
EÖTVÖS LORÁND UNIVERSITY 

FACULTY OF INFORMATICS 

SAVARIA INSTITUTE OF TECHNOLOGY 

 

   

 

 

 

 

 

 

 Manual on Control Techniques for 

Engineers 
By Luis Rubio Rodríguez 

 



iii 

Table of Contents 
 

Preface...........................................................................................................................................   

 

 

1. Chapter 1: Introduction ...................................................................................................... 1 

 

1.1 Signals ................................................................................................................................ 1 

1.2 Systems  ............................................................................................................................. 2 

1.3 Control Systems  ................................................................................................................ 5 

 

2. Chapter 2: Mathematical modelling .................................................................................. 9 

 

2.1 Models of signals ............................................................................................................... 9 

2.1.1 Classification of signals according to signal processors ............................................ 10 

2.1.2 Types of signals in control ......................................................................................... 11 

2.2 Fourier or frequency analysis of signals .......................................................................... 14 

2.3 Models of Systems ........................................................................................................... 16 

2.3.1 Classification of systems......................................................................................... 16 

2.3.2 Properties of systems .............................................................................................. 17 

2.4 Description of systems by ordinary non-homogeneous differential equations with constant 

coefficients ..................................................................................................................... 18 

2.4.1 First order systems .................................................................................................. 18 

2.4.2 Second order systems .............................................................................................. 21 

2.4.3 High order systems ................................................................................................. 23 

2.5 State space representation .............................................................................................. 24 

2.6 Control systems .............................................................................................................. 25 

2.6.1 Main properties ....................................................................................................... 26 

2.6.2 Properties according to the requirements of the designer of the control system .... 26 

 

 

3 Chapter 3: Laplace and inverse Laplace transforms ......................................................... 29 

 

3.1 Laplace and inverse Laplace transforms .......................................................................... 29 

3.1.1 Properties of Laplace transforms ............................................................................ 30 

3.1.2 Table of Laplace transforms ................................................................................... 32 

3.1.3 Laplace inverse transform  ...................................................................................... 32 

3.2 Transfer function .............................................................................................................. 34 

3.3 Block diagrams ................................................................................................................ 36 

 

 



iii 

4 Chapter 4: Transient response of first- and second-order systems ..................................... 41 

 

4.1 Transient response of first order transfer function ........................................................... 41 

4.1.1 Step response of first order system ......................................................................... 43 

4.1.2 Impulse response of first order system ................................................................... 46 

4.2 Transient response of second order transfer function ...................................................... 47 

4.2.1 Step response of second order system .................................................................... 47 

4.2.2 Impulse response of second order system ............................................................... 55 

 

5 Chapter 5: Steady state errors analysis ............................................................................... 58 

 

6 Chapter 6: Stability of continuous-time systems ................................................................ 65 

 

6.1 Stability ............................................................................................................................ 65 

6.2 Routh-Hurwitz Criterion .................................................................................................. 66 

6.3 Root Locus ....................................................................................................................... 69 

6.4 Frequency domain analysis .............................................................................................. 76 

6.5 Bode plot .......................................................................................................................... 78 

6.6 Mention to Nyquist polar plot .......................................................................................... 81 

 

7 Chapter 7: Z-transform and inverse Z-transform ................................................................ 87 

 

7.1 Z-transform ...................................................................................................................... 87 

7.2 The region of convergence of the Z-transform ................................................................ 89 

7.3 Discrete-time signals ........................................................................................................ 92 

7.4 Z-transform table of basic sequences ............................................................................... 95 

7.5 Inverse Z-transform methods ........................................................................................... 95 

7.6 The concept of a discrete-time system. From difference equations to transfer function . 98 

7.6.1 Pulse transfer function ............................................................................................ 99 

7.6.2 Transfer function: poles and zeros ........................................................................ 100 

7.7 Stability of discrete-time domain systems ..................................................................... 101 

7.8 State variables ................................................................................................................ 102 

7.9 From state space to pulse transfer function.................................................................... 103 

   7.10 Sampled data control systems ...................................................................................... 104 

7.11Analysis of closed-loop discrete-time systems ............................................................ 107 

7.11.1 Introduction ......................................................................................................... 107 

7.11.2 Zero-hold equivalences ........................................................................................ 108 

 

8 Chapter 8: PID control ..................................................................................................... 119 

 

 

 



iii 

9 Chapter 9: Control structures ........................................................................................... 147 

 

9.1 Feed-forward control .................................................................................................... 147 

9.2 Two degrees of freedom control ................................................................................... 148 

9.3 Supervisory control ....................................................................................................... 148 

9.4 Hierarchical control ...................................................................................................... 150 

9.5 Soft sensors ................................................................................................................... 152 

9.6 Cascade structure .......................................................................................................... 153 

 

10 Chapter 10: Advanced control methods ............................................................................ 156 

 

10.1 Model predictive ....................................................................................................... 157 

10.2 Adaptive control ....................................................................................................... 157 

10.3 Neural network control ............................................................................................. 159 

10.4 Sliding mode control ................................................................................................. 159 

10.5 Robust control ........................................................................................................... 162 

10.6 Optimal control ......................................................................................................... 162 

10.7 Intelligent control ...................................................................................................... 163 

     10.7.1 Learning control ................................................................................................ 163 

     10.7.2 Expert control.................................................................................................... 163 

     10.7.3 Fuzzy control .................................................................................................... 167 

 

 

 

Acknowledgments.........................................................................................................................   

 

 



Manual on Control Systems for Engineers  Preface 
 

ELTE  SIT 
 

 
Preface 

 
This manuscript is intended to introduce the topic of control techniques to engineers. The 

manual introduces signals and systems, which are the basic components of a process. It 

follows how to manipulate signals to obtain the required behavior of the system. This part 

is known as control systems.  

 

Chapter 1 reviews the foundations of every part -signals, systems, and control systems- 

mathematically and intuitively to gain a basic understanding of these areas. It provides 

examples to be found in your daily life and in industry and academia that hold 

significance. Chapter 2 introduces the representation of the systems to be controlled from 

a standard and universal perspective, as well as the mathematical modeling of signals and 

systems. Physical systems, independent of their nature, have in common that they may be 

modeled by very similar means, differential equations. Chapter 3 deals with Laplace and 

inverse Laplace transforms as a human attempt to simplify the mathematics behind 

differential equations. The Laplace domain allows the conversion of challenging 

differential equations into easier and more familiar polynomial equations, providing a 

useful standpoint to deliver analysis and results of the physical systems under 

consideration. Chapter 4 presents the transient response of first- and second-order 

systems against step and impulse inputs. Chapter 5 introduces steady-state errors. Chapter 

6 considers the stability of the systems from a control point of view. It shows how to 

manipulate the system with variations in some parameters of the control loop. Chapter 7 

informs the discrete-time domain, or Z-transform, where the use of electronics helps to 

implement the controllers. Chapter 8 covers the most widely used control algorithm in 

industry, the PID, or proportional integral and derivative control. Furthermore, Chapter 

9 dives into control system structures, which are widely applied in industrial systems. 

Chapter 10 ends the booklet  with an introduction to advanced control techniques that 

may be applied to uncertain or non-linear systems.  

 
The book intends to introduce these concepts from a mathematical point of view to 

provide a good baseline for developing the main ideas behind control techniques. 

Moreover, a software-based helpline is accomplished to facilitate the calculus of  

mathematics. For this reason, some of the chapters are accompanied by programming 

code, which can be useful when dealing with control systems. Finally, examples and 

exercises are included to support the learning process. 
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Chapter 1: Introduction 

 
This chapter introduces the foundations of every part, which consists of control 

system loops, namely, signals, systems, and control. Hereby, a conventional 

introduction is presented, which allows the reader to gain an understanding of them. 

✓ Introduction to Signals. 

✓ Introduction to Systems. 

✓ Introduction to Control Systems. 

 
 

The universal language, called mathematics in engineering, and its implementation 

through algorithms are used to state the basics of this field. Combining these 

mathematical tools with insight and understanding of the control system to be controlled, 

the reader may learn to make reasoning from a practical point of view for the use of 

mathematical resources to solve challenges in the control systems field.     

This chapter reviews the foundations of every part -signals, systems, and control systems- 

mathematically and intuitively to a gain basic understanding of these areas. It provides 

examples you may find in your daily life and in industry and academia that hold 

significance. 

 

1.1 Signals 

 
Signals are presented in nature in different ways, such as light luminescence or intensity, 

humidity, temperature, wind speed, etc. (see figure 1.1). Our ability to read and monitor 

the magnitudes and orientations of these signals becomes a springboard to handle them 

for practical purposes.  
 

 
Figure 1.1: Signals in nature. 

 

A signal is a magnitude that varies in time and/or position. If the magnitude is fixed, it is 

known as a parameter or constant variable. Signals have many backgrounds associated to 

them, for instance, physical, chemical, biological, economical, or social, to cite some [1, 

2].  

1
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A signal is intended to convey information and energy. A signal is a function of one or 

more independent variables that contain some information. Ex.: voice, photo, video, 

sound, etc. Noise is also a signal, but the information conveyed by noise is unwanted, 

hence it is considered undesirable[1, 2].  

 

Signals are  represented through a scale, table, discrete-time graph, function, or graph. 

Electronic devices that can provide signals are known as signal generators. These signals 

are later managed  by signal processors. These devices  commonly input to the control 

system. Signal generators provide signals, and signal processors modify the input signal 

according to the system requirements. Previously, the signal must have been measured 

by a sensor or transducer, which are responsible for handling (representing, saving, 

processing, etc.) them [1, 2].  

 

1.2 Systems 

 
A system is a collection of elements or components that are organized for a common 

purpose. Systems, primarily, may be classified as static and dynamic systems. This text 

deals with dynamic systems, but it is intended to recognise both [3,4,5]. 

 

  

 

 
Figure 1.2: Representation of a system where an input signal into it generates an output signal. 

 

Figure 1.2 represents a system where an input signal, u(t), is transformed into an output 

signal, y(t) by the inherent behavior of the system. 
 

A static system is a system in which the output at any instant of time depends on the 

input sample at the same time. In other words, the system in which the output depends 

only on the present input at any instant of time is known as the static system. A static 

system is a memoryless system. But this does not mean a specific lack of movement.  

For instance, a gear (Figure 1.3) or a static balance may be moved, but the system is static 

as the output is an algebraic form of the input (i.e., input and output are related by a 

constant number). Gears are well-established units of mechanical systems. Gearboxes 

consist of two or several gears that change the movement or vary its velocity, among other 

functionalities, while transmitting movement. The gear of the figure may be represented 

with the following equation: 
𝜔1(𝑡)

𝑅1
=

𝜔2(𝑡)

𝑅2
  , where 𝜔1 and 𝑅1 are angular velocity and 

radios of the big gear and 𝜔2 and 𝑅2 are angular velocity and radios of the small gear. 

Both angular velocities are in opposite directions. In this case, according to figure 1.2, the 

input to the system is 𝜔1(𝑡), and the output is 𝜔2(𝑡).  
 

 

System 
u(t) y(t) 
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Figure 1.3: Gear box. 

 

The system, represented by the relation output to input, 
𝜔2(𝑡)

𝜔1(𝑡)
=

𝑅2

𝑅1
  , is static because the 

ratio of transmission  
𝑅2

𝑅1
    is constant.  

 

At this level of understanding, system dynamics means history but not necessarily 

movement, which means that the current behavior depends on past actions. Information 

and energy flow among systems and within the environment [3,4,5]. Examples of 

dynamic systems are cars, electronic devices, the human body, etc. Some other examples 

of dynamic systems are: 

 

a) A bathtub is a simple example of a dynamic system. Water flows into the tub 

through a faucet, being the input to the system, and leaves the tub through a drain, 

being the output to the system (Figure 1.4).  

 
Figure 1.4: Bathtub. 

 

b) Another example of a dynamic system is a pot of water set on a burner (Figure 

1.5). In this case, energy, rather than matter, flows through the system. 

 
Figure 1.5: Pot of water. 

 

c) A car is another example of an everyday means of a dynamic system, the current 

position and speed depend on the past positions and speeds. 

 

3
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Furthermore, system dynamics is a methodology and mathematical modeling technique 

to frame, understand, and discuss complex issues and problems. Originally developed in 

the 1950s to help corporate managers improve their understanding of industrial processes,  

system dynamics is an aspect of systems theory as a method to understand the dynamic 

behavior of complex systems. The basis of the method is the recognition that the structure 

of any system - the many circulars, interlocking, sometimes time-delayed relationships 

among its components - is often just as important in determining its behavior as the 

individual components themselves.  It is also claimed that because there are often 

properties of the-whole which cannot be found among the properties of the-elements, in 

some cases, the behavior of the whole cannot be explained in terms of the behavior of the 

parts. This property is called an emergency property [6]. 

 

Typical examples of systems are electrical circuits and mechanical systems, which are 

well defined by first-, second- or upper-order differential equations [7, 8]. Electrical 

circuits can behave as static and dynamic systems. The circuit is composed just of a 

resistance which acts as a static system, and the circuit is composed of a resistance and 

capacitor in series functions as a dynamic system or circuit. Some examples are shown in 

figure 1.6, which includes the dynamic system composed of a resistance, a capacitor, and 

an inductance, apart from the ones mentioned beforehand. 

  
Figure 1.6: Different electrical circuits. Just resistance is a static system. By adding one 

capacitor to the resistance, the system works dynamically because the capacitor is charged 

at a certain voltage. This is a first-order system. If an inductance is also considered in the 

circuit, the circuit becomes a second-order system. 

 

Another well-known example of a system for mechanical engineers is the spring-mass-

damper system. In figure 1.7, a mass is attached to a spring with a damper, and a force, 

F(t), is applied to the system, leading to some movement, sometimes oscillatory. The 

system is governed by the equation: 𝑚�̈� + 𝑏�̇� + 𝑘𝑥 = 𝐹, where x(t) represents the movement 

of the system (output) against the force applied (input) with �̇�(𝑡) being the velocity and 

�̈�(𝑡) the acceleration.  

 

 
 

 
Figure 1.7: Mass-spring-damper mechanical system. 
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1.3 Control systems 

 
A control system manages, commands, directs, or regulates the behavior of other devices 

or systems using control loops. It can range from a single home heating controller using 

a thermostat controlling a domestic boiler to large industrial control systems that are used 

for controlling processes or machines. Control appears in most industrial systems, but 

also in nature, economics, and life itself [7, 8]. 

 

The control system selects the action to get the desired behavior of the overall system to 

be controlled, designs the controller to generate these actions, and tunes the controller 

properties to adapt the system to changes.  

 

Logic control systems for industrial and commercial machinery were historically first 

implemented as control systems interconnected with electrical or mechanical relays and 

cam timers using ladder logic [9]. They work based on sequential and combinational 

logic.  

 

Figure 1.8: Relay with the positions normally closed or open. 

 

Today, most such systems are constructed with microcontrollers or more specialized 

programable logic controllers (PLCs). The notation of ladder logic is still in use as a 

programming method for PLCs [9]. Logic controllers may respond to switches and 

sensors and can cause the machinery to start and stop various operations using actuators. 

Logic controllers are used to sequence mechanical operations in many applications using 

open-closed (on-off) basic logic, as shown in figure 1.8. Examples include automatic 

elevators, car washing machines, garage doors, and other systems with interrelated 

operations. An automatic sequential control system may trigger a series of mechanical 

actuators in the correct sequence to perform a task. For example, various electric and 

pneumatic transducers may fold and glue a cardboard box, fill it with product, and then 

seal it in an automatic packaging machine. PLC software can be written in many ways: 

ladder diagrams, SFC (sequential function charts), or statement lists.  
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Figure 1.9: Three first steps of the car wash machine example. 

 

One example is the automated car wash machine in Figure 1.9, which sequentially follows 

the following steps: 1)  The car entry sensor triggers the process and turns the conveyor 

belt on to move the car. 2) The soapy water sprinkler turns on when the stage 1 sensor 

detects the car and does the process for a certain time. 3) The brusher turns on when stage 

2 sensors detect the car and do the process for a certain time. 4) The clean water sprinkler 

turns on when stage 3 sensors detect the car and do the process for a certain time. 5) The 

dryer turns on when stage 4 sensors detect the car and do the process for a certain time. 

6) The car exit sensor triggers the conveyor motor to turn off. 

 

Furthermore, on-off control uses a feedback controller that switches abruptly between 

two states. A simple bi-metallic domestic thermostat can be described as an on-off 

controller. When the temperature in the room, process variable (PV), goes below the user 

setting, set point (SP), the heater is switched on. Another example is a pressure switch on 

an air compressor. When the pressure (PV) drops below the setpoint (SP), the compressor 

is powered. Refrigerators and vacuum pumps contain similar mechanisms. Simple on-off 

control systems like these can be cheap and effective [7, 8]. 

 

For continuously modulated control, a feedback controller is used to automatically control 

a process or operation. The control system compares the value or status of the process 

variable (PV) being controlled with the desired value or setpoint (SP) and applies the 

difference as a control signal to bring the process variable output of the plant to the same 

value as the set point. Feedback control plays a key role in control systems when the 

model of the system is not accurately known [7, 8]. 

 
There are two common classes of control action: open loop and closed loop [7, 8]. 

 

a) In an open-loop control system (Figure 1.9), the control action from the controller 

is independent of the process variable. An example of this is a central heating 

boiler controlled only by a timer. The control action is the switching on or from 

the boiler. The process variable is the building temperature. This controller 

operates the heating system for a constant time, regardless of the temperature of 

the building. 
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Figure 1.10: Open-loop block diagram. 

 

b) In a closed-loop control system (Figure 1.11), the control action from the 

controller is dependent on the desired and actual process variables. In the case of 

the boiler analogy, this would utilize a thermostat to monitor the building 

temperature and feedback a signal to ensure the controller output maintains the 

building temperature close to that set on the thermostat. A closed loop controller 

has a feedback loop, which ensures the controller exerts a control action to control 

a process variable at the same value as the set point. For this reason, closed-loop 

controllers are also called feedback controllers.  

 

 
 

Figure 1.11: Control System Feedback Loop. 

 

In the case of feedback systems, a control loop including sensors, control algorithms, and 

actuators is arranged to regulate a variable at a setpoint (SP) or reference input. An 

everyday example is the cruise control on a road vehicle; where external influences such 

as hills would cause speed changes, and the driver could alter the desired set speed. The 

proportional-integral-derivative (PID) algorithm in the controller restores the actual speed 

to the desired speed in the optimum way, with minimal delay or overshoot, by controlling 

the power output of the vehicle's engine [10]. 

 

Control systems that include some sensing of the results they are trying to achieve make 

use of feedback and can adapt to varying circumstances to some extent. Open-loop control 

systems do not make use of feedback and run only in pre-arranged ways. 

These concepts are further reinforced in this manual in the coming chapters. 
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Chapter 2: Mathematical modeling 

 
This chapter introduces the mathematical foundations of every part, which consists 

of control system loops, namely, signals, systems, and control. Herewith, an 

insightful introduction is presented, which allows the reader to gain a perceptive 

understanding of them. 

✓ Models of Signals. 

✓ Models of Systems. 

✓ Models of Control Systems. 

 

 

The terminology for signals and systems is as follows: a system is any process that 

generates an output signal in response to an input signal. An independent variable is a 

variable (often denoted by x(t)) whose variation does not depend on that of another. 

