
√

1− x (x ∈ (−∞; 1]); B := [1/2; 3]; C := [0; 1/2];

(c) f(x) := |1− x2| (x ∈ R); B := [−1; 1/2]; C := [−2; 3];

(d) f(x) := 31/2−2x (x ∈ R); B := (1/27; 3]; C := [−1/4; 1/4);

(e) f(x) :=
x

1 + x
(−1 6= x ∈ R); B := [0; +∞); C := (−∞;−1) ∪ (−1; 1];

(f) f(x) := [cos x] (x ∈ R); B := [0; 1]; C := [0;π].

2. Give Rf for the following functions:

(a) f(x) := −x2 − x− 1 (x ∈ R);

(b) f(x) := (x− 1) · (3− x) (1 ≤ x ≤ 4);

(c) f(x) := x2 − 10x+ 27 (x ∈ [0; 6]).

3. Give the range of values for the following functions:

(a) f(x) := 2x−
√

2 (x ∈ [−
√

2;
√

2]);

(b) f(x) := 1 + 3 ·
√
|x− 2| (x ∈ R).

(c) f(x) :=
√

4x2 − 1

(
1

2
≤ x < 1

)
;

(d) f(x) := lg(2x+ 1)

(
−1

4
≤ x <

9

2

)
;

(e) f(x) :=
2x

1 + x2
(x ∈ R);

(f) f(x) := 4x − 2x + 1 (x ∈ R);

(g) f(x) := (sin x+ cosx)2 (x ∈ R);

(h) f(x) := [sin x] + [cos x] (x ∈ [0; 2π]).

4. For what parameters k ∈ R will be the range of values Rf equal to the interval [0; 5],
if:

f(x) :=
√
x2 + 4x+ k (|x| ≤ 3)?

5. Consider the function f : R −→ R f(x) =
x2 − 2x− 3

x2 + x+ 1
(x ∈ R). Find the set Rf .

6. Consider the function f : R −→ R f(x) =
3x2 + ax− 1

x2 + 1
(x ∈ R), where a ∈ R is a

real parameter. Find those values of a, for which we have: Rf = [−3; 5].



2.2. Exercises 73

7. Consider the function:

f(x) :=


x2, if x ∈ (−∞; 0);
sinx, if x ∈ [0; 2π];
2π − x, if x ∈ (2π; +∞).

Find the following sets:

f−1
[
[−1; 1]

]
; f
[
[−1; π]

]
; f−1

[
[0; +∞)

]
; f−1

[
(−∞;−1]

]
;

f
[
[π; 3π]

]
; f−1

[
{−1; 1}

]
; f−1

[
{−1/2}

]
.

8. Find the values of the real parameter m so that

f−1
[
(−∞; 0)

]
= R

for the function:
f(x) := (m+ 1)x2 + 2mx+ 1 (x ∈ R).

Invertible functions, the inverse function

9. Check whether the following functions are invertible or not, and in case when they
are find f−1 (by giving Df−1 ;Rf−1 and f−1(x) for all x ∈ Df−1):

(a) f(x) := 2− 5x (x ∈ R);

(b) f(x) := 1− 2x− x2 (x ∈ [−1; +∞));

(c) f(x) := x3 − x (x ∈ R);

(d) f(x) :=
x

1 + |x|
(x ∈ R);

(e) f(x) :=
√
x− 2− 1 (x ∈ [2; +∞));

(f) f(x) :=
√
x2 + 2x+ 5 (x ∈ R);

(g) f(x) :=
√
x2 + 2x+ 5 (x ∈ (−1; +∞));

(h) f(x) :=
√
x+ 1−

√
x (x ∈ [0; +∞));

(i) f(x) :=
1

1 + 3
√
x

(x ∈ R \ {−1});

(j) f(x) := x · sinx (x ∈ (−π; π/2]);

(k) f(x) :=
x2 + 3x

x2 − 2x
(x ∈ R \ {0; 2});

(l) f(x) :=
ex + e−x

2
(x ∈ (0; +∞));
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(m) f(x) := x · |x| − 2x− 8 (x ∈ R).

10. Consider the function f(x) := ax+ b (x ∈ R) where a and b real parameters. Find
the values of a, b so that f is invertible and f = f−1.

11. Prove that if a, b are real parameters so that ab 6= −4, then the following function
f is invertible and f = f−1:

f(x) :=
2x+ a

bx− 2
(2/b 6= x ∈ R).



3. Bounded functions, extremal values,
limits at +∞
3.1. Theory

Bounded functions

Definition : We say that a function f ∈ R −→ R:

1. is bounded from below, if the range of values Rf is bounded from below, which means
that:

∃ k ∈ R : f(x) ≥ k (∀ x ∈ Df );

2. is bounded from above, if the range of values Rf is bounded from above, which means
that:

∃K ∈ R : f(x) ≤ K (∀ x ∈ Df );

3. is bounded, if the range of values Rf is bounded (from below and from above as
well), so

∃ k,K ∈ R : k ≤ f(x) ≤ K (∀ x ∈ Df ).