Continuous signals are usually represented with parentheses, while discrete signals use 

brackets. All signals use lowercase letters, reserving the uppercase for the frequency 

domain (which will be presented in later sections). Unless there is a better name available, 

the input signal is called x(t) or x[n], while the output is called y(t) or y[n]. In this text, it 

is intended to deal with continuous-time signals, systems, and control algorithms, as well 

as an introductory chapter to discrete-time. Figure 2.1 represents the continuous and 

discrete time systems and the signals associated with them.  

 
Figure 2.1: A system is any process that generates an output signal in response to an input 

signal.  

 

2.1 Models of Signals 

 

In this section, some mathematical functions are provided that represent the signals that 

are input to the system. These signals are usually used to test or define the behavior of the 

system. Normally, any system can accept any kind of signal as input, and they are not 

restricted to the ones mentioned in this section. They are classified from the classical point 

of view and according to the signal processor. 

 

9
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2.1.1 Classification of signals according to signal processors 

 

In a more general way and according to the dealt system, signals may be classified as: 

 

a) Binary: The simplest possible signal of any kind that can be employed to transmit 

messages, the binary signal consists of only two possible values. These values are 

represented by the binary digits, or bits, 1 and 0, as shown in Figure 2.2. 
 

 
Figure 2.2: Binary signal 

 

b) Continuous: A continuous signal or a continuous-time signal is a varying quantity (a 

signal) whose domain, which is often time, is a continuum (e.g., a connected interval 

of the reals). That is, the function's domain is an uncountable set of elements. To contrast, 

a discrete-time signal has a countable domain, like the natural numbers. As an example, 

Figure 2.3 contains a continuous-time sinusoidal signal. 
 

  
Figure 2.3: Continuous-time sinusoidal signal  

 

c) Digital: A digital signal is a signal that represents data as a sequence of discrete 

values; at any given time, it can only take on, at most, one of a finite number of values. 

Simple digital signals represent information in discrete bands of analog levels (Figure 

2.4). All levels within a band of values represent the same information state. 

10
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Figure 2.4: Digital signal 

 
 

d) Stochastic signals: A stochastic signal (Figure 2.5) is used to describe a non-

deterministic signal, i.e., a signal with some kind of uncertainty. A random signal is, 

by definition, a stochastic signal with whole uncertainty, i.e., with an auto-correlation 

function with an impulse at the origin and a power spectrum completely flat. 
 

 
Figure 2.5: Stochastic signal. 

 

2.2.2 Types of signals in control 

  

In classic control theory, signals may be classified as, step, ramp, parabolic, sinusoidal, 

and impulse signals. These signals are willing to check the stability and robustness of 

the system.   

a) Unit Step Function or Heaviside Functions: The unit step function or Heaviside step 

function is denoted by u(t) or, 𝜃(𝑡). It is defined as: 

 

𝑢(𝑡) = {
1         𝑡 ≥ 0
0        𝑡 < 0

  (2.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Continuous-time step function. 
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Figure 2.6 shows a continuous-time step function.  The step function is used as the best 

test signal. The area under the unit step function is unity. Step functions can be used to 

define staircase functions, which can have any form of the following aspect: 

 

𝑢(𝑡) = {
7         𝑡 ≥ 8

12    6 ≤ 𝑡 < 8
−4        𝑡 < 6

 (2.2) 

 

b) Ramp Signal: When a signal gives the constant velocity of the actual input signal, it 

is known as a velocity signal or function. The continuous-time unit ramp signal is that 

function that starts at 𝑡 = 0 and increases linearly with time. It is denoted by 

𝑟(𝑡). Mathematically, the continuous-time unit ramp signal is defined as follows from the 

unit step function: 

𝑟(𝑡) = {
𝑡         𝑡 ≥ 0
0        𝑡 < 0

  (2.3) 

From the above equation, the ramp signal is a signal whose magnitude varies linearly. 

The graphical representation of the continuous-time unit ramp signal is shown in figure 

2.7. 

 

Figure 2.7: Continuous ramp signal. 

 

Note that the relationship between step and ramp functions is, 

𝑟(𝑡) = ∫ 𝑢(𝑡)𝑑𝑡 = ∫ 𝑑𝑡 = 𝑡 , 𝑡 > 0 or 𝑢(𝑡) =
𝑑𝑟(𝑡)

𝑑𝑡
 . 

 

c) Parabolic signal: When a signal gives the constant acceleration distinction of an actual 

input signal, such a signal is known as a parabolic signal or parabolic function. It is 

also known as unit acceleration signal. The unit parabolic signal starts at t = 0. 

The continuous-time unit parabolic signal is a unit parabolic signal that is defined for 

every instant of positive time. It is denoted by 𝑝(𝑡). Mathematically, 𝑝(𝑡) is given as: 

𝑝(𝑡) = {
𝑡2

2
         𝑡 ≥ 0

0        𝑡 < 0
  (2.4) 

The graphical representation of the continuous-time parabolic signal 𝑝(𝑡) is shown in 

figure 2.8. 

12
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Figure 2.8: Continuous-time parabolic function 

 

d) Sinusoidal signals: Sinusoidal signals can be defined as a periodic signal with a 

waveform as similar to that of a sine wave. Sinusoidal are the smoothest signals with no 

abrupt variation in their amplitude; the amplitude witnesses gradual change with time. If 

it is considered a sinusoidal signal 𝑦(𝑡) having an amplitude 𝐴, frequency 𝑓, and phase of 

quantity 𝜃, then the signal can be represented as: 

 

𝑦(𝑡) = 𝐴 sin(2𝜋𝑓𝑡 + 𝜃)  (2.5) 

 

It has the form previously shown in figure 2.3. Sinusoidal signals are inputs to numerous 

systems in engineering, such as rotary machines and motors, alternating current or voltage 

circuits, and many other applications. 
 

e)  Another important signal is the impulse signal, or Dirac delta function. The notion 

of a delta function is extremely useful in the analysis of signals and systems, although it 

may feel unnatural on first exposure. Although the concept of the delta function can be 

made completely rigorous, rather than get sidetracked with too much mathematical detail 

and sophistication, the aim here is to provide some intuition and ability to work with the 

delta function. On the other hand, it is important to have enough rigor so that this 

important tool is used properly. 

 

When Heaviside functions are introduced,  it is noted that they are switches that change 

the  function at specific times. However, Heaviside functions are not suited to forcing 

functions that exert a “large” force over a “small” time frame. 

Examples of this kind of forcing function would be a hammer striking an object or a short 

in an electrical system. In both cases, a large force (or voltage) would be exerted on the 

system over a very short time frame. The Dirac Delta function is used to deal with these 

kinds of forcing functions. 

There are many ways to define the Dirac Delta function, but there are three main 

properties of the Dirac Delta function that we need to be aware of. These are, 

 
1. 𝛿(𝑡 − 𝑎) = 0  if 𝑡 ≠ 𝑎.     (2.6) 

2. ∫ 𝛿(𝑡 − 𝑎)
𝑎+𝜀

𝑎−𝜀
𝑑𝑡 = 1 with 휀 > 0.  (2.7) 

3. ∫ 𝑓(𝑡)𝛿(𝑡 − 𝑎)
𝑎+𝜀

𝑎−𝜀
𝑑𝑡 = 𝑓(𝑎) with 휀 > 0. (2.8) 

 

At t=a, the Dirac Delta function is sometimes thought of as having an “infinite” value. 

So, the Dirac Delta function is a function that is zero everywhere except one point, and at 

that point it can be thought of as either undefined or as having an “infinite” value. 
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Note that the integrals in the second and third properties are true for any interval 

containing t=a (a=0, in figure 2.9), provided that a is not one of the endpoints. The limits 

given are needed to prove the properties, and so they are also given in the properties. It is 

supposed that they are true, provided that the integration of the function contains t=a over 

an interval. 

This is a very strange function. It is zero everywhere except one point, and yet the integral 

of any interval containing that one point has a value of 1. The Dirac Delta function is not 

a real function as we think of them. It is instead an example of something called a 

generalized function or distribution. 

Despite the strangeness of this “function”, it does a very nice job of modeling sudden 

shocks or large forces in a system. 
 

Note that often the second and third properties are given with limits of infinity and 

negative infinity, but they are valid for any interval in which t=a is in the interior of the 

interval. 

In figure 2.9, the Dirac delta function is shown, such that t1 tends to infinity and a=0.  

 
Figure 2.9: Dirac´s delta function.  

 

These are some examples, but the types of signals are not limited to them. 

 

2.2 Fourier or frequency analysis of signals 

 

An important aspect of signals is their representation in the frequency domain which gives 

relevant information. First, it is shown the information given by a periodic function and 

later it is extended to any function. 

A function 𝑓(𝑥) is called periodic function with period p, if for all x there holds 

𝑓(𝑥 + 𝑝) = 𝑓(𝑥) (2.9) 

 

If 𝑓(𝑥) has a period p, and sub-periods at 2p, 3p, and so on. In general, 

 

𝑓(𝑥 + 𝑛𝑝) = 𝑓(𝑥) (2.10) 

Where n=1,2,3,… 

In what follows it will be considered the representation of functions 𝑓(𝑥)  of period 2𝜋. 

Suppose that 𝑓(𝑥) is a function of period 2𝜋 that can be represented by a convergent 

series of the form: 

 

𝑓(𝑥) = 𝑎0 + 𝑎1 cos 𝑥 + 𝑏1 sin 𝑥 + 𝑎2 cos 2𝑥 + 𝑏2 sin 2𝑥 + ⋯. (2.11) 
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Then the Fourier series of 𝑓(𝑥) is given by 

 

𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∞
𝑛=1   (2.12) 

 

Where 𝑎0, 𝑎𝑛, and 𝑏𝑛 are called Fourier coefficients.  

Assuming 𝑓(𝑥) is known, the Fourier coefficients can be computed using the Euler 

formulas: 

𝑎0 =
1

2𝜋
∫ 𝑓(𝑥)

𝜋

−𝜋
𝑑𝑥   (2.13) 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) cos(𝑛𝑥)

𝜋

−𝜋
𝑑𝑥  (2.14) 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) sin(𝑛𝑥)

𝜋

−𝜋
𝑑𝑥  (2.15) 

Where n=1,2,3… .These coefficients comprise the spectrogram of the studied signal. 

 

Some examples for spectrograms of common signals are the following: 

 
 

The importance of the Fourier analysis relies on that every periodic function or signal has 

a corresponding Fourier series representation, if the function fulfils the Dirichlet 

conditions for the convergence of Fourier series which state that: 1) The function must 

be single-valued, periodic, and finite, 2) it should have a finite number of maxima and 

minima in any given period, and 3) it should have a finite number of discontinuities, but 

the discontinuities should not be infinite. 

Moreover, constant signals can be seen as periodic function with relatively long periods 

of time. Therefore, every periodic signal has a Fourier series representation, that is, every 

periodic signal can be seen as a combination of fundamental harmonic functions. 

 

The general Fourier transform is defined as: 

 

𝐹(𝑘) = ∫ 𝑓(𝑡)𝑒−2𝜋𝑗𝑘𝑡∞

−∞
𝑑𝑡  (2.16) 
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which reveals the frequency decomposition of a signal that does not need to be periodic. 

As a result, any kind of input to the system can be dealt with Fourier analysis 

independently of the previous classification. Note that the integration is from −∞ to ∞, 

i.e., it is assumed to have knowledge of the function 𝑓(𝑡) for 𝑡𝜖(−∞, ∞). In practice, it 

rarely has this knowledge for signals, and it is operated on a limited time interval or 

window of time 𝑡𝜖[𝑡𝑎 , 𝑡𝑏].  
 

2.3 Models of Systems 

 

A system is any process that generates an output signal in response to an input signal. It 

is normally composed of a set of interconnected elements. The whole system´s behavior 

is more important than the sum of its parts. Systems are inter-interactive among them and 

represent dynamics.  

 

2.3.1 Classification of Systems 

 

a) Physical systems: the system is presented by its physical structure; how the system is 

composed of its parts is shown in real life. The power of linear dynamic systems analysis 

is that many types of different nature systems can be modeled with the same type of 

differential equation, so the analysis of different physical systems can use the same 

approach. This analogy among physical systems facilitates the study and control of 

dynamic systems from the perspective of control.  

 
Figure 2.10: Dynamic system representation 

 
 

b) Schematic representation: A schematic is defined as a picture that shows something 

in a simple way, using symbols. A schematic diagram is a picture that represents the 

components of a process, device, or other object using abstract, often standardized 

symbols and lines. Schematic diagrams only depict the significant components of a 

system; though some details in the diagram may also be exaggerated or introduced to 

facilitate the understanding of the system, the system is represented by its different parts.  
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Figure 2.11: Simulink model motor composed by integration of electrical and 

mechanical equivalent circuits [1]. 
  

2.3.2 Properties of systems 

 

a) Linearity: A general deterministic system can be described by an operator, H, that 

maps an input, x(t), as a function of t to an output, y(t), a type of black box description 

(see figure 1.1).  

A system is linear if and only if it satisfies the superposition principle, or equivalently 

both the additivity and homogeneity properties, without restrictions (that is, for all inputs, 

all scaling constants, and all time).  

The superposition principle means that a linear combination of inputs to the system 

produces a linear combination of the individual zero-state outputs (that is, outputs setting 

the initial conditions to zero) corresponding to the individual inputs.  

 

Mathematically, for a continuous-time system, given two arbitrary inputs 𝑥1(𝑡), 𝑥2(𝑡) 

as well as their respective zero-state outputs, 𝑦1(𝑡) = 𝐻{𝑥1(𝑡) } and 𝑦2(𝑡) = 𝐻{𝑥2(𝑡) } 

then a linear system must satisfy:  
𝛼 𝑦1(𝑡) + 𝛽𝑦2(𝑡) = 𝐻{𝛼 𝑥1(𝑡) + 𝛽𝑥2(𝑡)} 

for any scalar values α and β, for any input signals 𝑥1(𝑡) and 𝑥2(𝑡), and for all time t. 

 

b) Non-linearity: A system is defined to be nonlinear if the laws governing the time 

evolution of its state variables depend on the values of these variables in a manner that 

deviates from proportionality, i.e., a system that does not fulfill the additivity and 

homogeneity properties.  

 

c) Multi-variable system: A system which have more than one input and one or more 

outputs, since such systems have more than one variable, they are called multivariable 

systems. 

 

d) Time-invariant system: A time-invariant system is one whose behavior (its response 

to inputs) does not change with time. The concept is blurry, but it is mathematically 

acceptable.  
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2.4 Description of systems by ordinary non-homogeneous differential equations 

with constant coefficients 

 

The dynamic performance of physical systems is obtained by utilizing the physical laws 

of mechanical, electrical, fluid, and thermodynamic systems. Physical systems are 

modelled with linear differential equations with constant coefficients when possible. 

Other models can be derived from more general differential equations.  

 

2.4.1   First-order systems 
 

The mathematical model of heat transformation in fluids, tank systems, RC circuits, etc. 

may be represented by first-order differential equations. The analogies of these systems 

make them to behave in similar way depending on the parameters which define their 

dynamics.  

 
Figure 2.12: A series RC circuit driven by a voltage source. 

 

A RC circuit is represented in figure 2.12. A series RC network is connected across a 

constant voltage source, Vs (Figure 2.12). Kirchhoff’s voltage law is used to model the 

circuit behavior as voltage balance: 

𝑉𝑅 + 𝑉𝑐 = 𝑉𝑠 (2.17) 

𝑉𝑅 is the voltage over the resistance, 𝑉𝑐 is the voltage within the capacitor, and 𝑉𝑠 is the 

voltage provided to the circuit.  The voltage within the capacitor can be calculated as: 

𝑉𝑐(𝑡) =
𝑄(𝑡)

𝐶
  (2.18) 

Where the accumulated charge is, 𝑄(𝑡) = ∫ 𝐼(𝜏)𝑑𝜏
𝑡

−∞
 , the current over the circuit is 

expressed as   I(𝑡) = 𝐶
𝑑𝑉𝑐

𝑑𝑡
 . So, Kirchhoff’s law results in: 

𝑉𝑠(𝑡) = 𝑉𝑐(𝑡) + 𝑅𝐶
𝑑𝑉𝑐

𝑑𝑡
   (2.19) 

and the system can be represented as the following first-order differential equation: 

𝑑𝑉𝑐

𝑑𝑡
 = 

1

𝑅𝐶
(𝑉𝑠(𝑡) − 𝑉𝑐(𝑡))  (2.20) 

or, 

𝑑𝑉𝑐

𝑑𝑡
+

1

𝑅𝐶
𝑉𝑐(𝑡)= 

1

𝑅𝐶
𝑉𝑠(𝑡)  (2.21) 

Another system that is represented by a first-order differential equation is the water tank 

shown in Fluid Mechanics. Please note that every physical system that is represented as 
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first-order system may be subject to the same mathematical approach due to their 

analogies. 

 

A water tank is represented in figure 2.13, where the average velocity of the jet is 

approximated as 𝑉 = √2𝑔/𝐷𝑡𝑎𝑛𝑘ℎ , where h is the height of the tank measured from the 

center of the hole, g is the gravitational acceleration, and 𝐷𝑡𝑎𝑛𝑘 is the diameter of the tank. 

The conservation of mass (mass balance) relation for a control volume (CV, the volume 

of the tank in this case) undergoing any process is given in rate form as: 

 
𝑑𝑚𝐶𝑉

𝑑𝑡
= �̇�𝑖 − �̇�𝑒 (2.22) 

 
Figure 2.13: Water tank scheme. 

During this process, no mass enters the control volume (�̇�𝑖=0), and the mass flow rate of 

discharged water is,   

�̇�𝑒=(𝜌𝑉𝐴)𝑜𝑢𝑡= 𝜌√2𝑔/𝐷𝑡𝑎𝑛𝑘ℎ 𝐴𝑗𝑒𝑡  (2.23) 

 

Where 𝐴𝑗𝑒𝑡 = 𝜋
𝐷𝑗𝑒𝑡

2

4
⁄  is the cross-sectional area of the jet, which is constant. Noting 

that the density of the water is constant, the mass of water in the tank at any time is: 

 

𝑚𝐶𝑉 =  𝜌𝑉 = 𝜌𝐴𝑡𝑎𝑛𝑘h (2.24) 

Where 𝐴𝑡𝑎𝑛𝑘 = 𝜋
𝐷𝑡𝑎𝑛𝑘

2

4
⁄   is the base area of the cylindrical tank. Substituting eqs. (2) 

and (3) into (1), mass balance eq. (1) gives:  

 

−𝜌√2𝑔ℎ𝐴𝑗𝑒𝑡 =
𝑑(𝜌𝐴𝑡𝑎𝑛𝑘ℎ)

𝑑𝑡
 →−𝜌√2𝑔ℎ (𝜋

𝐷𝑗𝑒𝑡
2

4
⁄ ) =

𝜌(𝜋
𝐷𝑡𝑎𝑛𝑘

2

4
⁄ ) 𝑑ℎ

𝑑𝑡
(2.25) 

 

−√2𝑔/𝐷𝑡𝑎𝑛𝑘ℎ (
𝐷𝑗𝑒𝑡

2

𝐷𝑡𝑎𝑛𝑘
2⁄ ) =

𝑑ℎ

𝑑𝑡
  (2.26) 

Or, 

𝑑ℎ

𝑑𝑡
+ √2𝑔/𝐷𝑡𝑎𝑛𝑘ℎ (

𝐷𝑗𝑒𝑡
2

𝐷𝑡𝑎𝑛𝑘
2⁄ ) = 0  (2.27) 

 

Please note the equation depends on the relation of the average velocity of the jet and the 

height of the water in the tank, 𝑉 = 𝑓(ℎ). The simplest model for resistance is a so-called 

linear leak: that f(h) is proportional to h, which is represented in this example. 

In case �̇�𝑖 ≠0, the input to the system is considered and the previous equation takes the 

form: 
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𝑑ℎ

𝑑𝑡
+ √2𝑔/𝐷𝑡𝑎𝑛𝑘ℎ (

𝐷𝑗𝑒𝑡
2

𝐷𝑡𝑎𝑛𝑘
2⁄ ) = �̇�𝑖  (2.28) 

 
Another interesting system that is represented by a first-order differential equation is the 

cooling and heat transfer from a solid body to a fluid.  

Figure 2.14, [2], represents a solid which absorbs or transfer heat from a fluid. These 

systems may be represented mathematically by Newton´s cooling law, which models heat 

flow in fluids by convection: 

 
𝑞𝛼(𝑇𝑎 − 𝑇𝑏) = ℎ(𝑇𝑎 − 𝑇𝑏)  (2.29) 

 

 
 

Figure 2.14: Heat transferring solids submerged in a fluid [2]. 

 

Equation (2.29) show heat flows from point A (solid) to point B (fluid) as 𝑇𝑎 > 𝑇𝑏, which 

express the heat flux between points A and B, being h heat transfer coefficient. Thus 

 
𝑞 = ℎ(𝑇𝑎(𝑡) − 𝑇𝑓) = ℎ(𝑇(𝑡) − 𝑡𝑓)  (2.30) 

 

 

 
 

Figure 2.15: Mathematical model of heat transfer [2]. 
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Equation (2.31) satisfies the heat transformation between systems in A and B (solid and 

bulk fluid). The first law of thermodynamics dictates that, to produce temperature change 

in a solid ∆𝑇(𝑡) during the time-period ∆𝑡  

 

𝑄 = −𝜌𝑐𝑉∆𝑇(𝑡) = 𝑞𝐴𝑠∆𝑡 = ℎ𝐴𝑠(𝑇(𝑡) − 𝑇𝑓)∆𝑡  (2.31) or, 

 
𝑑𝑇(𝑡)

𝑑𝑡
= −

ℎ

𝜌𝑐𝑉
𝐴𝑠(𝑇(𝑡) − 𝑇𝑓) = −𝛼𝐴𝑠(𝑇(𝑡) − 𝑇𝑓) (2.32) 

  

As ℎ, 𝜌, 𝑐, 𝑉 are constants. Thus, the change of the temperature of the submerged solid T(t) 

is continuous respect to time t, i.e., ∆𝑡 → 0 and if we replace the constant surface area as 

to a generic symbol A, Eq. (2.31) is expressed in the form of first order differential 

equation Eq. (2.32), and adding initial conditions leads to: 

 
𝑑𝑇(𝑡)

𝑑𝑡
= −𝛼𝐴𝑠(𝑇(𝑡) − 𝑇𝑓)  (2.33) with initial conditions. 𝑇(𝑡)|𝑡=0 = 𝑇(0) = 𝑇0. 

 

 

The initial temperature of an object is 80ºC. It is place in a refrigerator which is keeping 

at 𝑇𝑓 =5ºC. If 𝛼 = 0.002 and 𝐴𝑠 = 0.2𝑚2, find the time in which the object cools down.  

 
𝑑𝑇(𝑡)

𝑑𝑡
= −𝛼𝐴𝑠(𝑇(𝑡) − 𝑇𝑓)  (2.34) with initial conditions 𝑇(𝑡)|𝑡=0 = 𝑇(0) = 𝑇0 = 80º𝐶; 

 
𝑑𝑇(𝑡)

(𝑇(𝑡)−𝑇𝑓)
= −𝛼𝐴𝑠𝑑𝑡; (2.35) 

 

integrating 𝑇(𝑡) = 𝑇𝑓 + 𝐾𝑒−𝛼𝐴𝑡 (2.36).  

 

By using 𝑇0 = 80º𝐶, the integration constant K=75, the solution of the equation is: 

 
𝑇(𝑡) = 5 + 75𝑒−0.0004𝑡 (2.37) 

 

In the frequency domain, the entrance to the system is 𝑇𝑓and the output is 𝑇(𝑡). The 

equation: 

 
𝑑𝑇(𝑡)

𝑑𝑡
+ 𝛼𝐴𝑠𝑇(𝑡) = 𝛼𝐴𝑠𝑇𝑓  (2.38). 

 

 
2.4.2  Second order systems 

 

Linear ordinary differential equations which describe physical systems in a broad variety 

of disciplines such as mechanical or electrical engineering, or biological systems are the 

foundation of control systems. Second order differential equation is a specific type of 

differential equation that consists of a derivative of a function of order 2 and no other 

higher-order derivative of the function appears in the equation. Typical mechanical 

systems (see figure 3.3) are described by first or second order differential equations. 
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Figure 2.16: Typical second order mechanical system defined by spring, k, mass, m, and damper 

k, applying a force 𝑓(𝑡). 

 
If x(t) is the displacement from the resting position and u(t) is the applied force, using 2nd 

Newton law, the motion of the system is described by the equation: 

  

𝑚𝑥 ̈ (𝑡) + 𝑏�̇�(𝑡) + 𝑘𝑥(𝑡) = 𝑓(𝑡)  (2.39) 

 

where ẍ(𝑡) is the second derivative, and ẋ(𝑡) the first derivative respect to time. It is 

supposed that initial conditions are known; x(t = 0) = x0 and �̇�(0) = x1 being x0  and 

x1known numbers. This equation is further studied in the next chapter in the time-domain 

and frequency domain, using the Laplace transform, to depict the system behavior.  

 

Another useful representation of the linear differential equations is the state variable 

description which reduces higher order differential systems to an equivalent set of first 

equation systems. As illustrative example, consider the differential equation given in (1).  

Let 𝑥1(𝑡) = 𝑥(𝑡) , 𝑥2(𝑡) = �̇�(𝑡) be the new variables called state variables. Then, the 

system may be described as: 

 

𝑥1̇(𝑡) = 𝑥2(𝑡)  and 𝑥2̇(𝑡) =
−𝑏

𝑚
𝑥2(𝑡) −

𝑘

𝑚
𝑥1(𝑡) +

1

𝑚
𝑓(𝑡)  (2.40) 

 

with initial conditions  𝑥1(0) = 𝑦0 and 𝑥2(0) = 𝑦1, equation (2) leads to: 

 

[𝑥1(𝑡)

𝑥2(𝑡)
] = [ 0

−𝑘
𝑚⁄

1

−𝑏
𝑚⁄

] [𝑥1(𝑡)

𝑥2(𝑡)
] + [ 0

1
𝑚⁄

] 𝑢(𝑡) ; y(t) = [1 0] [𝑥1(𝑡)

𝑥2(𝑡)
]  (2.41) 

 

which general form is   

 

�̇�(t) + Ax(t) = Bu(t) ; y(t) = Cx(t) + Du(t) (2.42) 

 

Here x(t) is a 2x1 vector (a column vector) with elements the two state variables x1(t) 

and x2(t). It is called the state vector. The variable u(t) is the input and x(t) the state of 

the system. The first equation is a vector differential equation called the state equation. 

The second equation is an algebraic equation called the output equation. In the above 

example D =0; D is called the direct link, as it directly connects the input to the output, as 

opposed to connecting through x(t) and the dynamics of the system. The above description 

is the state variable or state space description of the system. The advantage is that system 

descriptions can be writ ten in a standard form (the state space form) for which many 

mathematical results exist. 
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2.4.3 Higher order systems 

 
The systems we deal with may be any order, not just first and second. So, they may be 

presented as linear non-homogeneous differential equations of order n with constant 

coefficients. These equations may be written as: 

 

y(n) (x) +a1y
(n−1) (x)+⋯+an−1y′(x)+any(x)=𝑏𝑜  (2.43) 

 

where a1, a2, ..., an are constants which may be real or complex. 

Every linear homogeneous differential equation with constant coefficients may be treated 

as follow. Using the linear differential operator 𝐿(𝐷) , this equation can be represented 

as 𝐿(𝐷)𝑦(𝑥) = 𝑏0, where 𝐿(𝐷) = 𝐷𝑛 + 𝑎1𝐷𝑛−1 + ⋯ + 𝑎𝑛−1𝐷 + 𝑎𝑛(3.21). For each 

differential operator with constant coefficients, we can introduce the characteristic 

polynomial:  

L(λ)=λn+a1λ
n−1+⋯+an−1λ+an  (2.44) 

which is called the characteristic equation of the differential equation.  
 

According to the fundamental theorem of algebra, a polynomial of degree n has 

exactly n roots, counting multiplicity. In this case the roots can be both real and complex. 

Normally, higher order systems are represented as combination of first and second 

order systems having the properties of the appropriate mixture. 

 

The model of a DC motor is an example of three degree of freedom. It directly provides 

rotary motion and, coupled with wheels or drums and cables, can offer translational 

motion. The electric equivalent circuit of the armature and the free-body diagram of the 

rotor are shown in figure 3.6. 

 

 
Figure 2.17: DC armature motor schematic representation [3]. 

 

Typical parameters of the motor are given by [3]: 
  

J = 3.2284e-6; % Rotacional inertia [Nms2/rad] 

b = 3.5077e-6;  % Viscous friction [Nms/rad] 

𝐾𝑇 = 0.0274; % Torque constant [Nm/A] 

𝐾𝑒 = 0.0274;  % back emf constant [Vs/rad] 

R = 4;  % Armature resistance [Ω] 
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L = 2.75e-6; % Armature inductance [H] 

 

The input to the system is the Voltage (V) applied to the motor armature, while the output 

is the position of the shaft (𝜃). The rotor and the shaft are assumed to be rigid. It is further 

assumed a viscous friction model, that means, the friction torque is proportional to the 

shaft angular velocity.  
  

In general, the torque generated by a current motor is proportional to the armature current 

and the strength of the magnetic field. It is assumed the magnetic field to be constant and 

therefore the motor torque, T, is proportional to the armature torque by a proportional 

factor, 𝐾𝑇, as shown in the equation. This is referred to as an armature-controlled motor: 

 

T = 𝐾𝑇𝑖 (2.45). 

 

The back emf, e, is proportional to the angular velocity of the shaft by a constant factor 

𝐾𝑏,  

 

e = 𝐾𝑏�̇� (2.46). 

 

In SI units, 𝐾𝑇 and 𝐾𝑏 are equal, and it is assumed 𝐾 = 𝐾𝑇 = 𝐾𝑏  

 

From 2nd Newton´s law and Kirchhoff´s voltage law, the governing equations are 

derived: 

 

J�̈�+b�̇� = 𝐾𝑖 (2.47) 

 

𝐿
𝑑𝑖

𝑑𝑡
 +𝑅𝑖 = 𝑉 − 𝐾�̇� (2.48). 

 
 

2.5 State space representation 

 

The state space representation has the following characteristics for a generic linear, time 

invariant, n-dimensional system. 

The state space representation of a system is given by two equations : 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡); (2.49) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)(2.50) 

The first equation is called the state equation, the second equation is called the output 

equation.  For an nth order system (i.e., it can be represented by an nth order differential 

equation) with r inputs and m outputs the size of each of the matrices is as follows: 

• x is nx1 (n rows by 1 column vector); x is called the state vector, it is a 

function of time 

• A is nxn; A is the state matrix, a constant 

• B is nxr; B is the input matrix, a constant 

• u is rx1; u is the input, a function of time 

• C is mxn; C is the output matrix, a constant 

• D is mxr; D is the direct transition (or feedthrough) matrix, a constant 
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• y is mx1; y is the output, a function of time 

The state equation has a single first order derivative of the state vector on the left, and the 

state vector, x(t), and the input u(t) on the right.  There are no derivatives on the right-

hand side. The output equation has the output on the left, and the state vector, x(t), and 

the input u(t) on the right.  There are no derivatives on the right-hand side. 

For systems with a single input and single output (i.e., most of the systems we will 

consider) these variables become (with r=1 and m=1): 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡); (2.51) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)(2.52) 

The notation of the state space is very compact.  Even large systems can be represented 

by two simple equations. Because all systems are represented by the same notation, it is 

very easy to develop general techniques to solve these systems. Also, computers easily 

simulate first order equations. 

For the case of the DC armature controller motor, the transfer function or the equations 

of the system are represented in the state space as: 

𝑑

𝑑𝑡
[
𝜃
�̇�
𝑖

] = [

0 1 0

0 − 𝑏
𝐽⁄ 𝐾

𝐽⁄

0 − 𝐾
𝐿⁄ − 𝑏

𝐿⁄

] [
𝜃
�̇�
𝑖

] + [

0
0

1
𝐿⁄

] (2.53) 

𝑦 = [1 0 0] [
𝜃
�̇�
𝑖

] (2.54) 

 

2.6 Control Systems 

 

A control system is defined as a system of devices that manages, commands, directs, or 

regulates the behavior of other devices or systems to achieve a desired result. A control 

system achieves this through control loops, which are a process designed to maintain a 

process variable at a desired specific form. In other words, the definition of a control 

system can be simplified as a system, which controls other systems.  
 

As human civilization is being modernized day by day the demand for automation has 

increased alongside it. Automation requires control over systems of interacting devices. 

In recent years, control systems have played a central role in the development and 

advancement of modern technology and civilization. Practically every aspect of our day-

to-day life is affected by some type of control system. Examples of control systems in 

your day-to-day life include an air conditioner, a refrigerator, an air conditioner, a 

bathroom toilet tank, an automatic iron, and many processes within a car – such as cruise 

control. In industrial settings, we find control systems in the quality control of products, 

weapons systems, transportation systems, power systems, space technology, robotics, 

manufacturing, etc. 
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2.6.1 Main properties 

 

a) Stability: The stability of a control system is defined as the ability of any system to 

provide a bounded output when a bounded input is applied to it. More specifically, we 

can say, that stability allows the system to reach the steady-state and remain in that state 

for that input even after variation in the parameters of the system. 
 

b) Controllability: Controllability is defined as the ability of a control system to reach a 

definite state from a fixed (initial) state in a finite time. It is considered as an important 

property of the control system as it defines the behavior of the control system. The theory 

of controllability was proposed in 1960 by R. Kalman. To be able to do what it is needed 

with the given dynamic system under control input, the system must be controllable. 

 

 
Figure 2.18: Controllability, the ability to control the system. 

 

c) Observability: Observability is a measure of how well internal states of a system can 

be inferred from knowledge of its external outputs. In control theory, the observability 

and controllability of a linear system are mathematical properties which behaves dual. To 

see what is going on inside the system under observation, the system must be observable. 

 

2.6.2 Properties according to the requirements of the designer of the control 

system 

 

a) Regulation: control regulation has the function of maintaining a designated variable 

or characteristic of the system equal to a predefined set value. It performs the activity of 

managing or maintaining a range of values in a machine. The measurable property of a 

device is managed closely by specified conditions or an advance set value; or it can be a 

variable according to a predetermined arrangement scheme. It can be used generally to 

connote any set of various controls or devices for regulating or controlling items or 

objects. 

 

b) Tracking: Trajectory tracking control is used to effect desired trajectories of a device. 

To track specified trajectories more precisely, or be able to follow more general 

trajectories, many tracking control algorithms have been proposed. 
 

c) Disturbance rejection: To address unexpected signals that cause the system to move 

away from the target value, the controller uses a purpose known as disturbance rejection, 

which processes the disturbance and provides commands that correct for these unknown 

conditions. 
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d) Noise filtering: Noise filtering is a set of processes that is performed to remove the 

noise contained with the data acquired on construction and infrastructure sites. The data 

obtained need to be processed, and the contained noise should be eliminated or reduced. 

 

e) Robustness or sensibility: The robustness refers to the ability of a control system to 

withstand parameter variations in the plant transfer function, and still maintain the 

stability and performance goals.  

 

f) Optimality: Optimality is a mathematical optimization that deals with finding a control 

for a dynamical system over a time such that an objective function is optimized. It has 

numerous applications in science, engineering, and operations research. 

 
 

References [4- 10] are starting points to delve into the systems and signals addressed in 

this chapter. 

 

Exercises: 

 

1. Represent by a differential equation the motion of an inertial mass, m, acted by a 

force, f(t), in the presence of kinetic friction, represented by b, is governed by 

Newton’s second law of motion given in figure 3.6. 

 

 
Figure 2.19: Motion of an inertial mass with applied force under surface friction. 

 

2. A parallel RL network is connected across a constant current source, Is, as shown in 

figure 3.7. Represent the circuit by a first-order ODE, where the variable of interest 

is the inductor current, iL, and Kirchhoff’s current law is applied at a node. 

 

Figure 2.20: A parallel RL circuit driven by a constant current source. 

3. Demonstrate that RLC circuit of the figure results in a second order differential 

equation of the form: 

𝐿
𝑑2𝑄

𝑑𝑡2
+ 𝑅

𝑑𝑄

𝑑𝑡
+

1

𝐶
𝑄 = 𝑉(𝑡) with 𝑄(𝑡) = 𝑄0 + ∫ 𝐼(𝜏)𝑑𝜏

𝑡

0
 

Being  𝑉(𝑡) the applied voltage to the circuit and 𝐼(𝑡) the electrical current which 

circulates over the circuit. 
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Figure 2.21: A series RLC circuit driven by a voltage source. 
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Chapter 3: Laplace and inverse Laplace 

transforms 

 
This chapter addresses the Laplace transform. Laplace transform converts time-

domain functions and operations into Laplace domain or transform. It facilitates 

the algebra behind the equations, providing a graphical solution to time-domain 

differential equations in a parameterized form that represents physical systems. The 

inverse Laplace transform performs the transformation between the frequency and 

time domains of the system, providing a bidirectional relationship. It is important 

to recall that the Fourier transform is used to study signals and the Laplace 

transform to study systems.  

 
3.1 Laplace and inverse Laplace transforms 

 
Laplace transforms convert time-domain functions and operations into Laplace domain, 

𝑓(𝑡) → 𝐹(𝑠), (𝑡 ∈ 𝑅, 𝑠 ∈ 𝐶), where R represents the set of real numbers and C the set of 

complex numbers. With this conversion, linear differential equations (LDE) are 

transformed into algebraic expressions in the complex plane, providing a simplified 

solution for key LDE characteristics.  

The transform has many applications in science and engineering because it is a tool for 

solving differential equations. It transforms linear differential equations into algebraic 

equations and convolution into multiplication[1, 2]. The Laplace transform presents a 

linear solution to solve high-order equations in the frequency domain, which Fourier 

transforms do not.  

For suitable functions f, the Laplace transform is the integral: 

 

𝐿{𝑓}(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
  (3.1) 

 

The mathematics of classical control theory depends on linear ordinary differential 

equations, which commonly arise in all scientific disciplines. Control theory emphasizes a 

powerful Laplace transform expression of linear differential equations.  
 

 

 
Figure 3.1: Representation of the relationships between time domain solutions and Laplace 

solutions. 
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One example of how a function is transformed into the Laplace domain from the 

definition is the following: for a function 𝑓(𝑡) = 𝑒−2𝑡, it is plugged into the definition of 

the Laplace transform: 

 

𝐹(𝑠) = 𝐿{𝑓}(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
  (3.2) 

𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑒−2𝑡𝑑𝑡
∞

0

= ∫ 𝑒−𝑠𝑡−2𝑡𝑑𝑡 = ∫ 𝑒−(𝑠+2)𝑡𝑑𝑡
∞

0

∞

0

 

Since s is a constant, it is integrated: 

𝐹(𝑠) =
−1

(𝑠 + 2)
𝑒−(𝑠+2)𝑡]

∞
0

 

 

𝐹(𝑠) = lim
𝑏→∞

−1

(𝑠 + 2)
𝑒−(𝑠+2)𝑡]

𝑏
0

 

Evaluating the interval, 

 

𝐹(𝑠) = lim
𝑏→∞

−1

(𝑠 + 2)
𝑒−(𝑠+2)𝑏 +

1

(𝑠 + 2)
𝑒−(𝑠+2)0 =

−1

(𝑠 + 2)
𝑒−∞ +

1

(𝑠 + 2)
𝑒0 =

1

(𝑠 + 2)
 

 

It is possible to check the solution in Table 3.1 given below.  
 