Remarks:

1. The constants k and K are called the lower and upper bounds of f .

2. A given real-real type function f is not bounded, if it is not bounded from above or
from below or both.

Examples:

1. Consider the function
f(x) := x2 (x ∈ R).

It is easy to see that:
∀ x ∈ R : 0 ≤ f(x) = x2,

so f is bounded below and 0 is a lower bound (it is its minimal value as well). We
prove that f is not bounded from above. Indeed if we suppose, that f has an upper
bound, then:

∃K ∈ [0; +∞) : 0 ≤ x2 ≤ K (∀ x ∈ R),

what is false for: x =
√
K + 1 ∈ R.
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Here is the graph of our normal-parabola:

2. If

f(x) :=
1

x
(x ∈ (0; 1))

we can prove that:

∀ x ∈ (0; 1) : 1 <
1

x
,

but there is no such a positive number K > 0 for which we have:

1

x
≤ K (x ∈ (0; 1)),

because for such a number K the following number x =
1

K + 1
∈ (0; 1) fails to

satisfy the upper inequality. We can also observe, that here 1 is a lower bound, but
it’s not a minimal value of f . So this function is bounded from below, but is not
bounded from above.
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Here is the graph of the normal-hyperbola for x > 0:

3. Consider the function
f(x) := cos x (x ∈ R).

In this case:
∀ x ∈ R : −1 ≤ cosx ≤ 1,

so f is bounded. We know that −1 and +1 are the minimal and maximal values of
f . They are at the same time lower and uper bounds as well.

4. If
f(x) := lnx (x ∈ (0; 1)),

then we have:
∀ x ∈ (0; 1) : −∞ < lnx < 0,

so f is bounded from above. In this case we don’t have a lower bound k < 0, because
if we would have one, then:

∀ x ∈ (0; 1) : k < lnx < 0,

and the number x := ek−1 ∈ (0; 1) would give a contradiction to us.
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Here are the graphs of the cosine-function (the purple one) and the ln (natural
logarithm-)function (the green one) on their widest possible domain:

Extremal values of a function

Definition : We say that a real-real function f ∈ R −→ R:

1. has a minimal value, if the set Rf has a smallest/minimal value, so:

∃ a ∈ Df : f(x) ≥ f(a) (∀ x ∈ Df );

2. has a maximal value, if the set Rf has a maximal value, so:

∃ b ∈ Df : f(x) ≤ f(b) (∀ x ∈ Df ).

We say that a and b are the minimum place and maximum place of f and f(a), f(b) are
the corresponding minimal and maximal values.

Remark:

1. If a real−real function f has extremal value/values (minimal value, maximal value,
or both), then these values can be taken in many places. For example the well-known
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sin and cos functions take their maximal value of 1 and their minimal value of −1
at infinitely many points. Similarly the constant function

f(x) := 3 (x ∈ R)

takes its minimal and maximal value of 3 at all real numbers.

Examples: Consider the following functions f and find their minimal and maximal values
(if they exist). Also find the places, where these values are taken.

1. Let f(x) := x2 (x ∈ [−1; 3]). It is obvious, that:

∀ x ∈ [0; 3] : f(0) = 0 ≤ x2 ≤ 9 = f(3),

and
∀ x ∈ [−1; 0] : −1 ≤ x ≤ 0 ⇐⇒ 0 ≤ −x ≤ 1 =⇒ 0 ≤ x2 ≤ 1 =⇒

=⇒ f(x) ∈ [0; 1].

We can conclude:

∀ x ∈ [−1; 3] : f(0) = 0 ≤ x2 ≤ 9 = f(3),

so the minimal value is y = 0 at x = 0 and the maximal value is y = 9 at x = 3.

2. Let f(x) :=
√
x+ 1−

√
x (x ∈ [0; 1]). First we make the following steps:

f(x) =
√
x+ 1−

√
x =

1√
x+ 1 +

√
x

(x ∈ [0; 1]).

We can conclude now, that f takes the greatest value when x is the smallest possible
and conversely:

∀ x ∈ [0; 1] : f(1) =
1√

2 + 1
≤ 1√

x+ 1 +
√
x

= f(x) ≤ 1
√

0 + 1 +
√

0
= 1 = f(0),

so the minimal value is y =
√

2−1 at x = 1 and the maximal value is y = 1 at x = 0.
See the graph of this function (the orange one) on the next image (it is represented
on its maximal domain, which is [0; +∞) .

3. Let f(x) :=
x

1 + x2
(x ∈ R). Observe that:

∀ x ∈ R : f(−1) = −1

2
≤ x

1 + x2
≤ 1

2
= f(1),

since:

−1

2
≤ x

1 + x2
≤ 1

2
⇐⇒ −1− x2 ≤ 2x ≤ 1 + x2 ⇐⇒

⇐⇒ 0 ≤ (x+ 1)2 ∧ 0 ≤ (x− 1)2 (∀ x ∈ R).

So the maximal value of f is now y =
1

2
at x = 1 and the minimal value is y = −1

2
at x = −1. We can also see that f is an odd function, so its graph is symmetrical on
point (0; 0). In such cases it is enough to investigate our questions for nonnegative
x values of the domain. See the graph of this function (the blue one) on the next
image.
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Here are the graphs of the given functions in point 2. and 3. respectively (on their
maximal domain of definiton):

Order preserving estimates, limits at +∞

In this chapter we want to investigate the behaviour of some real-to-real functions for
great enough x values of the domain Df . We want to define the concept of a limit of a
function at +∞. We only consider in this book the three possible cases, namely: finite
number/-∞/+∞ as a limit of f at +∞.

For the rest of this chapter we assume that the given functions f ∈ R → R have the
following property:

∀ P > 0 : (P ; +∞) ∩Df 6= ∅.
In other words we say that +∞ is an accumulation-point of the set Df (in notation
+∞ ∈ D′f ). A complete definition of this notion will come in your Analysis courses later.

Def: (Infinite limit at +∞) Let f ∈ R −→ R be a real-to-real function and +∞ ∈ D′f .
We say that f has the limit +∞ at +∞, in notation

lim
x→+∞

f(x) = +∞,

if the following property is fulfilled:

∀ P > 0 ∃K > 0 ∀ x ∈ (K; +∞) ∩Df : f(x) > P.

Examples:
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1. Prove by definition that: lim
x→+∞

x2 = +∞.

Solution:

• What is the definition? The following statement:

∀ P > 0 ∃K > 0 : ∀ x ∈ (K; +∞) ∩Df : x2 > P.

Fix a number P > 0 and assume that x > 0 is also valid. Check when is:

f(x) = x2 > P > 0.

In this case it is easy to solve it. Since P is a positive number, we can take its square
root, so we have:

x >
√
P or x < −

√
P .

Since x > 0 was assumed, we choose as solution only the x >
√
P case.

So K :=
√
P + 1 > 0 is a (possible) good lower bound for the definition:

∀ P > 0 ∃K :=
√
P + 1 > 0 : ∀ x ∈ (K; +∞) ∩ R = (K; +∞) : x2 > P.

Examine the meaning of the definition on the following picture:

2. Prove by definition that: lim
x→+∞

(2x5 − 7x4 + 3x3 + 11x− 37) = +∞.

Solution:

• We have to prove the following statement:

∀ P > 0 ∃K > 0 : ∀ x ∈ (K; +∞) ∩Df : 2x5 − 7x4 + 3x3 + 11x− 37 > P.

Fix a number P > 0 and check when is:

f(x) = 2x5 − 7x4 + 3x3 + 11x− 37 > P.
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In this case we cannot solve it, so the usual technic is to use the OPL estimations.
Assume x ≥ 1 and:

f(x) = 2x5−7x4+3x3+11x−37 ≥ 2x5−7x4−37 = 2x5−(7x4+37) ≥ (for x ≥ 1) ≥

≥ 2x5 − 44x4 = x5 + x5 − 44x4 = x5 + x4 · (x− 44) ≥ (if x ≥ 44) ≥ x5 > (?) > P.

Now its easy to solve:
x5 > P > 0 ⇐⇒ x >

5
√
P .

Since we need x ≥ 44 as well, then K := 5
√
P+44 > 0 will be good for the definition.

∀ P > 0 ∃K :=
5
√
P + 44 > 0 : ∀ x ∈ (K; +∞) ∩ R = (K; +∞) :

2x5 − 7x4 + 3x3 + 11x− 37 > P.

3. Prove by definition that: lim
x→+∞

3x4 + x2 − 3x+ 5

2x3 + 2x+ 1
= +∞.

Solution:

• Let’s see first what does this limit mean? Consider the given polynomials in the
numerator and denominator, and assume that x > 0:

P (x) := 3x4 +x2−3x+5 = x4 · (3+1/x2−3/x3 +5/x4)→ (+∞)4 · (3+0−0+0) =

= (+∞) · 3 = +∞ (as x→ +∞).

So as x is a great number, then P (x) is also great, or as x gets close to +∞, then
the values P (x) also gets close to +∞. In the same manner:

Q(x) := 2x3 +2x+1 = x3 ·(2+2/x+1/x3)→ (+∞)3 ·(2+0+0) = (+∞) ·2 = +∞,

as x→ +∞. Here we also can say that as x ≈ +∞ implies Q(x) ≈ +∞.

But what happens with our fraction as x ≈ +∞?

f(x) =
P (x)

Q(x)
=

3x4 + x2 − 3x+ 5

2x3 + 2x+ 1
≈ +∞

+∞
.

This last approximation cannot be defined, we will call it a critical limit, and when-
ever this case is on, we factor out the dominant terms, so:

lim
x→+∞

3x4 + x2 − 3x+ 5

2x3 + 2x+ 1
= lim

x→+∞

x4 · (3 + 1/x2 − 3/x3 + 5/x4)

x3 · (2 + 2/x2 + 1/x3)
=

= lim
x→+∞

(x) · lim
x→+∞

3 + 1/x2 − 3/x3 + 5/x4

2 + 2/x2 + 1/x3
= (+∞) · 3

2
= +∞.

This process will be the way to evaluate limits of rational functions at +∞, using
the corresponding theorems of calculus. Now the limit is given, and we have to prove
it by definition.
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• What do we have to prove here by definition? The following statement:

∀ P > 0 ∃K > 0 ∀ x ∈ (K; +∞) ∩Df :
3x4 + x2 − 3x+ 5

2x3 + 2x+ 1
> P.