 

 

3.1.1 Properties of Laplace Transforms 

 

The properties of the Laplace transforms provide the tool to get polynomial algebraic 

equations from differential equations and the inverse transformation. The properties are 

the following [3]: 

 

a. Unicity: 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠) is unique. 

b. Linearity: If 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠) & 𝐿[𝑦(𝑡)] ↔ 𝑌(𝑠), then 𝐿[𝑎𝑥(𝑡) ∓ 𝑏𝑦(𝑡)] ↔
𝑎𝑋(𝑠) ∓ bY(s). 

c. Time shifting: If 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠), then  𝐿[𝑥(𝑡 − 𝑡0)] ↔ 𝑒−𝑠𝑡0𝑋(𝑠). 

d. Frequency shifting: If 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠), then  𝐿[𝑒𝑠0𝑡𝑥(𝑡)] ↔ 𝑋(𝑠 − 𝑠0). 

e. Time reversal: If 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠), then 𝐿[𝑥(−𝑡)] ↔ 𝑋(−𝑠). 

f. Time scaling: If 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠), then   𝐿[𝑥(𝑎𝑡)] ↔
1

|𝑎|
𝑋(

𝑠

𝑎
).  

g. Differentiation: If 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠), then 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠), then 𝐿 [
𝑑𝑥(𝑡)

𝑑𝑡
] ↔ 𝑠𝑋(𝑠) −

𝑠𝑋(0), and then 𝐿 [
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
] ↔ 𝑠𝑛𝑋(𝑠) − 𝑠𝑛−1𝑋(0) − 𝑠𝑛−2 [

𝑑𝑥

𝑑𝑡
]

𝑡=0
− ⋯ −

𝑠 [
𝑑𝑛−2𝑥

𝑑𝑡𝑛−2
]

𝑡=0
 − [

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
]

𝑡=0
. 

h. Integration: If 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠), then 𝐿[∫ 𝑥(𝑡)𝑑𝑡] ↔
1

𝑠
𝑋(𝑠), and then 

𝐿[∭ ⬚ … 𝑛 … ∫ 𝑥(𝑡)𝑑𝑡] ↔
1

𝑠𝑛 𝑋(𝑠) −
1

𝑠𝑛−1 𝑋(0) −
1

𝑠𝑛−2 [∫ 𝑥(𝑡)𝑑𝑡
⬚

]
𝑡=0

− ⋯ −
1

𝑠
[∭ ⬚ … 𝑛 − 2 … ∫ 𝑥(𝑡)𝑑𝑡]

𝑡=0
− [∭ ⬚ … 𝑛 − 1 … ∫ 𝑥(𝑡)𝑑𝑡]

𝑡=0
 

 

At this point, the definition of convolution is introduced, as it plays a key role in the 

properties of the Laplace transform. A convolution is an integral that expresses the 

amount of overlap of one function g(t) as it is shifted over another function f(t). It 

therefore "blends" one function with another. The convolution is sometimes also known 

by its German name, faltung ("folding"). 
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Abstractly, a convolution is defined as a product of functions g(t) and f(t) that are objects 

in 𝑅𝑛.  The convolution of two functions g(t) and f(t) over a finite range [0,t] is given by  

[𝑓 ∗ 𝑔](𝑡) ≡ ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
𝜏

0
  (3.3) 

where the symbol [𝑓 ∗ 𝑔](𝑡) denotes the convolution of g(t) and f(t).  

The convolution is more often taken over an infinite range,  

 

𝑓 ∗ 𝑔 ≡ ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞
= ∫ 𝑔(𝜏)𝑓(𝑡 − 𝜏)𝑑𝜏

∞

−∞
  (3.4) 

with the variable, in this case, t implied.  

 

Now, the rest of the properties are introduced: 

 

i. Multiplication: If 𝐿[𝑥(𝑡)] ↔ 𝑋(𝑠) and  𝐿[𝑦(𝑡)] ↔ 𝑌(𝑠), then, if 𝐿[𝑥(𝑡)𝑦(𝑡)] ↔
1

2𝜋𝑗
𝑋(𝑠) ∗ 𝑌(𝑠), 𝑗 = √−1 𝜖 ℂ. 

j. Convolution: Let 𝑓(𝑡) and 𝑔(𝑡) be causal functions with Laplace transforms 𝐹(𝑠) 

and 𝐺(𝑠) respectively, i.e., 𝐿{𝑓(𝑡)} = 𝐹(𝑠)  and 𝐿{𝑔(𝑡)} = 𝐺(𝑠). Then it can be 

shown that   

𝐿−1{𝐹(𝑠)𝐺(𝑠)} = (𝑓 ∗ 𝑔)(𝑡)  or equivalently 𝐿(𝑓 ∗ 𝑔)(𝑡) = 𝐹(𝑠)𝐺(𝑠). 

 

k. Initial value theorem: The initial value theorem of Laplace transform enables us to 

calculate the initial value of a function 𝑥(𝑡) (i.e., 𝑥(0)) directly from its Laplace 

transform 𝑋(𝑠) without the need for finding the inverse Laplace transform of 𝑋(𝑠). 

The initial value theorem of Laplace transforms states that, if: 

x(t)⟷L-1[X(s)]   (3.5) 

Then, 

lim
𝑡→0

𝑥(𝑡) = 𝑥(0) = lim
𝑠→∞

𝑠𝑋(𝑠) (3.6) 

 
Proof of this theorem may be found in [3] and [4]. 

 

l. Final value theorem: Consider a continuous physical function 𝑓(𝑡), a continuous 

derivative 
𝑑𝑓

𝑑𝑡
 , and a Laplace transform 𝐿[𝑓(𝑡)] ↔ 𝐹(𝑠) . The final-value theorem 

expresses the final, steady-state value of 𝑓(𝑡) in terms of 𝐹(𝑠) as: 

 

lim
𝑡→∞

𝑓(𝑡) = lim
𝑠→0

(𝑠𝐹(𝑠))  (3.7). 

 
This theorem is useful for finding the final value because it is almost always easier to 

derive the Laplace transform and evaluate the limit on the right-hand side, than to derive 

the equation for 𝑓(𝑡) and evaluate the limit on the left-hand side. Final-value theorem 

Equation (3.7) is valid provided that lim
𝑡→∞

𝑓(𝑡) exists (i.e., is a finite, constant value). But 

Equation (3.7) must be applied with care because the theorem itself fails to distinguish 

between functions for which the limit exists and functions that have no limit. Indeed, the 

theorem can predict falsely that an unstable system has a limit when, in fact, there is 

none, i.e., that lim
𝑡→∞

𝑓(𝑡) → ±∞. So, the condition for applying the theorem is that if f(t) 

is a function on (0,∞) and F(s) is its Laplace transform, then lim
𝑡→∞

𝑓(𝑡) exists and is equal 
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to lim
𝑠→0

𝑠𝐹(𝑠) on the condition that all of the poles of sF(s) lie in the left half-plane (i.e., 

the system is stable). 

The derivation of the final-value theorem is based on a definition of the Laplace 

transform equation and the derivative of the Laplace transform equation: 

𝐿 [
𝑑𝑓(𝑡)

𝑑𝑡
] = ∫ 𝑒−𝑠𝑡 [

𝑑𝑓(𝑡)

𝑑𝑡
] 𝑑𝑡 = 𝑠𝐹(𝑠) − 𝑓(0)

∞

0
 (3.8) 

Taking the limit of all terms as s→0 gives 

lim
𝑠→0

(
𝑑𝑓(𝑡)

𝑑𝑡
) = ∫ (

𝑑𝑓(𝑡)

𝑑𝑡
) 𝑑𝑡 = lim

𝑠→0
[𝑠𝐹(𝑠)] − 𝑓(0)

∞

0
 (3.9) 

Now the integral is evaluated easily: 

∫ (
𝑑𝑓(𝑡)

𝑑𝑡
) 𝑑𝑡 = 𝑓(∞) − 𝑓(0) = lim

𝑠→0
[𝑠𝐹(𝑠)] − 𝑓(0) ⟹

∞

0
 𝑓(∞) = lim

𝑠→0
[𝑠𝐹(𝑠)] (3.10) 

This completes the derivation of the final-value theorem. 
 

 

3.1.2  Table of Laplace Transforms 
  

 
𝑓(𝑡) 𝐿[𝑓(𝑡)] ↔ 𝐹(𝑠)  

Unitary impulse; 𝛿(𝑡)  1 

Unitary step; 1 1

𝑠
 , Re(s)>0 

Unitary ramp; 𝑡 1

𝑠2
, 𝑅𝑒(𝑠) > 0 

𝑡𝑛 𝑛!

𝑠(𝑛+1) , 𝑅𝑒(𝑠) >0 

𝑒𝑎𝑡 
𝐹(𝑠) =

1

(𝑠 − 𝑎)
, 𝑅𝑒(𝑠) > 0 

sin(𝑎𝑡) 𝐹(𝑠) =
𝑎

(𝑠2 + 𝑎2)
, 𝑅𝑒(𝑠) > 0 

cos(𝑎𝑡) 𝐹(𝑠) =
𝑠

(𝑠2 + 𝑎2)
, 𝑅𝑒(𝑠) > 0 

𝑒𝑎𝑡 sin(𝑏𝑡) 
𝐹(𝑠) =

𝑏

(𝑠2 − 𝑎2) + 𝑏2
, 𝑅𝑒(𝑠) > |𝑎| 

𝑒𝑎𝑡 cos(𝑏𝑡) 
𝐹(𝑠) =

(𝑠 − 𝑎)

(𝑠2 − 𝑎2) + 𝑏2
, 𝑅𝑒(𝑠) > |𝑎| 

𝑡𝑛𝑒𝑎𝑡 
𝐹(𝑠) =

𝑛!

(𝑠 − 𝑎)(𝑛+1)
, 𝑅𝑒(𝑠) > 𝑎 

Delay: 𝑦(𝑡 − 𝑇) 𝑒−𝑠𝑇𝑌(𝑠) 

 

Table 3.1: Laplace transform table [5]. 

 

3.1.3 Laplace inverse transform 

 

Given a function F(s) , the inverse Laplace transform of F , denoted by 𝐿−1[𝐹] , 

is that function f whose Laplace transform is F or, mathematically, 

𝑓(𝑡) = 𝐿−1{𝐹(𝑠)} ↔ 𝐿{𝑓(𝑡)} = 𝐹(𝑠)  (3.11) 

 

Finding the Laplace transform of a function is not very complicated if a table of 

transforms is provided. This section deals with going the other way. From a given  
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transform, 𝐹(𝑠) , output the original time domain function (or functions) the system has. 

Please note that this procedure is generally more difficult and lengthier than simply taking 

transforms. In these cases, it is said that the Inverse Laplace Transform of 𝐹(𝑠)  is 

calculated, and it is used with the following notation: 𝑓(𝑡) = 𝐿−1{𝐹(𝑠)}. 
As with Laplace transforms, the following property helps to take the inverse transform. 

Given the two Laplace transforms 𝐹(𝑠) and 𝐺(𝑠) then: 

𝐿−1{𝑎𝐹(𝑠) + 𝑏𝐺(𝑠)} = 𝑎𝐿−1{𝐹(𝑠)} + 𝑏𝐿−1{𝐺(𝑠)} (3.12) 

for any constants a, and b. 

So, the inverse transform of the individual transforms property may be used to put any 

constants back in and then add or subtract the results back up. 
 

So, one final time, partial fractions are a fact when using Laplace transforms to solve 

differential equations. When the factors of the denominator are of the first degree, but 

some are repeated, assume unknown numerators for each factor: 

• If a term is present twice, make the fractions the corresponding term and its second 

power. 

• If a term is present three times, make the fractions the term and its second and 

third powers. 

 

Example 3.1: Find the inverse transform of 𝐺(𝑠) =
6

𝑠(𝑠2+9)
 using partial fractions.  

 

Solution: 

  𝐺(𝑠) =
6

𝑠(𝑠2+9)
=

2

3

1

𝑠
−

2

3

𝑠

(𝑠2+9)
 and 𝐿−1 (

6

𝑠(𝑠2+9)
) = 𝐿−1 (

2

3

1

𝑠
) − 𝐿−1 (

2

3

𝑠

(𝑠2+9)
) = 

= 
2

3
𝐿−1 (

1

𝑠
) −

2

3
𝐿−1 (

𝑠

(𝑠2+9)
) =

2

3
𝑢(𝑡) −

2

3
(𝑐𝑜𝑠3𝑡 − 1)𝑢(𝑡) 

 

Example 3.2: Determine 𝑥(𝑡) and then verify the initial value theorem of the function 

given by, 𝑋(𝑠) =
1

𝑠+3
. 

 
Solution: 

The given function is, 

𝑋(𝑠) =
1

𝑠 + 3
 

Taking the inverse Laplace transform of 𝑋(𝑠),  

𝑥(𝑡) = 𝐿−1[𝑋(𝑠)] = 𝐿−1 [
1

𝑠 + 3
] → 𝑥(𝑡) = 𝑒−3𝑡 

just using the table of Laplace transforms. 

Therefore, the initial value of the function is, 

𝑥(0) = [𝑥(𝑡)]𝑡=0 → 𝑥(0) = [𝑒−3𝑡]𝑡=0 = 𝑒0 = 1 

Again, by the initial value theorem, we obtain, 

lim
𝑡→0

𝑥(𝑡) = 𝑥(0) = lim
𝑠→∞

𝑠
1

(𝑠 + 3)
 

𝑥(0) = lim
𝑠→∞

𝑠
1

(𝑠 + 3)
= 1 
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Hence, the initial value theorem is verified for the given function and for the stable 

transfer function X(s), as its pole lies in the negative real part of the 𝑠 -plane (𝑠 = −3), 

which is the necessary condition to apply the theorem. 

3.2 Transfer function 

 

A transfer function represents the relationship between the output signal of a control 

system and the input signal, for all possible input values. A block diagram is a 

visualization of the control system which uses blocks to represent the transfer function, 

and arrows which represent the various input and output signals. 

Every control system has a reference input, often called excitation or cause, that works 

through a transfer function to create a controlled output or response. 

 

Therefore, the cause-and-effect relationship between the output and input is related to 

each other through a transfer function. 

 

 
Figure 3.2: The relationship between the input and the output of a system is defined as transfer 

function. 

 

In Laplace Transform domain, if the input (reference) is represented by R(s) and the 

output is represented by Y(s), then the transfer function will be: 

𝐺(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
⇒ 𝑌(𝑠) = 𝐺(𝑠) ⋅ 𝑅(𝑠)  (3.13) 

That is, the transfer function of the system multiplied by the input function gives the 

output function of the system.  

 

Transfer function  is defined as the ratio of the Laplace transform of the output to the 

Laplace transform of the input, assuming zero initial conditions. 

𝐺(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
 (3.14) 

The procedure for determining the transfer function of a control system is as follows: 

1. The equations for the system are given or obtained. 

2. Now the Laplace transform of the system equations is taken, assuming the initial 

conditions are zero. 

3. Specify the system output and input. 

4. Lastly, the ratio of the Laplace transform of the output is taken to the Laplace 

transform of the input, which is the required transfer function. 

Inputs and outputs in a control system may differ. For instance, electric motors take 

electrical signals as inputs and produce mechanical outputs to rotate, while generators 

take mechanical inputs to generate electrical outputs. But for mathematical analysis of a 

system, all kinds of signals should be represented in a similar form. This is done by 

transforming all kinds of signals into their Laplace form. Also, the transfer function of a 

system is represented by the Laplace form by dividing the output the Laplace transfer 

function by the input Laplace transfer function. Hence, a basic block diagram of a control 

system can be represented as: 
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Figure 3.3: Representation of the relationship between the input and output of a system in the 

Laplace domain. 

 

where, 𝑅(𝑠) = 𝐿{𝑟(𝑡)}, 𝑌(𝑠) = 𝐿{𝑦(𝑡)}, and 𝐺(𝑠) =
𝐿{𝑦(𝑡)}

𝐿{𝑟(𝑡)}
 and, 𝑟(𝑡) and 𝑦(𝑡)are the 

time domain functions of the input and output signals, respectively. 

 

The transfer function provides a basis for determining important system response 

characteristics without solving the complete differential equation. In a general form the 

transfer function is composed of m zeros and n poles being n, m arbitrary number and 

𝑚 ≤ 𝑛. So, the transfer function can be written as: 

 

𝐻(𝑠) =
Y(s)

R(s)
=

b0sm+b1sm−1+⋯+bm 

a0sn+a1sn−1+⋯+an
 (3.15) 

 

It is often convenient to factor the polynomials in the numerator and denominator, and to 

write the transfer function in those factors: 

 

𝐻(𝑠) =
Y(s)

R(s)
=

𝐾(𝑠−𝑞1) (𝑠−𝑞2)…(𝑠−𝑞𝑛)

(𝑠−𝑝1)(𝑠−𝑝2)…(𝑠−𝑝𝑛)
 (3.16) 

 

where the numerator and denominator polynomials, Y(s) and R(s) have real coefficients 

defined by the system´s differential equation and 𝐾 =
𝑏0

𝑎0
⁄ . As written in Eq. (3.16) the 

𝑞𝑖´𝑠 are the roots of the equation 𝑌(𝑠) = 0 and are defined to be the system zeros, and 

𝑝𝑖´𝑠 are the roots of the equation 𝑅(𝑠) = 0 and are defined to be the system poles. All the 

coefficients of polynomials 𝑌(𝑠) = 0  and 𝑅(𝑠) = 0 are real, therefore the poles and zeros 

must be either purely real or appear in complex conjugate pairs. If a pole and zeros are 

sited in the same place in the s-plane they can be simplified in the transfer function.  

Moreover, the influence of the zeros and poles is larger if they are close to the origin of 

the s-plane. If they are placed far away to the origin, they can be neglected in the transfer 

function as their influence is minimal. In general, the real part of a pole indicates how 

quickly the transient portion of the corresponding mode decays to zero (assuming 

negative real part). Therefore, a transfer function which has one (or more) poles much 

farther to the left in the complex plane (more negative) than the other poles, their effect 

on the dynamic response will be hidden by the slower, more dominant poles. This is called 

as Model Reduction. 

 

The transfer function of a system can be converted to the steady state equations and vice 

versa. In MATLAB, the functions ss2tf(A,B,C,D) and tf2ss(num, den) allows these 

transformations: 

 
>> % First define state space system 

>> A=[0 1 0; 0 0 1; -3 -4 -2]; 

>> B=[0; 0; 1]; 

>> C=[5 1 0]; 

>> [n,d]=ss2tf(A,B,C,D) 
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n = 

0         0    1.0000    5.0000 

d = 

1.0000    2.0000    4.0000    3.0000 

 

>> mySys_tf=tf(n,d) 

Transfer function: 

s + 5 

---------------------- 

 The reader can write an script to check the functionality ss2tf.  

 
There are two major ways of obtaining a transfer function for the control system. The 

ways are: 

• Block Diagram Method: It is not convenient to derive a complete transfer function 

for a complex control system. Therefore, the transfer function of each element of 

a control system is represented by a block diagram. Block diagram reduction 

techniques are applied to obtain the desired transfer function. 