We start by fixing a P > 0 number. (This is the error to approximate the limit
+∞, so how ”close” do we want to get with f(x) to infinity: we want to fulfill
f(x) > P , when x is going to be great enough.) Suppose now that x > 0. (This is a
so called ”initial restriction”. The domain Df is the set of all real numbers, except
the zeros of the denominator. Many times we cannot evaluate them, but no problem,
we will choose a positive K great enough number, so that when x > K, then the
denominator will also not be zero. In our case Q(x) = 2x3 + 2x+ 1 > 0, when x > 0

is true.) We continue by the usual OPL estimations (f(x) ≥ ... ≥ C · x
4

x3
= C · x):

f(x) =
3x4 + x2 − 3x+ 5

2x3 + 2x+ 1
≥ (if x ≥ 1) ≥ 3x4 − 3x

2x3 + 2x+ 1
≥ (if x ≥ 1) ≥

≥ 2x4 + x · (x3 − 3)

2x3 + 2x3 + x3
≥ (if x ≥ 2) ≥ 2x4

5x3
=

2

5
x > (?) > P.

• At the end, now we can answer when is

2

5
x > P ⇐⇒ x >

5P

2
.

So if we choose K :=
5P

2
+ 2 > 0, then the statement is fulfilled.

4. Prove by definition that: lim
x→+∞

√
x− 11 = +∞.

Solution:

• We have to prove the following statement:

∀ P > 0 ∃K > 0 : ∀ x ∈ (K; +∞) ∩Df = [11; +∞) :
√
x− 11 > P.

Fix a P > 0 number. Assume x ≥ 11 and:

f(x) =
√
x− 11 > P > 0 ⇐⇒ x− 11 > P 2 ⇐⇒ x > P 2 + 11.

We can conclude, that K := P 2 + 11 > 0 will be good for the definition:

∀ P > 0 ∃K := P 2 + 11 > 0 : ∀ x ∈ (K; +∞) ∩ [11; +∞) = (P 2 + 11; +∞) :

√
x− 11 > P.
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On the following image one can visually see the given proof by definition:

Def: (Finite limit at +∞) Assume f ∈ R −→ R is a real-to -real function again and +∞
is an accumulation point of Df . We say that f has a finite limit L ∈ R at +∞, in notation

lim
x→+∞

f(x) = L,

if the following logical statement is true:

∀ ε > 0 ∃K > 0 ∀ x ∈ (K; +∞) ∩Df : |f(x)− L| < ε.

1. Prove by definition, that: lim
x→+∞

x2 − x+ 1

2x2 + 5x+ 31
=

1

2
.

Solution:

• We need to prove the following statement:

∀ ε > 0 ∃K > 0 ∀ x ∈ (K; +∞) ∩Df :
∣∣∣ x2 − x+ 1

2x2 + 5x+ 31
− 1

2

∣∣∣ < ε.

where Df = {x ∈ R | 2x2 + 5x+ 31 6= 0} = R.

Fix an ε > 0 number, and evaluate |f(x)− L|:

|f(x)− 1/2| =
∣∣∣ x2 + 4x+ 1

2x2 + 5x+ 31
− 1

2

∣∣∣ =
∣∣∣2x2 + 8x+ 2− (2x2 + 5x+ 31)

4x2 + 10x+ 62

∣∣∣ =
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=
∣∣∣ 3x− 29

4x2 + 10x+ 62

∣∣∣ =
|3x− 29|

|4x2 + 10x+ 62|
≤ (4) ≤ |3x|+ | − 29|

4x2 + 10x+ 62
=

3|x|+ 29

4x2 + 10x+ 62
.

Assume, that x ≥ 1:

|f(x)−1/2| ≤ 3|x|+ 29

4x2 + 10x+ 62
=

3x+ 29

4x2 + 10x+ 62
≤ 3x+ 29x

4x2
=

32x

4x2
=

8

x
< ε ⇐⇒

⇐⇒ x >
8

ε
.

So if we choose K :=
8

ε
+ 1 > 0 and x > K then our definition is fulfilled.

2. Prove by definition, that:

lim
x→+∞

−2x3 − 15x2 + x− 12

5x3 + x2 + 9x+ 1
= −2

5
.

Solution:

• We need to prove the following statement:

∀ ε > 0 ∃K > 0 : ∀ x ∈ (K; +∞) ∩Df :
∣∣∣−2x3 − 15x2 + x− 12

5x3 + x2 + 9x+ 1
+

2

5

∣∣∣ < ε.

where Df = {x ∈ R | 5x3 + x2 + 9x+ 1 6= 0}.