• Signal Flow Graphs: The modified form of a block diagram is a signal flow graph. 

Block diagrams visually outline a control system, while signal flow graphs 

provide a more compact representation. 

 

3.3 Block diagram 

 

A block diagram is a diagram of a system in which the principal parts or functions are 

represented by blocks connected by lines that show the relationships between the 

blocks. They are heavily used in engineering in hardware design, electronic design, 

software design, and process flow diagrams.   

Block diagrams are typically used for higher-level, less detailed descriptions that are 

intended to clarify overall concepts without concern for the details of implementation. 

Contrast this with the schematic diagrams and layout diagrams used in electrical 

engineering, which show the implementation details of electrical components and 

physical construction. 

 

Figure 3.4: Block diagram representation 

Block diagrams represent the frequency domain, or Laplace transform, of the dynamic 

system.  

Systems may be further classified according to the input signals. If they are continuous, 

discrete, fuzzy, etc., the system is then called a continuous system, a discrete system, or 

a fuzzy system. Moreover, systems may also be classified in relation to the connected 

signals to them. How the signals a system acquires provide another type of system, 

namely, continuous or discrete, deterministic or stochastics, mono-variable or multi-

variable. Finally, the intrinsic behavior corresponding to a mathematical operator 
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characterizes the systems as static or dynamic, linear or non-linear, time-independent or 

time-dependent, and concentrated or distributed systems.  

 

There are three main types of block diagrams: series decomposition, parallel 

decomposition, loop arrangement, and any combination of them. They are defined as: 

 

a) Series decomposition: the series decomposition diagram is the block diagram 

resulting from two or more block diagrams addressed in series, as shown in Figure 3.5.  
 
 

 
Figure 3.5: Series decomposition diagram. 

 

The resulting block diagram may be calculated as:  
 

{
𝐺2(𝑠) =

𝑌(𝑠)

𝑋(𝑠)

𝐺1(𝑠) =
𝑋(𝑠)

𝑅(𝑠)

      𝐺(𝑠) = 𝐺2(𝑠)𝐺1(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
         (3.15) 

 

being 𝐺1(𝑠), 𝐺2(𝑠), 𝐺(𝑠) transfer functions.  

 

b) Parallel decomposition: a parallel decomposition diagram is the block diagram 

resulting from two or more block diagrams addressed in parallel, as shown in Figure 3.6.  

 
Figure 3.6: Series decomposition diagram. 

 

The resulting block diagram may be calculated as:  
 

{
𝐺2(𝑠) =

𝑌2(𝑠)

𝑅(𝑠)

𝐺1(𝑠) =
𝑌1(𝑠)

𝑅(𝑠)

      𝐺(𝑠) = 𝐺2(𝑠) + 𝐺1(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
 (3.16) 

being 𝐺1(𝑠), 𝐺2(𝑠), 𝐺(𝑠) transfer functions.  

 

c) Loop arrangement: a loop arrangement or feedback loop diagram is the block diagram 

resulting from two or more block diagrams addressed in a closed loop or feedback loop, 

as shown in Figure 3.7. 
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Figure 3.7: Loop arrangement diagram. 

 

The resulting block diagram may be calculated as:  

 
𝑌(𝑠) = 𝐺(𝑠)𝐸(𝑠)

𝑀(𝑠) = 𝐻(𝑠)𝑌(𝑠)

𝐸(𝑠) = 𝑅(𝑠) − 𝑀(𝑠)

} 
𝑌(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1+𝐺(𝑠)𝐻(𝑠)
  (3.17) 

 

Being 𝐻(𝑠), 𝐺(𝑠) transfer functions of the sensor and the system.  

 

Any combination of the previous ones may be considered typical block diagrams in 

control theory. 
 

References [1−7] are starting points to delve into the systems and signals addressed in 

this chapter. For signal flow graphs, reference [7] presents a comprehensive introduction 

to them. 
 

Exercises: 

 

1. Find the inverse Laplace transform using the table 3.1 of the each of the following 

Laplace functions. 
 

a. 𝑌1(𝑠) = 𝐿[𝑦1(𝑡)] =
2

3+5s
 

b. 𝑌2(𝑠) = 𝐿[𝑦2(𝑡)] =
5s

s2+9
 

c. 𝑌3(𝑠) = 𝐿[𝑦3(𝑡)] =
3s+2

s2+25
 

d. 𝑌4(𝑠) = 𝐿[𝑦4(𝑡)] =
5

(s+2)3 

e. 𝑌5(𝑠) = 𝐿[𝑦5(𝑡)] =
𝑠+3

𝑠2+3𝑠+2
 

f. 𝑌6(𝑠) = 𝐿[𝑦6(𝑡)] =
𝑠2+𝑠+1

𝑠3+𝑠
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2.  Given the block diagram in Figure 3.8: 

 
Figure 3.8: Loop arrangement diagram. 

 

What is the equivalent relation between the output and input? 

3. Calculate the equivalent relation between the input and the output of the following 

block diagrams (Figures 3.9 and 3.10). In the diagrams,  d=d(s) is the disturbance to the 

system. To deal with the problem, first, suppose d(s)=0 and calculate Y(s) as a function 

of R(s). Then, suppose R(s)=0 and calculate Y(s) as a function of d(s). Sum both and that 

is the result. 

 

a. 

 
Figure 3.9: Loop arrangement diagram. 

 

 

b. 

 

 
Figure 3.10: Loop arrangement diagram. 

 

4. Demonstrate that the block diagram in Figure 3.11 has an output of the form: 

 

𝑦 =
𝐹𝐺𝐾

1 + 𝐺𝐾𝐻
𝑟 +

𝐺𝑑𝐺

1 + 𝐺𝐾𝐻
𝑑𝑒 +

1

1 + 𝐺𝐾𝐻
𝑛 
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Figure 3.11: System and feedback control under disturbances (𝑑𝑒), noise (n) signals, and 

filtered reference signal. 
 

Analyze and explain the block diagram. 

 

Hint: suppose first 𝑑𝑒 = 𝑛 = 0 and calculate the relationship between the reference and 

the output, second: 𝑟 = 𝑛 = 0, and calculate the relation between the disturbance and the 

output, and third: 𝑟 = 𝑑𝑒 = 0 and calculate  the relation between the noise and the output. 

Finally, sum all three. 
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Chapter 4: Transient Response of First- 

and Second-order Systems 

 
This chapter addresses the transient response of first- and second-order systems. 

They are analyzed in the Laplace domain, but the properties and characteristics are 

visualized in the time domain. The most significant characteristics of these systems 

are presented with mathematical contextualization. 
 
 

4.1 Transient response of first-order transfer function 

 

In this section, the responses of first order systems against unity step input and impulse 

are introduced. The output of the system is analyzed to determine the typical response 

parameters of these systems. The idea behind this is to set standard parameters that dictate 

the behavior of first-order systems. This idea will help to design and tune the parameters 

of the controller associated with a first-order system to enhance the system´s response 

and performance. 

 

Consider a first-order transfer function (strictly proper or stable, i.e., the pole of the 

transfer function lies on the left-hand side of the s-plane): 

 

𝐺(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

𝑏0

𝑠+𝑎0
  (4.1) 

 

  
 

Figure 4.1: Block diagram representation and pole placement in the s-plane of a first-order 

system. 

 

It is common to write 𝐺(𝑠) as: 

 

𝐺(𝑠) =
𝐾

𝜏𝑠+1
=

𝑏0

𝑠+𝑎0
 (4.2) 

i.e., 𝑎0 =
1

𝜏
 ; 𝑏0 =

𝐾

𝜏
. 

 

Example 4.1: 𝐺(𝑠) =
3

𝑠+2
=

1.5

0.5𝑠+1
 ; 𝑎0 = 2; 𝑏0 = 3; 𝐾 = 1.5;  𝜏 = 0.5. 

The pole of the system is at 𝑠 = −𝑎0 or 𝑠 = −
1

𝜏
 . 𝜏 is called the time constant. 𝐾 is called 

the DC-gain, or steady state gain.  
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Figure 4.2: Block diagram representation of a general system. 

What is the differential equation corresponding to the input-output system. The following 

equation: 

 

𝑌(𝑠) =
𝐾

𝜏𝑠+1
𝑅(𝑠)  (4.3) 

becomes 

 

(𝑠 + 1
𝜏⁄ )𝑌(𝑠) = 𝐾

𝜏⁄ 𝑅(𝑠)  (4.4) 

 

which is equivalent to 

 

�̇�(𝑡) + 1
𝜏⁄ 𝑦(𝑡) = 𝐾

𝜏⁄ 𝑟(𝑡)  (4.5) 

 

If it is considered the effect of both the input 𝑟(𝑡) and the initial condition 𝑦(0). Taking 

the Laplace transform of the differential equation, this time including the initial condition, 

yields: 

 

𝑠𝑌(𝑠) − 𝑦(0) + 1
𝜏⁄ 𝑌(𝑠) = 𝐾

𝜏⁄ 𝑅(𝑠)  (4.6) 

 

or 

𝑌(𝑠) =
𝑦(0)

𝑠+1
𝜏⁄

+
𝐾

𝜏⁄

𝑠+1
𝜏⁄

𝑅(𝑠)  (4.7) 

 

Note that the initial condition could be represented in the differential equation by an input 

𝑦(0)𝛿(𝑡) where 𝛿 is the unit impulse function, as: 

 

�̇�(𝑡) +
1

𝜏
𝑦(𝑡) =

𝐾

𝜏
𝑟(𝑡) + 𝑦(0)𝛿(𝑡)  (4.8) 

 

In the block diagram representation, it is shown as 

 
 

Figure 4.3: Block diagram representation of a first-order system considering initial conditions. 
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By superposition, the response of the system is the sum of the response due to the initial 

condition alone (the free response) and the response due to the input 𝑅(𝑠) (the forced 

response). 

 

4.1.1 Step response of a first-order system 

 

If 𝑅(𝑠) = 1
𝑠⁄  , i.e., 𝑟(𝑡) is the unit step function, then the forced response (step response) 

is given (supposing initial conditions equal to zero) as 

 

 

𝑌(𝑠) =
𝐾

𝜏⁄

𝑠+1
𝜏⁄

1

𝑠
=

𝐾

𝑠
−

𝐾

𝑠+1
𝜏⁄
 (4.9) 

 

In the time domain, 

 

𝑦(𝑡) = 𝐾 (1 − 𝑒−𝑡
𝜏⁄ ) 𝑟(𝑡)  (4.10) 

 

   
Figure 4.4: Output response of a first order system and slope of the response against step input. 

If the response continues to increase at its initial rate, it will reach its steady state value 𝐾 

after 𝜏 − seconds. 

It is said that the forced response is composed of two terms: 1)  −𝐾𝑒−𝑡
𝜏⁄  called the 

transient response and 2) 𝐾 called the steady state response. 

 

Then, the slope of  𝑦(𝑡) at 𝑡 = 0 is 

 
𝑑

𝑑𝑡
𝑦(𝑡)|

𝑡=0
=

𝐾

𝜏
𝑒−𝑡

𝜏⁄ |
𝑡=0

=
𝐾

𝜏
  (4.11) 

 

That means that the transient response will decay to zero after 𝜏 − seconds. In practice it 

is said that the system reaches about 63% (1 − 𝑒−1 = 0.37) after one time constant and 

has reached the steady state after four times constants. 

𝑦 =
𝐾

𝜏
𝑡 
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Figure 4.5: Unit step input time response of a first order control system against step input. 

Example 4.2: 𝐺(𝑠) =
5

𝑠+2
=

2.5

0.5𝑠+1
 ; the time constant 𝜏 = 0.5 and the steady state value 

for a unit step input 𝐾 = 2.5. 

 
Figure 4.6: Unit time step response of the system given in Example 4.2. 

The classification of system responses into forced and free responses, and transient and 

steady-state responses is not limited to first-order systems but can be applied to transfer 

functions 𝐺(𝑠) of any order. 

 

The DC-gain of any transfer function is defined as 𝐺(0) and the steady state value of the 

system to a unit step input, provided that the system has a steady state value. This follows 

from the final value theorem: 

 

lim
𝑡→∞

𝑦(𝑡) = lim
𝑠→0

𝑠𝑌(𝑠) = lim
𝑠→0

𝑠𝐺(𝑠)𝑅(𝑠) = 𝐺(0)  if 𝑅(𝑠) =
1

𝑠
 (4.12) 

 

provided that 𝑠𝐺(𝑠)  has no poles on the right-hand side. 

As a result, the following characteristics of first-order systems are defined: 
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a) Time Constant of a First-Order Control System 
 

The time constant can be defined as the time it takes for the step response to rise to 63%, 

or 0.63 of its final value. It is referred to as t = 1/a. Please note that the reciprocal of the 

time constant unit is 1/seconds, or frequency. 

The parameter “a” is called the exponential frequency. Because the derivative of e-at is -a 

at t = 0. So, the time constant is considered a transient response specification for a first-

order control system. 

It is possible to control the speed of response by setting the poles. Because the further the 

pole from the imaginary axis, the faster the transient response is. So, it is feasible to set 

poles distant from the imaginary axis to speed up the whole process. 

b) Rise Time of a First Order Control System 
 

The rise time is defined as the time for the waveform to go from 0.1 to 0.9, or 10% to 

90% of its final value. For the equation of rising time, we put 0.1 and 0.9 in the general 

first-order system equation, respectively. 

For t = 0.1, 𝑦(𝑡) = 1 − 𝑒−𝑎(0.1) , 𝑇𝑟 =
0.11

𝑎
. 

For t = 0.9, y(𝑡) = 1 − 𝑒−𝑎(0.9) , 𝑇𝑟 =
2.31

𝑎
. 

Taking the difference: 𝑇𝑟 =
2.31

𝑎
−

0.11

𝒂
=

2.2

𝒂
(4.13). Here is the equation for rising time. If 

the value of the parameter a is known, it is feasible to compute the step response of a 

given system. This shows that the qualitative approach works well with first order 

systems. 

c) Settling Time of a First Order Control System 

The settling time is defined as the time for the response to reach and stay within 2% of its 

final value. Normally, the percentage is limited to 5% of its final value. Both percentages 

are generally considered. The equation of settling time is given by Ts = 4/a (4.14).  

By using these three transient response specifications, it is easily computed the step 

response of a given system. That’s why this qualitative technique is useful for order 

systems equations. 

As previously seen, a standard form of first order transfer functions is defined as: 

𝐺(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

𝐾

𝜏𝑠+1
  

The important characteristics of the standard form are as follows: 

a. The denominator must be of the form 𝜏𝑠 + 1. 
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b. The coefficient of the s term in the denominator is the system time constant 𝜏. 

c. The numerator is the steady-state gain K. 

4.1.2 Impulse response of a first-order system 

Recall that an impulse is a large force applied over a very short period. In practice, an 

example of an impulse would be a hammer striking a surface. Mathematically, a unit 

impulse is referred to as a Dirac delta function, denoted by 𝛿(𝑡). It is called a unit impulse 

because its area is 1. As shown in figure 4.7, the force is applied over the time from 0 to 

t1. Therefore, as t1 approaches zero, for the area to remain equal to 1 the height must 

approach infinity.  

 

 
Figure 4.7: Dirac delta function. 

 

 

Consider the unit impulse signal as an input to the first order system, 𝑟(𝑡) = 𝛿(𝑡). 

Apply the Laplace transform on both sides, 𝑅(𝑠) = 1. 

Consider the equation of a first-order system, 𝑌(𝑠) = (𝜏𝑠 + 1)𝑅(𝑠), please note the DC-

gain K=1 in this case, and substitute, 𝑅(𝑠) = 1 in the equation: 

 

𝑌(𝑠) =
1

(𝜏𝑠+1)
(1) =

1

(𝜏𝑠+1)
  (4.15) 

 
Rearrange the above equation in one of the standard forms of Laplace transforms, 

 

𝑌(𝑠) =
1

𝜏(𝑠+1
𝜏⁄ )

=
1

𝜏

1

(𝑠+1
𝜏⁄ )

 (4.16) 

 

Apply the inverse Laplace transform on both sides, 

𝑦(𝑡) =
1

𝑇
𝑒

−𝑡

𝜏 𝑢(𝑡)  (4.17) 

 

The unit impulse response is shown in the following figure. 
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Figure 4.8: Unit impulse response of a first order system. 

The unit impulse response, y(t) is an exponential decaying signal for positive values of 

‘t’, and it is zero for negative values of ‘t’. 

 

4.2 Transient response of second-order transfer function 
 

The following differential equation is used here to investigate the transient response of 

second order differential equations using Laplace transform: 

 
𝑚𝑦 ̈ (𝑡) + 𝑏(𝑡) + 𝑘𝑦(𝑡) = 𝑟(𝑡) (4.18) 

 

which it´s Laplace transform for �̇�(0) = 𝑦(0) = 0 𝑌(𝑠) =
𝑅(𝑠)

𝑚𝑠2+𝑏𝑠+𝑘
 

The general expression of the transfer function of the second order control system can be 

expressed in canonical form as; 
𝑌(𝑠)

𝑅(𝑠)
=

𝐾𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2  (4.19), here 𝜁, 𝜔𝑛

2 are the damping ratio 

and the natural frequency of the system, respectively. Rearranging the formula; 𝑌(𝑠) =
𝐾𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2 𝑅(𝑠) . Using this as a base, the time response of a second order control system 

is analyzed by examining the unit step response of a second-order control system in the 

frequency domain, before converting it into the time domain. 

 

4.2.1 Step response of a second-order system 
 

Consider the general form of a second order transfer function  
 

𝐺(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

𝑏0

𝑠2+𝑎1𝑠+𝑎0
 (4.20) 

 

The standard form of this transfer function is  

 

𝐺(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

𝐾𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2
 (4.21) 

 

𝜔𝑛 is called the natural frequency (or undamped natural frequency), 𝜁 is called the 

damping ratio. The roots of the characteristic equation 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = 0 give the 

poles of the system.   
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𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2 = 0 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜁2𝜔𝑛
2 − 𝜁2𝜔𝑛

2 + 𝜔𝑛
2 = 0 

(𝑠 + 𝜁𝜔𝑛)2 − 𝜁2𝜔𝑛
2 + 𝜔𝑛

2 = 0 

(𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)2 = 0 

𝑠1 = −𝜁𝜔𝑛 + 𝑗𝜔𝑛√1 − 𝜁2 𝑎𝑛𝑑 𝑠2 = −𝜁𝜔𝑛 − 𝑗𝜔𝑛√1 − 𝜁2 

These two roots of the equation, or these two values of s, represent the poles of the transfer 

function of that system. The real part of the roots represents the damping, and the 

imaginary part represents the damped frequency of the response. A general analysis of 

the different cases is given as follows (see Figure 4.9): 

Case i: The two roots are imaginary when 𝜁 = 0. Undamped system. 

Case ii: The two roots are real and equal when 𝜁 = 1. Critically damped system (𝜁 = 1). 

Case iii: The two roots are real but not equal when  𝜁 > 1. Overdamped system (𝜁 > 1). 

Case iv: The two roots are complex conjugate when 0 < 𝜁 < 1. Under damped system. 

 

Figure 4.9: Pole placement for undamped, overdamped, or critically damped and underdamped 

systems. 

The location of the roots of the characteristics equation for various values of 𝜁 and 𝜔𝑛 is 

shown in Figure 4.10 and the corresponding time response for a second order control 

system is shown in the Figure 4.11 below.  
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Figure 4.10: Characteristics of the second order underdamped and undamped systems in 

function of the natural frequency 𝜔𝑛 (left) and damping ratio 𝜁 (right). 