Fix an ε > 0 number, assume x ≥ 1, and evaluate |f(x)− L|:

|f(x)− (−2/5)| =
∣∣∣−2x3 − 15x2 + x− 12

5x3 + x2 + 9x+ 1
+

2

5

∣∣∣ =

=
∣∣∣−10x3 − 75x2 + 5x− 60 + 10x3 + 2x2 + 18x+ 2

5 · (5x3 + x2 + 9x+ 1)

∣∣∣ =
∣∣∣ −73x2 + 23x− 58

5 · (5x3 + x2 + 9x+ 1)

∣∣∣ ≤ (4) ≤

≤ | − 73x2|+ |23x|+ | − 58|
25x3 + 5x2 + 45x+ 5

=
73x2 + 23|x|+ 58

25x3 + 5x2 + 45x+ 5
=

73x2 + 23x+ 58

25x3 + 5x2 + 45x+ 5
≤

≤ (if x ≥ 1) ≤ 73x2 + 23x2 + 58x2

25x3
=

154

25x
< ε ⇐⇒ x >

154

25ε
.

So if we choose K :=
154

25ε
+ 1 > 0, then our definition is fulfilled.
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Follow the steps of this proof on this picture:

3. Prove by definition, that:

lim
x→+∞

(
√
x+ 4−

√
x+ 1) = 0.

Solution:

• We need to prove the following statement:

∀ ε > 0 ∃K > 0 : ∀ x ∈ (K; +∞) ∩Df :
∣∣∣(√x+ 4−

√
x+ 1)− 0

∣∣∣ < ε.

where Df = [−1; +∞).

Fix an ε > 0 number, assume x ≥ 1, and evaluate |f(x)− L|:

|f(x)− 0| =
∣∣∣√x+ 4−

√
x+ 1

∣∣∣ =
√
x+ 4−

√
x+ 1 =

=
(
√
x+ 4−

√
x+ 1) · (

√
x+ 4 +

√
x+ 1)√

x+ 4 +
√
x+ 1

=
(x+ 4)− (x+ 1)

(
√
x+ 4 +

√
x+ 1)

=
3√

x+ 4 +
√
x+ 1

.

When is the last expression small enough (< ε)?

|f(x)− 0| = 3√
x+ 4 +

√
x+ 1

≤ 3√
x+ 1

≤ (if x ≥ 1) ≤ 3√
x
< ε ⇐⇒

⇐⇒
√
x >

3

ε
> 0 ⇐⇒ x >

9

ε2
.

So if we choose K :=
9

ε2
+ 1 > 0, then our definition is fulfilled.
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4. Prove by definition, that:

lim
x→+∞

sin(2x)

x
= 0.

Solution:

• We need to prove the following statement:

∀ ε > 0 ∃K > 0 : ∀ x ∈ (K; +∞) ∩Df :
∣∣∣sin(2x)

x
− 0
∣∣∣ < ε.

where Df = R \ {0}.

Fix an ε > 0 number, assume x ≥ 1, and evaluate |f(x)− L|:

|f(x)− 0| =
∣∣∣sin(2x)

x

∣∣∣ =
| sin(2x)|
|x|

≤ 1

|x|
= (if x ≥ 1) =

1

x
< ε ⇐⇒ x >

1

ε
.

So, we have:

∀ ε > 0 ∃K :=
1

ε
+ 1 > 0 : ∀ x ∈ (K; +∞) ∩ R \ {0} = (K; +∞) :∣∣∣sin(2x)

x
− 0
∣∣∣ ≤ 1

x
<

1

K
< ε.

Follow the steps of this proof on this picture:

Def: (Negative infinity as limit at +∞) Suppose f ∈ R −→ R is a real-to-real function
with +∞ ∈ D′f . We state that f has limit −∞ at +∞, in notation

lim
x→+∞

f(x) = −∞,

when the following statement is true:

∀ p < 0 ∃K > 0 : ∀ x ∈ (K; +∞) ∩Df : f(x) < p.
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1. Prove by definition that: lim
x→+∞

(2−
√
x− 5) = −∞.

Solution:

• We have to prove the following statement:

∀ p < 0 ∃K > 0 ∀ x ∈ (K; +∞) ∩ [5; +∞) : 2−
√
x− 5 < p.

Fix a number p < 0, and make sure, that for all great enough x values:

f(x) = 2−
√

5− x < p | · (−1) ⇐⇒ −f(x) =
√
x− 5− 2 > −p (> 0).

Now we can use the technik seen for the +∞ case, so:

−f(x) =
√
x− 5− 2 ≥ −p ⇐⇒

√
x− 5 > 2− p > 0 ekvi x > (2− p)2 + 5.

Since x ≥ 5 is the domain, we can choose K := (2− p)2 + 6 > 0 to be good for the
definition, so:

∀ p < 0 ∃K := (2− p)2 + 6 > 0 : ∀ x ∈ (K; +∞) ∩ [5; +∞) = (K; +∞) :

√
x− 5− 2 > −p ⇐⇒ 2−

√
x− 5 < p.

Check this proof on the following picture:

2. Prove by definition that: lim
x→+∞

(−2x3 + x2 + 28x− 111) = −∞.

Solution:

• We have to prove the following statement:

∀ p < 0 ∃K > 0 ∀ x ∈ (K; +∞) ∩Df = R : −2x3 + x2 + 28x− 111 < p.
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Fix a p < 0 number, and make sure, that for all great enough x values:

f(x) = −2x3+x2+28x−111 < p |·(−1) ⇐⇒ −f(x) = 2x3−x2−28x+111 > −p (> 0).

Now we can use the technik seen for the +∞ case, so:

−f(x) = 2x3 − x2 − 28x+ 111 ≥ 2x3 − (x2 + 29x) ≥ (for x ≥ 1) ≥ 2x3 − 29x2 =

= x3 + x3 − 29x2 = x3 + x2 · (x− 29) ≥ (if x ≥ 29) ≥ x3 > (?) > −p.

Solving this last inequality:

x3 > −p > 0 ⇐⇒ x > 3
√
−p.

Since we need x ≥ 29 as well, then K := 3
√
−p + 29 > 0 will be good for the

definition, so:

∀ p < 0 ∃K := 3
√
−p+ 29 > 0 : ∀ x ∈ (K; +∞) ∩ R = (K; +∞) :

2x3 − x2 − 28x+ 111 > −p ⇐⇒ −2x3 + x2 + 28x− 111 < p.

3. Prove by definition, that: lim
x→+∞

−2x7 + 3x5 − x3 + 2x4 + x+ 5

3x5 + 4x2 + x+ 3
= −∞.

Solution:

• We need to prove the following statement:

∀ p < 0 ∃K > 0 ∀ x ∈ (K; +∞) ∩Df :
−2x7 + 3x5 − x3 + 2x4 + x+ 5

3x5 + 4x2 + x+ 3
< p,

where Df = {x ∈ R | 3x5 + 4x2 + x+ 3 6= 0}.

Fix a p < 0 number. (This is the error to approximate the limit −∞, so how ”close”
do we want to get with values f(x) to −∞. We want to assure f(x) < p, when x is
great enough.)

−2x7 + 3x5 − x3 + 2x4 + x+ 5

3x5 + 4x2 + x+ 3
< p | · (−1) ⇐⇒

⇐⇒ +2x7 − 3x5 + x3 − 2x4 − x− 5

3x5 + 4x2 + x+ 3
> −p =: P > 0.

Assume, that x > 0. In this case Q(x) = 3x5 + 4x2 + x + 3 > 0 is also true (so the
denominator is not zero). We do the usual OPL estimations (for this all the main
coefficients must be positive numbers).

−f(x) ≥ ... ≥ C · 2x7

3x5
= C · x2.

−f(x) =
2x7 − 3x5 + x3 − 2x4 − x− 5

x5 + 4x2 + x+ 3
≥ (if x ≥ 1) ≥ 2x7 − (3x5 + 2x4 + x+ 5)

3x5 + 4x2 + x+ 3
≥
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≥ (if x ≥ 1) ≥ 2x7 − 11x5

3x5 + 4x5 + x5 + 3x5
=
x7 + x7 − 11x5

11x5
=

=
x7 + x5 · (x2 − 11)

11x5
≥ (if x ≥ 4) ≥ x7

11x5
=

1

11
x2 > (?) > −p.

• Solve now:

1

11
· x2 > −p ⇐⇒ x2 > −11p > 0 ⇐⇒ (x < −

√
−11p) or (x >

√
−11p > 0).

So if we choose K :=
√
−11p+ 4 > 0, then our definition is fulfilled.

3.1.1. Checking questions to the theory and its use

1. When do we say that a real-to-real function has a maximal value?

2. When do we say that a real-to-real function has a minimal value?

3. When do we say that a real-to-real function is bounded from below?

4. When do we say that a real-to-real function is bounded from above?

5. When do we say that a real-to-real function is bounded?

6. Give the logical statement for the definition to a function not to be bounded from
above.

7. Give the definition of the +∞ limit of a function at +∞.

8. Give the defintion of lim
x→+∞

f(x) = 2.

9. Give the definition of lim
x→+∞

f(x) = −∞.

10. Is there any function f : R −→ R, which has minimal and maximal values at every
point of its domain?

11. Give an example of a function f : R −→ R which has a lower bound, but it is not
bounded from above.

12. Give an example of a function f : R −→ R which has a lower bound, it has no
minimal value and it is not bounded from above.

13. Give an example of a function f : (0; 1) −→ R which is not bounded below, but it
is bounded from above.

14. Is there a minimal value and place for f(x) := x2 +

(
1

x

)2

(x ∈ R \ {0})?

15. Prove by definition that lim
x→+∞

x4 + 1

x2
= +∞.
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16. Prove by definition that lim
x→+∞

√
x+ 1√
x

= 1.

17. Prove that the function f(x) :=
x4 + 1

x2
(x ∈ R \ {0}) is not bounded from above.

18. Give an example of a function f : R −→ R which has no upper and lower bounds.

19. Is it true: when a function is bounded from above it also has a maximal value? If
not, give an example.

20. Is it true: when a function has a minimal value then it is also bounded below?

21. Does lim
x→+∞

sinx exist?

22. Does lim
x→+∞

sinx

x
exist?

3.2. Exercises

3.2.1. Exercises for class work

Bounded functions, minimal and maximal values

1. Find the greatest and the least values of the following functions:

(a) f(x) := x2 − 4x+ 3 (x ∈ R) ;

(b) f(x) := x2 − 4x+ 3

(
1

2
≤ x ≤ 3

)
.

2. Consider a, b ∈ R and P (x) := x2 + ax+ b (x ∈ R). Find a, b so that

P (3) = min{P (x) : x ∈ R} = −2 .