 

Follow these steps to get the response (output) of the second order system in the time 

domain. 

1. Take the Laplace transform of the input signal, 𝑅(𝑠). 

2. Consider the equation 𝑌(𝑠) =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2 𝑅(𝑠). 

3. Substitute the R(s) value in the above equation. 

4. Do partial fractions of Y(s) if required. 

5. Apply the inverse Laplace transform to Y(s). 
 

If a unit step function is considered as the input of the system ( 𝑟(𝑡) = 1 𝑜𝑟 𝑅(𝑠) =
1

𝑠
 ), the 

system is studied for the four cases that appeared. These are: 

a) Case i: 𝜁 = 0, 𝑌(𝑠) =
𝜔𝑛

2

𝑠2+𝜔𝑛
2 𝑅(𝑠) , 𝑅(𝑠) =

1

𝑠
 , so, 𝑌(𝑠) =

1

𝑠

𝜔𝑛
2

𝑠2+𝜔𝑛
2 , applying inverse Laplace 

transform on both sides: 𝑦(𝑡) = 1 − cos(𝜔𝑛𝑡). So, the unit step response of the second-

order system when 𝜁 = 0, will be a continuous time signal with constant amplitude and 

frequency. As in this expression, 𝑦(𝑡) = 1 − cos(𝜔𝑛𝑡)(4.22) there is no exponential term, 

and the time response of the control system is un-damped for the unit step input 

function with a zero-damping ratio. 

 

b) Case ii: 𝜁 = 1, 𝑌(𝑠) =
𝜔𝑛

2

𝑠2+2𝜔𝑛𝑠+𝜔𝑛
2 𝑅(𝑠), 𝑅(𝑠) =

1

𝑠
, 𝑌(𝑠) =

1

𝑠

𝜔𝑛
2

𝑠2+2𝜔𝑛𝑠+𝜔𝑛
2 =

1

𝑠

𝜔𝑛
2

(𝑠+𝜔𝑛)2, making 

partial fractions, 𝑌(𝑠) =
1

𝑠

𝜔𝑛
2

(𝑠+𝜔𝑛)2 =
𝐴

𝑠
+

𝐵

𝑠+𝜔𝑛
+

𝐶

(𝑠+𝜔𝑛)2, and solving 𝑌(𝑠) =
1

𝑠
−

1

𝑠+𝜔𝑛
−

𝜔𝑛

(𝑠+𝜔𝑛)2, 

using the inverse Laplace transform from the table, 𝑦(𝑡) = 1 − 𝑒−𝜔𝑛𝑡(1 + 𝜔𝑛𝑡) (4.23). 

So, the unit step response of the second order system will try to reach the step input 

in a steady state. 𝑦(𝑡) = 1 − 𝑒−𝜔𝑛𝑡(1 + 𝜔𝑛𝑡). In this expression of the output signal, there 

is no oscillating part in the subjective unit step function. And hence, at this time, the 

response of the second-order control system is referred to as critically damped. 

 

c) Case iii: 0 < 𝜁 < 1, the characteristic equation is modified as follows:  

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = 0 ; 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜁2𝜔𝑛

2 − 𝜁2𝜔𝑛
2 + 𝜔𝑛

2 = 0; (𝑠 + 𝜁𝜔𝑛)2 − 𝜁2𝜔𝑛
2 + 𝜔𝑛

2 = 0;  
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(𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)2 = 0  or   (𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2) = 0. So, the transfer function may 

be represented as: 𝑌(𝑠) =
𝜔𝑛

2

(𝑠+𝜁𝜔𝑛)2+𝜔𝑛
2(1−𝜁2)

𝑅(𝑠), with 𝑅(𝑠) =
1

𝑠
 . Making partial fractions: 

𝑌(𝑠) =
1

𝑠
 

𝜔𝑛
2

(𝑠+𝜁𝜔𝑛)2+𝜔𝑛
2(1−𝜁2)

=
𝐴

𝑠
+  

Bs+C

(𝑠+𝜁𝜔𝑛)2+𝜔𝑛
2(1−𝜁2)

. So,  

𝑌(𝑠) =
1

𝑠
−  

s + 2𝜁𝜔𝑛

(𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2)

=
1

𝑠
−  

s + 𝜁𝜔𝑛

(𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2)

− 
𝜁𝜔𝑛

(𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2)

=
1

𝑠
−  

s + 𝜁𝜔𝑛

(𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)2
−  

𝜁

√1 − 𝜁2

𝜔𝑛√1 − 𝜁2

(𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)2
 

 

 

And 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 . Applying the Laplace inverse transform, 

 

 𝑦(𝑡) = 1 − 𝑒−𝜁𝜔𝑛𝑡 cos(𝜔𝑑𝑡) −
𝜁 

√1−𝜁 2
𝑒−𝜁𝜔𝑛𝑡sin(𝜔𝑑𝑡) = 

= (1 −
𝑒−𝜁𝜔𝑛𝑡

√1−𝜁 2
(√1 − 𝜁 2 cos(𝜔𝑑𝑡) + 𝜁 sin(𝜔𝑑𝑡))) (4.24). 

If √1 − 𝜁 2 = 𝑠𝑖𝑛𝜃, then 𝜁 = 𝑐𝑜𝑠𝜃, substitute these values in the previous equation: 

 

𝑦(𝑡) = (1 −
𝑒−𝜁𝜔𝑛𝑡

√1−𝜁 2
(𝑠𝑖𝑛𝜃 cos(𝜔𝑑𝑡) + 𝑐𝑜𝑠𝜃 sin(𝜔𝑑𝑡))) = 1 −

𝑒−𝜁𝜔𝑛𝑡

√1−𝜁 2
sin(𝜔𝑑𝑡 + 𝜃) with 𝜔𝑑 =

𝜔𝑛√1 − 𝜁2 (4.25). 

So, the unit-step response of the second-order system has damped oscillations 

(decreasing amplitude) when 𝜁 lies between zero and one. 

The error signal is given by 𝑒(𝑡) = 𝑦(𝑡) − 𝑟(𝑡) , and hence, 

 

𝑒(𝑡) =
𝑒−𝜁𝜔𝑛𝑡

√1−𝜁 2
sin(𝜔𝑑𝑡 + 𝜙) (4.26) 

From the above expression, the error of the signal is of the oscillation type with 

exponentially decaying magnitude when 𝜁 < 1. 

The frequency of the oscillation is 𝜔𝑑 , and the time constant of exponential decay is 

1/ζ𝜔𝑛. Where 𝜔𝑑 is referred to as the damped frequency of the oscillation and 𝜔𝑛 is the 

natural frequency of the oscillation. The term 𝜁 affects that damping significantly, and 

hence this term is called damping ratio. The systems that behave in this manner are known 

as underdamped systems.  
 

d) Case iv: 𝜁 > 1, we modify the characteristic equation as follows:  

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = 0 ; 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜁2𝜔𝑛

2 − 𝜁2𝜔𝑛
2 + 𝜔𝑛

2 = 0; (𝑠 + 𝜁𝜔𝑛)2 − 𝜁2𝜔𝑛
2 + 𝜔𝑛

2 = 0; as ζ > 1,  

(𝑠 + 𝜁𝜔𝑛)2 − (𝜔𝑛√1 − 𝜁2)2 = 0  or   (𝑠 + 𝜁𝜔𝑛)2 − 𝜔𝑛
2(1 − 𝜁2) = 0.  

So, the transfer function may be represented as: 𝑌(𝑠) =
𝜔𝑛

2

(𝑠+𝜁𝜔𝑛)2−𝜔𝑛
2(1−𝜁2)

𝑅(𝑠), with 𝑅(𝑠) =

1

𝑠
 . Making partial fractions: 𝑌(𝑠) =

1

𝑠
 

𝜔𝑛
2

(𝑠+𝜁𝜔𝑛)2−𝜔𝑛
2(1−𝜁2)

=
1

𝑠
 

𝜔𝑛
2

(𝑠+𝜁𝜔𝑛+𝜔𝑛√1−𝜁2)(𝑠+𝜁𝜔𝑛−𝑗𝜔𝑛√1−𝜁2)
=
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𝐴

𝑠
+ 

B

(𝑠+𝜁𝜔𝑛+𝜔𝑛√1−𝜁2)
+

𝐶

(𝑠+𝜁𝜔𝑛−𝜔𝑛√1−𝜁2
. Solving the equation, we may get; 𝐴 = 1 ; 𝐵 =

1

2√𝜁2−1(𝜁−√𝜁2−1)
; 𝐶 =

−1

2√𝜁2−1(𝜁−√𝜁2−1)
 

The output of the system 𝑦(𝑡) against step input is: 

𝑦(𝑡) = 1 −
𝑒

−(𝜁−√𝜁2−1)𝜔𝑛𝑡

2√𝜁2−1(𝜁−√𝜁2−1)
+

𝑒
−(𝜁+√𝜁2−1)𝜔𝑛𝑡

2√𝜁2−1(𝜁+√𝜁2−1)
  (4.27) 

 

Figure 4.11: Critical, under, and overdamped time domain response of second-order system. 

Since it is overdamped, the unit step response of the second-order system when 𝜁 > 1 

will never reach step input in the steady state. 

 
In the above expression, there are two-time constants. 

𝑇1 =
1

(𝜁 − √𝜁2 − 1)𝜔𝑛

 

and  

𝑇2 =
1

(𝜁 + √𝜁2 − 1)𝜔𝑛
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For the value of 𝜁 comparatively much greater than one, the effect of a faster time constant 

on the time response can be neglected, and the time response expression finally comes as: 
 

𝑦(𝑡) = 1 −
𝑒

−(𝜁−√𝜁2−1)𝜔𝑛𝑡

2√𝜁2−1(𝜁−√𝜁2−1)
  (4.28) 

The time constant of the response is: 

𝑇 =
1

(𝜁 − √𝜁2 − 1)𝜔𝑛

 

 

The time response expression of a second order control system subject to a unit step 

input function is given below. 

𝑦(𝑡) = 1 −
𝑒−𝜁𝜔𝑛𝑡

√1−𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2)𝑡 + 𝑡𝑎𝑛−1 (

√1−𝜁2

𝜁
)}  (4.29) 

The term 𝜁𝜔𝑛 is responsible for damping of the output response.  It is already examined 

that when the value of  𝜁(also known as damping ratio) is less than unity, the oscillation 

of the response decays exponentially with a time constant 1
𝜁𝜔𝑛

⁄ . This is called under-

damped response. On the other hand, when 𝜁 is greater than unity, the response of the unit 

step input given to the system, does not exhibit an oscillating part in it. This fact is called 

an overdamping response. The case when the damping ratio is unity, that is, 𝜁= 1, was 

also considered.  In this situation, the damping of the response is governed by the natural 

frequency 𝜔𝑛 only. The actual damping in that condition is known as critical damping of 

the response. 

As it is already seen in the associated expressions of the time response of the control 

system subject to the input step function, the oscillation part is present in the response 

when the damping ratio (𝜁) is less than one and it is not present in the response when 

damping ratio is equal to one. That means the oscillation part of the response just 

disappears when the damping ratio becomes one. That is why the damping of the response 

at 𝜁 = 1 is known as critical damping. More precisely, when the damping ratio is unity, 

the response is critically dampened, and then the damping is known as critical damping. 

The ratio of the time constant of critical damping to that of actual damping is known as 

the damping ratio. The time constant of the time response of the control system is 
1

𝜁𝜔𝑛
⁄ when 𝜁 ≠ 1 , and the time constant is 1 𝜔𝑛

⁄  when 𝜁 = 1. 

𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑎𝑚𝑝𝑖𝑛𝑔

𝑇𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑚𝑝𝑖𝑛𝑔
=

1
𝜔𝑛

1
𝜁𝜔𝑛

= 𝜁 

The performance of the control system can be expressed in terms of the transient response 

to a unit-step input function because it is easy to generate. If it is considered a second-

order control system in which a unit-step input signal is given, it is also reflected that the 

system is initially at rest. That is, all the initial conditions of the system are zero. The time 
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response characteristics of the system under  a damping condition is shown in Figure 4.12. 

There are a few common terms in transient response characteristics, among which are: 

a) Delay time (𝜃𝑝) is the time required to reach 50% of its final value by a time response 

signal during its first cycle of oscillation. 

b) Rise time (𝑡𝑟) is the time required to reach the final value of an under damping time 

response signal during its first cycle of oscillation. If the signal is overdamped, then 

rise time is counted as the time required by the response to rise from 10% to 90% of 

its final value. 

c) Peak time (𝑡𝑝) is simply the time required by the response to reach its first peak, i.e., 

the peak of the first cycle of oscillation, or first overshoot. 

d) Maximum overshoot (𝑀𝑝) is the straight-way difference between the magnitude of 

the highest peak of the time response and the magnitude of its steady state. The 

maximum overshoot is expressed in terms of the percentage of the steady-state value 

of the response. As the first peak of a response is normally the maximum in 

magnitude, the maximum overshoot is simply the normalized difference between the 

first peak and the steady-state value of a response, 𝑀𝑝(%) =
𝑐(𝑡𝑝)−𝑐(∞)

𝑐(∞)
∗ 100(%) (4.30). 

e) Settling time (𝑡𝑠) is the time required for a response to become steady. It is defined 

as the time required by the response to reach and remain steady within a specified 

range of 2 % to 5 % of its final value. 

f) Steady-state error (𝑒𝑠𝑠) is the difference between actual output and desired output 

over an infinite range of time, 𝑒𝑠𝑠 = lim
𝑡→∞

[𝑟(𝑡) − 𝑦(𝑡)]. In terms of the response of the 

systems, 𝑦𝑠𝑠, the Laplace domain, supposing a second order system: 

 

𝑦𝑠𝑠 = lim
𝑠→0

𝑠𝑌(𝑠) = lim
𝑠→0

𝑠 (
1

𝑠
) 𝐺(𝑆) = lim

𝑠→0

𝐾𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2

=
𝐾𝜔𝑛

2

𝜔𝑛
2

= 𝐾 

 

 
Figure 4.12: Characteristics of the second order underdamped system. 

 

Some formulas are derived from the definitions and mathematical approaches (Figure 4.12). 

These are defined as follow:  
 

a) Rise Time Formula 

The expression of an underdamped second-order control system with a unit step 

input function, 
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𝑦(𝑡) = 1 −
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝑡𝑎𝑛−1 (

√1 − 𝜁2

𝜁
)}

= 1 −
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝜙} 

Again, as per definition, the magnitude of output signal at rise times, is 1. That is y(t) 

= 1, hence, 

𝑦(𝑡) = 1 = 1 −
𝑒−𝜁𝜔𝑛𝑡

√1−𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2)𝑡 + 𝜙} ⟹

𝑒−𝜁𝜔𝑛𝑡

√1−𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2)𝑡 + 𝜙} = 0 ⇒

𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2)𝑡 + 𝜙} = 0 ⟹ {(𝜔𝑛√1 − 𝜁2)𝑡 + 𝜙} = 𝜋 ⟹ 𝒕𝒓 =
𝝅−𝝓

𝝎𝒏√𝟏−𝜻𝟐
 (4.31) 

b) Peak Time Formula 

As per definition, at the peak time, the response curve reaches to its maximum value. 

Hence, at that point, 
𝑑𝑦(𝑡)

𝑑𝑡
= 0 

𝑑𝑦(𝑡)

𝑑𝑡
= −

𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
𝜔𝑛√1 − 𝜁2𝑐𝑜𝑠 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝜙} −

(−𝜁𝜔𝑛)𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝜙}

= 0 ⟹ 
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
[−𝜔𝑛√1 − 𝜁2𝑐𝑜𝑠 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝜙} +

𝜁𝜔𝑛𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝜙}] = 0 ⟹ 

𝜔𝑛√1 − 𝜁2𝑐𝑜𝑠 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝜙} =
𝜁𝜔𝑛𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝜙} ⟹ 

𝑡𝑎𝑛 {(𝜔𝑛√1 − 𝜁2) 𝑡 + 𝜙} =
𝜔𝑛√1 − 𝜁2

𝜁
= 𝑡𝑎𝑛𝜙 ⟹ 

(𝜔𝑛√1 − 𝜁2) 𝑡 = 𝑛𝜋, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2,3 … ⟹ 

𝒕𝒑 =
𝝅

𝝎𝒏√𝟏−𝜻𝟐
   (4.32) 

 

Because the maximum overshoot occurs at the first overshoot or frequency, the peak time 

arises at that frequency. 
 

c) Maximum Overshoot Formula 

If the expression of the peak time is placed in the expression of the output response y(t), 

and it is obtained, 

𝑦(𝑡)𝑚𝑎𝑥 = 1 −
𝑒−𝜁𝜔𝑛𝑡𝑝

√1−𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2)𝑡𝑝 + 𝜙} ⟹ 𝑦(𝑡)𝑚𝑎𝑥 = 1 −

𝑒

−𝜁𝜔𝑛
𝜋

𝜔𝑛√1−𝜁2

√1−𝜁2
𝑠𝑖𝑛 {(𝜔𝑛√1 − 𝜁2)

𝜋

𝜔𝑛√1−𝜁2
+ 𝜙} ⟹ 𝑦(𝑡)𝑚𝑎𝑥 = 1 −

𝑒

−
𝜁𝜋

√1−𝜁2

√1−𝜁2
𝑠𝑖𝑛{𝜋 + 𝜙} = 1 −

𝑒

−
𝜁𝜋

√1−𝜁2

√1−𝜁2
(−𝑠𝑖𝑛𝜙) = 1 +

𝑒

−
𝜁𝜋

√1−𝜁2

√1−𝜁2
𝑠𝑖𝑛𝜙 = 1 +

𝑒

−
𝜁𝜋

√1−𝜁2

√1−𝜁2
√1 − 𝜁2 = 1 + 𝑒

−
𝜁𝜋

√1−𝜁2
⟹ 𝑀𝑝 =

𝑦(𝑡)𝑚𝑎𝑥 − 1 = (1 + 𝑒

−𝜁𝜋

√1−𝜁2
 ) − 1 ⟹ 𝑴𝒑 = 100 ∗ 𝒆

−𝜻𝝅

√𝟏−𝜻𝟐
(4.33) 
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So, the maximum overshoot is the value that takes the output signal at the peak time.  

d) Settling Time Formula 

It is already defined that the settling time of a response is that time after which the 

response reaches its steady-state condition with a value above nearly 95% or 98% of its 

final value. 

It is also observed that this duration is approximately four times the time constant of a 

signal. At the time constant of a second-order control system, 1 𝜁𝜔𝑛
⁄ , the expiration of 

settling time can be given as, 𝒕𝒔 =
𝟒

𝜻𝝎𝒏
(4.34). 

 

This information and further analysis may be found in any book about Laplace transform 

[5, 6], or automatic control, for example, [7]. 

 

The MATLAB command that outputs this information is; S = stepinfo(sys) [8]. 

 

4.2.2 Impulse response of a second-order system 

 

The equation of motion describing the behavior of a second-order mass-spring-dashpot 

system with a unit impulse input is: 
 
 

𝑌(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2    with 𝑅(𝑠) = 1 which corresponds to: 𝑟(𝑡) = 𝛿(𝑡). 

 

For an under-damped system, (𝜁 < 1), the response against impulse input, assuming zero 

initial conditions, is: 

 

                           𝑦(𝑡) =
1

𝜔𝑑
𝑒−𝜁𝜔𝑛𝑡 sin 𝜔𝑑𝑡   (4.35) 

With 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2. 

 

For a critically damped system, (𝜁 = 1), the response against impulse input, assuming 

zero initial conditions, is: 

 

                            𝑦(𝑡) = 𝑡𝑒−𝜔𝑛𝑡 (4.36) 

 

For and over-damped system, (𝜁 > 1), with zero initial conditions, the response is 

 

    𝑦(𝑡) =
1

2𝜔𝑛√𝜁2−1
(𝑒−𝜔𝑛(𝜁−√𝜁2−1)𝑡 − 𝑒−𝜔𝑛(𝜁+√𝜁2−1)𝑡) (4.37) 
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Figure 4.13: Characteristics of the second order system against impulse input. 
 

 

Exercises: 

 

1. Identify the time constant and the steady state gain of the first-order system, which 

has the following transfer functions  against the unity step function: 

 

a. 𝐺1(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

2

𝑠+3
 

b. 𝐺2(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

2

3+5s
 

 

2. Consider the following systems: 
 

4.3 𝐺1(𝑠) =
1

s2+2s+1
 

4.4 𝐺2(𝑠) =
1

s2+0.4s+1
 

4.5 𝐺3(𝑠) =
1

s2+5s+1
 

4.6 𝐺4(𝑠) =
1

s2+s+1
 

4.7 𝐺5(𝑠) =
4

s2+2s+4
 

 

Find 𝑡𝑟 (rise time), 𝑡𝑠 (settling time), and M (overshoot) for the step response. Corroborate 

the results using MATLAB to plot the step responses. MATLAB command (S = 

stepinfo(sys)).  

Calculate the poles of the system and explain how the location of the poles is related to 

the properties of the step response. 
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Chapter 5: Steady State Errors Analysis 

 

The steady-state error is a measure of system accuracy. These errors arise from the 

nature of the inputs, the type of the system, and the nonlinearities of system 

components such as static friction, backlash, etc. These are generally aggravated by 

amplifier drifts, aging, or deterioration. The steady-state performance of a stable 

control system is generally judged by its steady state error to step, ramp, and 

parabolic inputs. 

The steady-state error is a measure of system accuracy. These errors arise from the nature 

of the inputs, system type and from nonlinearities of system components such as static 

friction, backlash, etc. These are generally aggravated by amplifiers drifts, aging or 

deterioration. The steady state performance of a stable control system is generally judged 

by its steady state error to step, ramp, and parabolic inputs. 

Steady-state error is defined as the difference between the input and output of a system 

in the limit as time goes to infinity (i.e., when the response has reached the steady state). 

The steady-state error will depend on the type of input (step, ramp, etc.) as well as the 

system type (0, I, or II) (zero, one or two poles at the origin, 𝑠 = 0).  

Table 5.1: Representation of inputs to the system: step, ramp, and parabola. 

 

 

 

 

 

 

 

 

 

Steady-state error analysis is only useful for stable systems. It is necessary to check the 

system for stability before performing a steady-state error analysis. Many of the 
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techniques that are presented give an answer even if the system is unstable; obviously, 

this answer is meaningless for an unstable system. 

Before talking about the relationships between steady-state error and system type, it is 

shown how to calculate error regardless of system type or input. Then, it starts deriving 

formulas that will be applied when a steady state-error analysis is performed. Steady-state 

error can be calculated from the open- or closed-loop transfer function for Unity feedback 

systems. For example, the following system is considered:  

 

 
Figure 5.1: Block diagram representation of the Unity feedback system. 

which is equivalent to the following system: 

 
 

Figure 5.2: Equivalent block diagram of a unity feedback system from Figure 5.1. 

The steady state error for this system is calculated from either the open or closed-loop 

transfer function using the final value theorem (remember that this theorem can only be 

applied if the denominator has no poles in the right-half plane, i.e., the system is stable): 

 

 

𝑒(∞) = lim
𝑠→0

𝑠𝑅(𝑠)

1+𝐺(𝑠)
              (5.1) 

 

𝑒(∞) = lim
𝑠→0

𝑠𝑅(𝑠)[1 − 𝑇(𝑠)]               (5.2) 

 

Now, different inputs are plugged into the Laplace transforms, and the equations to 

calculate steady-state errors from open-loop transfer functions given different inputs are 

found:  

1. Step Input (R(s) = 1/s):  

𝑒(∞) =
1

1+ lim
𝑠→0

𝐺(𝑠)
=

1

1+𝐾𝑝
⟹ 𝐾𝑝 = lim

𝑠⟶0
𝐺(𝑠)       (5.3) 
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• Ramp Input (R(s) = 1/s2): 

 

𝑒(∞) =
1

lim
𝑠→0

𝑠𝐺(𝑠)
=

1

𝐾𝑣
⟹ 𝐾𝑣 = lim

𝑠⟶0
𝑠𝐺(𝑠)             (5.4) 

 

• Parabolic Input (R(s) = 1/s3): 

 

𝑒(∞) =
1

lim
𝑠→0

𝑠2𝐺(𝑠)
=

1

𝐾𝑎
⟹ 𝐾𝑎 = lim

𝑠⟶0
𝑠2𝐺(𝑠)         (5.5) 

When a controller is designed, it is usually wanted to compensate for the disturbances to 

a system. Let's say that we have the following system with a disturbance: 

 
Figure 5.3: Block diagram representation of a unity feedback system with the controller and the 

disturbances. 

 

It can be found the steady-state error for a step disturbance input with the following 

equation: 
 

𝑒(∞) =
1

lim
𝑠→0

1

𝐺(𝑠)
+ lim

𝑠→0
𝐺𝑐(𝑠)

             (5.6) 

 

Lastly, it is calculated steady-state error for non-unity feedback systems: 

 

 
Figure 5.4: Block diagram representation of a non-unity feedback system. 
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By manipulating the blocks in the following manner: 

 

   
 
Figure 5.5: Steps for the conversion of the block diagram of a non-unity feedback system into a 

unity feedback system. 

The system is modeled as a unity feedback system as follows: 

 

 
Figure 5.6: Conversion of a non-unity feedback system into a unity feedback system. 

 

Now, simply the equations mentioned above are applied. 
 

If the equations are referred to for calculating steady-state errors for unity feedback 

systems, it is found that certain constants are defined, known as the static error constants. 

These constants are the position constant (𝐾𝑝), the velocity constant (𝐾𝑣), and the 

acceleration constant (𝐾𝑎). Knowing the value of these constants as well as the system 

type, we can predict if our system is going to have a finite steady-state error. 

First, it addresses the system type. The system type is defined as the number of pure 

integrators in a system. That is, the system type is equal to the value of n when the system 

is represented as in the following figure:  

 

 
Figure 5.7: Block diagram representation of a unity feedback system with a general transfer 

function system. 
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Therefore, a system can be type 0 (n=0 ), type 1 (n=1 ), etc. The steady-state error relates 

to system types in the following way: 

 
Table 5.2: Type 0 systems errors against step, ramp, and parabolic inputs. 

Type 0 systems Step input Ramp input Parabolic input 

Steady state error 

formula 

1
(1 + 𝐾𝑝)⁄  1

𝐾𝑣⁄  1
𝐾𝑎⁄  

Static error constant 𝐾𝑝 =constant 𝐾𝑣 = 0 𝐾𝑎 = 0 

Error 1
(1 + 𝐾𝑝)⁄  infinity infinity 

 
Table 5.3: Type 1 systems errors against step, ramp, and parabolic inputs. 

Type 1 systems Step input Ramp input Parabolic input 

Steady state error 

formula 

1
(1 + 𝐾𝑝)⁄  1

𝐾𝑣⁄  1
𝐾𝑎⁄  

Static error constant 𝐾𝑝 =infinity 𝐾𝑣 = constant 𝐾𝑎 = 0 

Error 0 1
𝐾𝑣⁄  infinity 

 
Table 5.4: Type 2 systems errors against step, ramp, and parabolic inputs. 

Type 2 systems Step input Ramp input Parabolic input 

Steady state error 

formula 

1
(1 + 𝐾𝑝)⁄  1

𝐾𝑣⁄  1
𝐾𝑎⁄  

Static error constant 𝐾𝑝 =infinity 𝐾𝑣 = infinity 𝐾𝑎 = constant 

Error 0 0 1
𝐾𝑎⁄  

 

 

Example 5.1: Consider the system in the following figure: 

 

 
Figure 5.8: Block diagram representation of a unity feedback type 0 system. 

Calculate the steady-state errors for five times the step and ramp inputs. 

The steady state-error for an input which is five times the step, 𝑟(𝑡) = 5𝑢(𝑡) (𝑅(𝑠) =
5

𝑠
 ): 

𝑒(∞) = lim
𝑠→0

𝑠
5
𝑠

1 + 𝐺(𝑠)
=

5

1 + lim
𝑠→0

𝐺(𝑠)
=

5

1 + 20
=

5

21
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The steady state error for an input which is five times the ramp  𝑟(𝑡) = 5𝑡𝑢(𝑡) (𝑅(𝑠) =
5

𝑠2): 

𝑒(∞) = lim
𝑠→0

𝑠
5
𝑠2

1 + 𝐺(𝑠)
=

5

lim
𝑠→0

𝑠𝐺(𝑠)
= ∞ 

 

Example 5.2: Consider the system in the following figure: 

 

 
Figure 5.9: Block diagram representation of a unity feedback type I system. 

Calculate the steady state errors for five times the step, ramp, and parabolic inputs. 

The steady state error for an input which is five times the step, 𝑟(𝑡) = 5𝑢(𝑡) (𝑅(𝑠) =
5

𝑠
 ): 

 

𝑒(∞) = lim
𝑠→0

𝑠
5
𝑠

1 + 𝐺(𝑠)
=

5

1 + lim
𝑠→0

𝐺(𝑠)
=

5

∞
= 0 

 

The steady state error for 𝑟(𝑡) = 5𝑡𝑢(𝑡) (𝑅(𝑠) =
5

𝑠2): 

 

𝑒(∞) = lim
𝑠→0

𝑠
5
𝑠2

1 + 𝐺(𝑠)
=

5

lim
𝑠→0

𝑠𝐺(𝑠)
=

5

100
=

1

20
 

 

The steady state error for 𝑟(𝑡) = 5𝑡2𝑢(𝑡) (𝑅(𝑠) =
10

𝑠3): 

 

𝑒(∞) = lim
𝑠→0

𝑠
10
𝑠3

1 + 𝐺(𝑠)
=

10

lim
𝑠→0

𝑠2𝐺(𝑠)
=

10

0
= ∞ 
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Example 5.3: Consider the control system in the following figure: 

 

 
Figure 5.10: Block diagram representation of a unity feedback type I system. 

Calculate K such as that the system has a finite steady state error with a constant velocity equal 

to 10. 

Since the system is type I the finite steady-state error should be for a ramp input. 

 

𝑒(∞) =
1

𝐾𝑣
 

So,  

 

𝐾𝑣 = 10 = lim
𝑠→0

𝑠𝐺(𝑠) =
5𝐾

6 ∙ 7 ∙ 8
 

And 𝐾 = 672. 

 

 

  

Exercises: 

 

1. A unity feedback system has the following transfer functions.  

a. 𝐺1(𝑠) =
𝐾

(𝑠+2)(𝑠+3)
 

b. 𝐺2(𝑠) =
𝐾

𝑠(𝑠+2)(𝑠+3)
 

c. 𝐺3(𝑠) =
𝐾

𝑠2(𝑠+2)(𝑠+3)
 

Calculate steady state errors for a unity step, ramp and parabolic inputs, supposing K=1.  

If 𝐾 ≠ 1 and unknown, define in which cases the system has a finite steady state-error with 

constant position, velocity, and acceleration. Calculate K such as that the system has a finite 

steady state-error equal to 10, for the elucidated cases. (Hint: classify the kind of system is dealt 

to calculate the corresponding finite steady-state error according to Tables 5.2- 5.4). 
 

References:  
 

[1] Farid Golnaraghi and Benjamin C. Kuo, 2017, Automatic Control Systems, 10th ed. 

McGraw-Hill Education.  
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Chapter 6: Stability of Continuous-time 

Systems 

 
In this section, the stability of continuous time systems is provided. Stability is a key 

property of a dynamic system. First, a definition of stability based on the Laplace 

transform is given. There are several criteria to determine the stability of a dynamic 

system. The Routh-Hurwitz criterion and the root locus are first dealt with. 

Frequency analysis, i.e., Bode plot and Nyquist plot, are also introduced, giving 

examples and tools to examine them further.  

 

6.1 Stability 

 

Bounded input, bounded output (BIBO) stability is a form of stability often used for signal 

processing applications. The requirement for a linear, shift-invariant, continuous, or 

discrete time system to be BIBO stable is for the output to be bounded for every input to 

the system that is bounded. 

There is a characterization of the stability of a continuous transfer function in the s-plane, 

which gives a definition of a stable, unstable, and marginally stable system. 

1. Stable System: If all the roots of the characteristic equation of the transfer 

function of the system (i.e., the equation that makes the denominator of the 

transfer function equal to zero) lie on the left half of the s-plane (i.e., the roots are 

negatives), then the system is said to be a stable system.  

2. Marginally Stable System: If one or more of the roots of the system lie on the 

imaginary axis of the s-plane and the rest lie on the left half of the s-plane, then 

the system is said to be marginally stable. 

3. Unstable System: If any of the roots of the system lie on the right half of the s-

plane, then the system is said to be an unstable system. 

 

Figure 6.1: Poles and zeros colocation on the left-hand complex s-plane 

 of the transfer function 𝐻(𝑆) = 10
(𝑠+1)(𝑠+2)

(𝑠+4)(𝑠+5)(𝑠+8)
 . 
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Figure represents the position of zeros (o), the numerator of the transfer function 𝐻(𝑠) =

10
(𝑠+1)(𝑠+2)

(𝑠+4)(𝑠+5)(𝑠+8)
  is equal to 0, this happens in -1 and -2, and poles (x), the denominator or 

characteristic equation of F(s) is equal to 0, this happens in -4, -5 and -8, in the s-plane. 

MATLAB uses the following function to represent figure: 

 

% s-plane representation of zeros and poles of a transfer function 

numerator = 10*[1 3 2]; % numerator of the transfer function in polynomial form 
denominator = [1,17,92,160]; % denominator of the transfer function in polynomial 

form 
sys = tf(numerator,denominator); % tf defines the transfer function 
figure; iopzplot(sys); % iopzplot function plots zeros and poles in the s-plane 

 

As it can be observed in figure all poles are positioned in the negative part of the s-plane, 

the system is stable. 

 

6.2 Routh-Hurwitz Criterion 

 
Despite the calculation exigencies of the Routh-Hurwitz criterion, it is very useful in 

certain cases. For instance, to find the poles of a Laplace transform that is a rational 

function in s, you need to factor the denominator polynomial, which is easy with 

computers. The problem is, for denominator polynomials of degree 5 and higher, there’s 

in general no formula for factorizing the polynomial, which means that numerical 

methods are used. This is fine if you have numerical values for the coefficients of the 

denominator polynomial. But if the denominator polynomial has one or more coefficients 

written symbolically, then it is not possible to use numerical methods to factorize the 

denominator, and thus it is not possible to find the poles. 

The Ziegler-Nichols method, which is not emphasized in this document, is an application 

of the Routh-Hurwitz criterion to tune a PID controller. During the tuning process with 

such a method, the value of a constant K, which makes the output signal of the system  

sinusoidal in the steady state must be determined. It is known that it happens when the 

Laplace transform of the output signal has no poles to the right part of the imaginary axis, 

has no repeated poles on the imaginary axis, and has just one (not more) simple pair of 

complex conjugate poles on the imaginary axis. Thus, to find the value of K, it is needed 

to see which value would create those poles. But to find those poles, it is required to factor 

the denominator, yet it is not possible because it has a symbolic variable K. Fortunately, 

it is still possible to find which value of K would produce sinusoidal oscillations of 

constant amplitude by using the Routh-Hurwitz table and criterion. 

Necessary but not sufficient conditions for stability 
At this point, this must follow some conditions to make any system stable, or it can be 

said that there are some necessary conditions to make the system stable. 

Consider a system with a characteristic equation (the equation obtained by equating the 

characteristic polynomial, the denominator of the transfer function, to zero). 

 

𝑎0𝑠𝑚 + 𝑎1𝑠𝑚−1 + ⋯ + 𝑎𝑚 = 0 

1. All the coefficients of the equation should have the same sign and be positive. 
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2. There should be no missing term. 

If all the coefficients have the same sign and there are no missing terms, there is no 

guarantee that the system will be stable. If the above-given conditions are not satisfied, 

then the system is said to be unstable. To check the stability of the system, the Routh 

Hurwitz Criterion is used. This criterion is given by A. Hurwitz and E.J. Routh. 

Advantages of Routh-Hurwitz criterion: 

1. It shows the stability of the system without solving the equation. 

2. It is easy to determine the relative stability of the system. 

3. By this method, the range of K for stability can be determined. 

4. By this method, the point of intersection of the root locus with an imaginary axis 

can also be determined. 

Limitations of Routh-Hurwitz criterion: 

1. This criterion is applicable only for a linear system. 

2. It does not provide the exact location of poles on the right and left half of the s-

plane. 

3. In case of the characteristic equation, it is valid only for real coefficients. 

Statement of Routh-Hurwitz Criterion: Routh-Hurwitz stability criterion identifies the 

conditions when the poles of a polynomial cross into the right-hand half plane of s, and 

hence it would be considered as an unstable system in control engineering. Considering 

the following characteristic polynomial:  
 

𝑎0𝑠𝑚 + 𝑎1𝑠𝑚−1 + ⋯ + 𝑎𝑚 = 0 

when the coefficients a0, a1, ...am are all the same sign, and none is zero. 

 

Step 1: Arrange all the coefficients of the above equation in two rows: 

Row 1:  a0 a2 a4 …. 

Row 2:  a1 a3 a5 ….    

Step 2: From these two rows, a third row will be formed: 

Row 1:  a0 a2 a4 …. 

Row 2:  a1 a3 a5 ….    

Row 3:  b1 b3 b5 …. 

 

Where,  𝑏1 = −
1

𝑎1
|
𝑎0 𝑎2

𝑎1 𝑎3
| = −

𝑎0  𝑎3−𝑎1𝑎2

𝑎1
 and    𝑏3 = −

1

𝑎1
|
𝑎0 𝑎4

𝑎1 𝑎5
| = −

𝑎0  𝑎5−𝑎1𝑎2

𝑎1
 

 

Step 3: Now, the fourth row is built by using the second and third row: 

Row 1:  a0 a2 a4 …. 

Row 2:  a1 a3 a5 ….    
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Row 3:  b1 b3 b5 …. 

 

Row 4:  c1 c3 c5 …. 

 

Where,  𝑐1 = −
1

𝑏1
|
𝑎1 𝑎3

𝑏1 𝑏3
| = −

𝑎1  𝑏3−𝑏1𝑎3

𝑏1
 and    𝑐3 = −

1

𝑏1
|
𝑎1 𝑎5

𝑏1 𝑏5
| = −

𝑎1𝑏5−𝑏1𝑏5

𝑏1
 

 

Step 4: This procedure of forming a new row is continued as many times is necessary 

until it is reduced the matrix to a second order.  

 

The Routh Hurwitz criterion states that a system is stable if and only if the roots of the 

first column have the same sign; if it does not have the same sign or there is a sign change, 

then the number of sign changes in the first column is equal to the number of roots of the 

characteristic equation in the right half of the s-plane, i.e., equal to the number of roots 

with positive real parts. 