3. With a 24 meters long fence we would like to fence in (enclose) a rectangular garden
so that at one side of this area is the wall of the house (so no fence needed along
this side). Of what sizes should be the sides of this rectangle if we want the enclosed
area to be of maximal value.

4. Find the area of the largest rectangle that can be inscribed in a right trianle with
legs of lengths 10 cm and 15 cm if two sides of the rectangle lie along the legs of the
triangle.
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5. Examine the following functions regarding boundedness, and mnimal/maximal val-
ues:

(a) f(x) :=
3x2 + 7

9x2 + 3
(x ∈ [1; +∞)) ;

(b) f(n) :=
10n+ 7

15n+ 12
(n ∈ N);

(c) f(x) :=
1− 3

√
x

1 + 3
√
x

(x ∈ [4; +∞));

(d) x(n) := xn :=
2n+1 + 2

3 · 2n + 1
(n ∈ N);

(e) f(x) :=
x2 + 2√
x2 + 1

(x ∈ R);

(f) f(x) :=
sin2 x− sinx cosx+ cos2 x

sin2 x+ sinx cosx+ cos2 x
(x ∈ (0; π/2));

(g) f(x) =
√

3 · sinx+ cosx (x ∈ R) .

6. Find the greatest and the least values of the function

f(x) :=
x4 + 1

x2 + 1
(x ∈ R)

and also give the points where f takes these extermal values.

Estimates of functions, limits at +∞

7. Consider the function f(x) :=
√
x (x ∈ [0; +∞)).

a) Find a number K > 0 so that for all numbers x > K from the domain of definition
of f we have:

f(x) > 1000 .

b) Is the following statement true:

∀ P > 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : f(x) > P ?

c) Give the negation of the upper statement.

d) Is it true that
lim

x→+∞

√
x = +∞?

8. Consider the function f(x) := 1− x2 (x ∈ R).

a) Give a number K > 0 so that for all numbers x > K from Df to have:

f(x) < −999 .
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b) Is the following statement true:

∀ p < 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : f(x) < p ?

c) Give the negation of the upper statement.

d) Is it true, that

lim
x→+∞

(1− x2) = −∞?

9. Let f(x) :=
x4 + 1

x2 + 1
(x ∈ R) be a function.

a) Give such a K > 0 so that for all x > K from the domain of f to have:

f(x) > 1000 .

b) Is the following statement true:

∀ P > 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : f(x) > P ?

c) Negate statement from point b).

d) Prove that:

lim
x→+∞

x4 + 1

x2 + 1
= +∞.

10. Consider the function f(x) :=
x2 + 1

3x2 − 1

(
x ∈ R \ {±1/

√
3}
)

.

a) Give such a number K > 0 so that for all x > K from Df to have:∣∣∣f(x)− 1

3

∣∣∣ < 1

600
.

b) Is the following statement true:

∀ ε > 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df :
∣∣∣f(x)− 1

3

∣∣∣ < ε ?

c) Negate the upper statement.

d) Evaluate by definition

lim
x→+∞

x2 + 1

3x2 − 1
.
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11. Consider the function f(x) :=
x3 + 1

1− x
(x ∈ R \ {1}).

a) Give a number K > 0 (if it exists), so that for all x > K from Df to have:

f(x) < −1000.

b) Is it true that:

∀ p < 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : f(x) < p ?

c) Negate the statement from point b).

d) Find

lim
x→+∞

x3 + 1

1− x
using the definition.

12. Prove by definition that: lim
x→+∞

x4 − 2x3 + x2 + 7

x3 + x+ 1
= +∞.

13. Prove by definition that: lim
x→+∞

2x3 − x2 + 3

x3 + 2x− 5
= 2.

14. Prove by definition that: lim
x→+∞

x3 + x2 − 2x− 3

9− 4x2
= −∞.

15. Prove by definition that: lim
x→+∞

2 cosx

x
= 0.

16. Prove by definition that: lim
x→+∞

√
x2 − x+ 11 = +∞.

17. Prove by definition that: lim
x→+∞

(
√

2x+ 1−
√

2x− 1) = 0.

18. Evaluate the following limit, and then prove by definition your statement:

lim
x→+∞

(
√
x2 + x− x).

3.2.2. Homework and more exercises to practice

Bounded functions, extremal values

1. Find the extremal values of f for:

(a) f(x) := x2 + x− 6 (x ∈ R) ;

(b) f(x) := x2 + x− 6 (x ∈ [−1; 3]);
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(c) f(x) := −2− 2x− x2 (x ∈ R);

(d) f(x) := −2− 2x− x2 (x ∈ (−∞; 0]);

(e) f(x) := −2− 2x− x2 (x ∈ [−1/2; 2]).

2. Find parameters a, b ∈ R so that for the polynomial:

P (x) := −x2 + ax+ b (x ∈ R)

to have:
P (−1) = max{P (x) | x ∈ R} = 3.

3. Find the right triangle with maximal area so that the sum of its legs is 12 cm.

4. Consider a 20m long segment AB. Find a point C between A and B so that if we
consider two half circles of diameter AC and CB the sum of the areas of these half
circles to be minimal.

5. Which cylinder has the maximal volume from all the cylinders inscribed into a given
cone?

6. Examine the following functions regarding extemal values and boundedness:

(a) f(x) :=
3(x− 1)2 + 7

9(x− 1)2 + 3
(x ∈ (−∞; 2]) ;

(b) f(x) :=
|x| − 1

5|x| − 2
(x ∈ [1; +∞)) ;

(c) f(x) :=
x2 − 4x+ 5

(x− 2)2
(x ∈ (−∞; 0]) ;

(d) f(x) :=
x2 + 2x+ 6

3x2 + 6x+ 9
(x ∈ R) ;

(e) f(x) :=
2x2 + 6x+ 6

x2 + 4x+ 5
(x ∈ R) ;

(f) f(x) :=
2x− 4

√
x− 1

5x− 10
√
x+ 10

(x ∈ [0; +∞)) ;

(g) f(x) := x+
1

x
−
√
x2 +

1

x2
(x ∈ (0; +∞)) ;

(h) f(x) :=
7− 3 sin2 x+ 6 cosx

cos2 x+ 2 cosx+ 2
(x ∈ R);

(i) f(n) := xn :=
8n+ 3

5n+ 4
(n ∈ N);

(j) f(x) :=
1− ex+1

ex + 1
(x ∈ R);
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(k) f(x) :=
√
x+ 1−

√
x (x ∈ [0; +∞));

(l) f(x) = sin x · (cosx+
√

3 · sinx) + cos x · (sinx−
√

3 cosx) (x ∈ R) .

7. Where does the function f(x) :=
x4 + x2 + 4

x
(x ∈ (0; +∞)) take its minimal value

and what is this value?

Solution: Using the inequality between the arithmetic and geometric means we get:

f(x) = x3 + x+
1

x
+

1

x
+

1

x
+

1

x
≥ 6 ·

√
x3 · x ·

(
1

x

)4

= 6.

We have minimal value y = 6 at x = 1.

Here is the graph of f :

8. What are the extremal values of the function f(x) :=
x2

1 + x4
(x ∈ R) and where

does f take them?

Estimates, limits at +∞

9. For the function f(x) :=
√
x2 + 1 (x ∈ R):

a) Find a number K > 0 so that for all x > K from the domain Df we have:

f(x) > 100.
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b) Is the following statement true:

∀ P > 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : f(x) > P ?

c) Negate the upper statement.

d) Evaluate by definition
lim

x→+∞

√
x2 + 1.

Here is the graph of f :

10. Consider the function f(x) := ln
1

x
(x ∈ (0; +∞)).

a) Find a number K > 0 so that for all x > K from the domain Df we have:

f(x) < −100.

b) Is it true that:

∀ p < 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : f(x) < p ?

c) Give the negation of the statement in point b).

d) Evaluate by definition

lim
x→+∞

ln
1

x
.
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Here is the graph of f :

11. Consider the function f(x) :=
x6 + 1

x3 + x2
(x ∈ R \ {0;−1}).

a) Find a number K > 0 so that for all x > K from the domain Df we have:

f(x) > 4000.

b) Is it true that:

∀ P > 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : f(x) > P ?

c) Negate the upper statement.

d) Evaluate by definition

lim
x→+∞

x6 + 1

x3 + x2
.

12. Consider the function f(x) :=
x3 + x

1− x3
(x ∈ R \ {1}).

a) Find a number K > 0 so that for all x > K from the domain Df we have:

|f(x) + 1| < 1

100
.

b) Is it true that:

∀ ε > 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : |f(x)− (−1)| < ε ?

c) Negate the upper statement.

d) Evaluate by definition

lim
x→+∞

x3 + x

1− x3
.



3.2. Exercises 99

Here is the graph of f :

13. Consider the function f(x) :=
1 + x− 3x5

x4 + 16
(x ∈ R).

a) Find a number K > 0 so that for all x > K from the domain Df we have:

f(x) < −100.

b) Is it true that:

∀ p < 0 ∃K > 0 ∀x ∈ (K; +∞) ∩Df : f(x) < p ?

c) Negate the upper statement.

d) Evaluate by definition

lim
x→+∞

1 + x− 3x5

x4 + 16
.
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Here is the graph of f :

14. Prove by definition that: lim
x→+∞

3x6 + 2x5 − 30x4 + 12x− 7

x4 + x2 − 2x+ 10
= +∞.

15. Prove by definition that: lim
x→+∞

2x3 + x2 − 3x+ 5

x3 + 7x2 + 2x+ 19
= 2.

16. Prove by definition that: lim
x→+∞

x4 − 21x3 + x2 − x− 8

x2 − 3x4 + x+ 1
= −1

3
.

17. Prove by definition that: lim
x→+∞

−2x3 + 2021x− 2022

x2 + 3x+ 11
= −∞.

18. Prove by definition that: lim
x→+∞

√
3x3 + x2 − x+ 11 = +∞.

19. Prove by definition that: lim
x→+∞

2
√
x− 1

3
√
x+ 12

=
2

3
.

20. Evaluate the following limit, and then prove by definition your statement:

lim
x→+∞

(
√
x2 + 3x+ 10−

√
x2 + 1).