  

Example 6.1 

Check the stability of the system whose characteristic equation is given by: 

s4 + 2s3+6s2+4s+1 = 0 

Solution: 

Obtain the arrow of coefficients as follows: 

s4     1 6 1 

s3 2 4 0 

s2 4 1 0 

s1 3.5 0 0 

s0 1 0 0 

𝑏1 = −
1

𝑎1

|
𝑎0 𝑎2

𝑎1 𝑎3
| = −

1

2
|
1 6
2 4

| = −
𝑎0  𝑎3 − 𝑎1𝑎2

𝑎1

= −
(1 ∗ 4 − 2 ∗ 6)

2
= 4 

𝑐1 = −
1

𝑏1
|
𝑎1 𝑎3

𝑏1 𝑏3
| = −

1

4
|
2 4
4 1

| = 3.5  ;  𝑏3 = −
1

𝑎1
|
𝑎0 𝑎4

𝑎1 𝑎5
| = −

1

2
|
1 1
2 0

| = 1  ; and 

d1=−
1

2
|

4 1
3.5 0

| = 1. 

Since all the coefficients in the first column are of the same sign, i.e., positive, the 

given equation has no roots with positive real parts; therefore, the system is said to 

be stable. 

Example 6.2 

 

Check the stability of the system whose characteristic equation is given by: 

 

s3+10s2+31s+1030 = 0 

Solution: 

Obtain the arrow of coefficients as follows: 

s3 1 31 0 
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s2 10 1030    0   (it is divided by 10 without loss of generality) 

s1 -72 0 0 

s0 103 0 0 

 

As in this case, there is a sign change, it must be checked that the number of sign changes 

in the first column. This number of changes tells the number of roots of the characteristic 

equation that are in the right half of the s-plane, i.e., equals the number of roots with 

positive real parts or are unstable roots. 

There are two sign changes: 1 → −72 and −72 → 103, so two roots in the right half 

of the s-plane or unstable.  

Note that any row can be multiplied or divided by any positive constant without changing 

the result. 

The program “rhStabilityCriterion.m” presented in [2] calculates automatically if the 

system is stable or not according to Routh-Hurwitz criterion, and outputs the poles 

colocation in s-plane. The presented Routh-Hurwitz criterion further explains that from a 

differential equation system, difficult to solve, the characteristic equation of the system 

is transformed into a polynomial equation, through an algebraic transformation, and the 

system is studied in the s-plane, facilitating the more intuitive comprehension of the 

stability, robustness, and further properties and requirements of the system to be 

controlled. 

 

6.3 Root Locus 

 

In control and stability theory, root locus analysis is a graphical method for examining 

how the roots of a system change with variation of a certain system parameter, commonly 

a gain within a feedback system. This is a technique used as a stability criterion in the 

field of classical control theory, which can determine the stability of the system. The root 

locus plots the poles of the closed-loop transfer function in the complex s-plane as a 

function of a gain parameter. Root locus plots are a very useful way to predict the behavior 

of a closed-loop system as some parameter of the system, typically a gain, K, is changed.   

In addition to determining the stability of the system, the root locus can be used to design 

the damping ratio (𝜁) and natural frequency (𝜔𝑛) of a feedback system by selecting an 

appropriate value for the gain K. Lines of constant damping ratio can be drawn radially 

from the origin, and lines of constant natural frequency can be drawn as arccosines whose 

center points coincide with the origin. By selecting a point along the root locus that 

coincides with a desired damping ratio and natural frequency, a gain K can be calculated 

and implemented in the controller. More elaborate techniques of controller design using 

the root locus are available in most control textbooks, and some examples are shown in 

this document too. For instance, lag, lead, PI, PD, and PID controllers can be designed 

approximately with this technique. 

The definition of the damping ratio and natural frequency presumes that the overall 

feedback system is well approximated by a second-order system, i.e., the system has a 

dominant pair of poles. This is often not the case, so it is good practice to simulate the 

final design to check if the project goals are satisfied. 
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Closed-loop poles: 

The root locus of an (open-loop) transfer function H(s) is a plot of the locations (locus) 

of all possible closed-loop poles with some parameter, often a proportional gain , varied 

between 0 and ∞. The figure below shows a unity-feedback architecture, but the 

procedure is identical for any open-loop transfer function H(s), even if some elements of 

the open-loop transfer function are in the feedback path. 

 

Figure 6.2: Closed-loop block diagram for root-locus analysis. 

The closed-loop transfer function in this case is: 

𝑌(𝑠)

𝑅(𝑠)
=

𝐾𝐻(𝑠)

1 + 𝐾𝐻(𝑠)
 

and thus, the poles of the closed-loop system are values of s such that 1 + 𝐾𝐻(𝑠) = 0 , 

called the characteristic equation. 

If  𝐻(𝑠) =
𝐵(𝑠)

𝐴(𝑠)
  , then the characteristic equation, 1 + 𝐾𝐻(𝑠) = 0 , can be rewritten as, 𝐴(𝑠) +

𝐾𝐵(𝑠) = 0   or 
𝐴(𝑠)

𝐾
+ 𝐵(𝑠) = 0 . 

Let n be the order of 𝐴(𝑠)  and m be the order of 𝐵(𝑠) (the order of the polynomial 

corresponds to the highest power of s). 

It is considered to be all positive values of K. In the limit as 𝐾 → 0, the poles of the closed-

loop system are solutions of 𝐴(𝑠) = 0 (poles of 𝐻(𝑠)). In the limit as 𝐾 → ∞ , the poles of 

the closed-loop system are solutions of 𝐵(𝑠) = 0  (zeros of 𝐻(𝑠)). 

No matter the choice of K, the closed-loop system has n poles, where n is the number of 

poles of the open-loop transfer function 𝐻(𝑠) . The root locus then has n branches, each 

branch starts at a pole of 𝐻(𝑠)  and approaches a zero of 𝐻(𝑠). If 𝐻(𝑠) has more poles than 

zeros (as is often the case), 𝑚 < 𝑛 and it is said that 𝐻(𝑠) has zeros at infinity. In this case, 

the limit of 𝐻(𝑠) as 𝑠 → ∞  is zero. The number of zeros at infinity is 𝑛 − 𝑚 , the number 

of open-loop poles minus the number of open-loop zeros, and it is the number of branches 

of the root locus that lead to the asymptotes. 

Since the root locus consists of the locations of all possible closed-loop poles, the root 

locus helps to choose the value of the gain K to achieve the type of performance desired. 

If any of the selected poles are on the right-half complex plane, the closed-loop system 

will be unstable. The poles that are closest to the imaginary axis have the greatest 

influence on the closed-loop response, so even if a system has three or four poles, it may 

still behave like a second- or a first-order system, depending on the location(s) of the 

dominant pole(s). 
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Example 6.3: Consider an open-loop system that has a transfer function of 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

1

𝑠(𝑠 + 1)(𝑠 + 4)
 

Obtain the DC-gain K of a proportional controller such that the damping ratio of the 

closed loop poles will be equal to 0.6. Obtain the root locus, step response, and  time-

domain specifications for the compensated system. For this purpose, use the MATLAB 

Control System Toolbox functions rlocus and sgrid(𝜻, 𝝎𝒏) to obtain the root locus and 

the gain  K for 𝜁 = 0.6 . Also use ltiview function to obtain the system step response and 

the time domain specifications. 

 

Solution: 

 

The following commands plot the transfer function and the constant line corresponding 

to 𝜁 = 0.6 and 𝜔𝑛 = 1. Please, note the difference in defining the open loop transfer 

function with respect to the previous example. 

 

num=1;  % numerator transfer function 

den=[1 5 4 0]; % denominator transfer function 

rlocus(num, den); 

hold on 

sgrid(0.6, 1)  % plots constant line 𝜁 = 0.6 & constant line 𝜔𝑛 = 1 

 

result in 

 
Figure 6.3: Root locus of the example and sgrid(𝜁 = 0.6, 𝜔𝑛 = 1)  picture. 

 

Zoom in at the area of intersection, click at the intersection, hold and move the mouse at 

intersection, and adjust for damping: 0.6. Right-click in the intersection, and the 

information will pop up in the picture. The gain is found to be 2.06.  
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Figure 6.4: Zoom in on Figure 6.3. 

In addition, the percentage overshoot and natural frequency are obtained, i.e.,  𝑀𝑝= 

9.59%, and 𝜔𝑛 = 0.704. To obtain the step response and time-domain specifications, it 

is used the following commands:  

numc=2.06 

denc=[1 5 4 2.06]; 

T=tf(numc, denc) 

ltiview('step', T) 

The result is shown in Figure 6.5. Right-click on the LTI Viewer, use Characteristics to 

mark peak response, peak time, settling time, and rise time. From the File Menu, use Print 

to Figure to obtain a figure plot. 

 

Figure 6.5: Step response with, rise time (a), peak time and overshoot (b), and setting time (c) 

values. 

 

Example 6.4: Consider an open-loop system that has a transfer function: 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝑠 + 7

𝑠(𝑠 + 5)(𝑠 + 15)(𝑠 + 20)
 

How the feedback controller for the system is designed using the root-locus method? It 

is assuming the design criteria are 5% overshoot and 1 second rise time.  
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Solution: 

 

Create a m-file or MATLAB file titled, for instance, rootlocus.m. Within a m-file created 

in MATLAB, the transfer function model is defined, and the rlocus command is used in 

MATLAB, for example, as follows: 

 

s = tf('s'); % define s-variable as transfer function 

sys = (s+7)/(s*(s+5)*(s+15)*(s+20); % define transfer function  

rlocus (sys); % call root locus 

axis ([-22 3 -15 15]) % define axis values. 

 

Figure 6.6: Poles and zeros colocation in the complex s-plane under variation of K-gain value. 

 

Choosing a value of K from the root locus 

The plot above shows all possible closed-loop pole locations for a pure proportional 

controller (varying K from 0 to ∞ show the zero and pole placement in the s-plane, note 

that the dynamics of the closed-loop are varied as the value of the proportional control K 

varies). In this case, not all these closed-loop pole locations indicate satisfaction with the 

design criteria. To determine what part of the locus is acceptable, the command sgrid (𝜻, 

𝛚𝐧) is used to plot lines of constant damping ratio and natural frequency. These two 

arguments are the damping ratio (𝜁) and the natural frequency (ωn) . In this case, it is 

needed to have an overshoot of less than 5% (which means a damping ratio 𝜁 of greater 

than 0.7, to check this, use the overshoot formula and calculate 𝜁) and a rise time of 1 

second (which means a natural frequency ωn greater than 1.8, corroborate using the rise 

time formula). Introducing the sgrid command in the MATLAB file, figure 5.4 is plotted: 
 

 

ζ= 0.7; % define damping ratio 

ωn= 1.8; % define natural frequency 

sgrid (ζ, ωn) % use command sgrid 
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Figure 6.7: Poles and zeros colocation in the complex s-plane for selection of K-gain value. 

 

On the plot above, the two dotted lines at about a 45-degree angle indicate pole locations 

with 𝜁 = 0.7; in between these lines, the poles will have 𝜁 > 0.7 and outside of these lines 𝜁 

< 0.7. The semicircle indicates pole locations with a natural frequency 𝜔𝑛 = 1.8; inside 

the circle, 𝜔𝑛 < 1.8 and outside the circle 𝜔𝑛 > 1.8. 

To satisfy the control requirements, i.e., to make the overshoot less than 5%, the poles 

must be in between the two angled dotted lines, and to make the rise time shorter than 1 

second, the poles must be outside of the dotted semicircle. So now it is known what part 

of the root locus, which possible closed-loop pole locations, satisfy the given 

requirements. All the poles in this location are in the left-half plane, so the closed-loop 

system will be stable. 

From the plot above, it is seen that part of the root locus is inside the desired region. 

Therefore, in this case, only a proportional controller is needed to move the poles to the 

desired region (normally, two degrees of freedom are needed in the control to satisfy two 

requirements). The rlocfind command in MATLAB is used to choose the desired poles 

on the locus: 
 

[k,poles] = rlocfind(sys) %use rlocfind command to choose poles 
 

If the point where it is desired to choose the closed-loop poles is clicked on in the plot, 

the design criteria is satisfied at these points, and they are selected as the design of the 

controller.  
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Figure 6.8: Poles and zeros colocation in the complex s-plane and selection criterion of K-gain 
value. 

Note that since the root locus may have more than one branch, when a pole is selected, it 

is also identified where other closed-loop poles are for the same corresponding value of K. 

These poles will affect the response too. From the plot above, it is seen that of the four 

poles selected (indicated by "x" signs), the two closest to the imaginary axis are in the 

desired region. Since these poles tend to dominate the response, the  requirements will be 

met for a proportional controller with this value of K. 

Closed-Loop Response: 

To verify the step response, it is needed to know the closed-loop transfer function. It is 

possible to computer reducing the block diagram or with the following MATLAB 

function (there is no need to enter a value for K if the rlocfind command was used): 

 

K =722.4108 %define k minuscule 

 

%output of MATLAB; value of poles 

poles = 

 

-23.3179 + 0.0000i 

-10.4289 + 0.0000i 

-3.1266 + 3.3195i 

-3.1266 - 3.3195i 

 

K = 350; % input K value if rlocfind command was not used 

Sys_cl= feedback(K*sys, 1) % define the closed loop system 

 

 

%MATLAB will output the transfer function of the closed-loop system 
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Sys_cl = 

 

722.4 s + 5057 

-------------------------------------- 

s^4 + 40 s^3 + 475 s^2 + 2222 s + 5057 

 

Continuous-time transfer function 

The two arguments to the function feedback are the transfer function in the forward path 

and the transfer function in the feedback path of the open-loop system. In this case, the 

system is unity feedback. If there is feedback different from that non-unity, the MATLAB 

function feedback, shows how to find the closed-loop transfer function with a gain in the 

feedback path. 

Checking the step response of the closed-loop system with the chosen value of : 

Step(sys_cl)  % output the step function of the closed loop system 

 
Figure 6.9: Response of the closed loop system after selection of K-value. 

As it is expected, this response has an overshoot of less than 5% and a rise time of less 

than 1 second. 

 

6.4 Frequency domain analysis 

 

Until now, the response of the system was calculated against step and impulse input. In 

real systems, the input of the system can take any form. Frequency domain analysis 

provides a tool to deal with any kind of function in the input by representing this function 

to the system as a series decomposition of sines and cosines. 

Recall that for a function 𝑓(𝑥), the Fourier series is given by  

𝑓(𝑥) = 𝑎0 + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)

∞

𝑛=1

 

which means that any arbitrary signal 𝑢(𝑡) can be represented by a Fourier series, i.e., as 

an infinite sum of weighted harmonic functions. Now, consider an input signal 𝑢(𝑡) =
𝑈 sin(𝜔𝑡) passed through an asymptotically stable transfer function G(s). 
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Steady-state output will be 𝑦(𝑡) = 𝑈|𝐺(𝑗𝜔)| sin(𝜔𝑡 + ∠𝐺(𝑗𝜔)), where |𝐺(𝑗𝜔)| represents 

the magnitude of G(s) and ∠𝐺(𝑗𝜔)  the phase. 

To construct the magnitude and phase responses of a system represented by a transfer 

function G(s) with a transport delay L, substitute 𝑠 = 𝑗𝜔. Then,  

 

𝐺(𝑗𝜔) =
𝑏𝑚(𝑗𝜔)𝑚 + 𝑏𝑚−1(𝑗𝜔)𝑚−1 + ⋯ + 𝑏1(𝑗𝜔)⬚ + 𝑏0

𝑎𝑛(𝑗𝜔)𝑛 + 𝑎𝑛−1(𝑗𝜔)𝑛−1 + ⋯ + 𝑎1(𝑗𝜔)⬚ + 𝑎0

𝑒−𝐿(𝑗𝜔) 

 

At a particular frequency 𝜔𝑘  

 

𝐴𝑘 = |𝐺(𝑗𝜔𝑘)| , 𝜙𝑘 = 𝑎𝑟𝑔(𝐺(𝑗𝜔𝑘)) = ∠𝐺(𝑗𝜔𝑘) 

 

Where | ∙ | denotes the absolute value, and 𝑎𝑟𝑔(∙), the argument (or angle, in radians) of 

the complex value 𝐺(𝑗𝜔𝑘). 

 

Just a recall of the polar form of complex numbers. Figure 6.10 shows the representation 

of a complex number in a polar form, where the magnitude is |𝑧| = 𝑟 = √𝑎2 + 𝑏2 and the 

argument or phase (angle) 𝑎𝑟𝑔(𝑧) = ∠𝑧 = 𝜃 = tan−1 (
𝑏

𝑎
) . 

 
Figure 6.10: Polar coordinates plot of a complex number (axis: real and imaginary parts). 

 

Frequency domain characteristics completely describe the behavior of a linear, time-

invariant system. Frequency response is graphically represented in the following ways: 

 

• Bode plot: two separate graphs for magnitude and phase against frequency, 

usually on logarithmic scales; 

• Nyquist plot: a single graph depicting real vs. imaginary parts of the response 

covering the full range frequency; 

Since it is possible to assess qualitative properties of the linear system under study (e.g., 

relative stability margins, i.e., how close the system is to instability), frequency domain 

analysis is essential in control design. 

 

 

 

 

77



Manual on Control Techniques for Engineers  Stability of continuous-time systems 

ELTE  SIT 
 

6.5 Bode plot 

 

The Bode plot is a graph of the absolute value |𝐺(𝑗𝜔)| and phase shift ∠𝐺(𝑗𝜔) of a 

transfer function G(s) evaluated in 𝑠 = 𝑗𝜔. The bode plot shows the system frequency 

response as a function of frequency 𝜔, for all 𝜔 > 0. The frequency axis 𝜔 is in 

logarithmic scale. The absolute value is expressed as decibels (dB), 

 
|𝐺(𝑗𝜔)| 𝑑𝐵 = 20𝑙𝑜𝑔10|𝐺(𝑗𝜔)|. 

 

At the unity gain, when |𝐺(𝑗𝜔)| = 1, then, |𝐺(𝑗𝜔)| 𝑑𝐵 = 20𝑙𝑜𝑔101 = 0𝑑𝐵. 

 

 
Figure 6.11: Bode magnitude (upper) and phase (bottom) plots. 

 

 

To analyze the frequency response of a system, it is useful to rewrite the transfer function 

G(s) in Bode form: 

 

𝐺(𝑠) =
𝐾

𝑠ℎ

∏ (1 + 𝑠𝜏𝑖)
𝑁
𝑖=1

∏ (1 + 𝑠𝑇𝑗)𝑀
𝑗=1

∏ (1 +
2𝜁𝑖

´

𝜔𝑛𝑖
´ 𝑠 +

1

𝜔𝑛𝑖
´2 𝑠2)𝑃

𝑖=1

∏ (1 +
2𝜁𝑗

⬚

𝜔𝑛𝑗
⬚

𝑠 +
1

𝜔𝑛𝑗
2 𝑠2)𝑄

𝑗=1

 

 

where K is the Bode gain; h is the type of system, i.e., the number of poles in s=0; 𝑇𝑗 

(for real numbers 𝑇𝑗 > 0) is a time constant; 𝜁𝑗
⬚ is a damping ratio, with −1 < 𝜁𝑗

⬚ < 1; 

and 𝜔𝑛𝑗
⬚  is a natural frequency of the system. So, the transfer function G(s) of the formula 

above contains a N+2P zeros (N single real zeros and P double real or complex conjugates 

zeros) and h+M+2Q poles (h poles at origin, M single real poles, and Q double real or 

complex conjugates poles). 

The influence of the zeros and poles in the bode diagram or plot is shown through some 

examples in MATLAB. 
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The plot displays the magnitude (in dB) and phase (in degrees) of the system response 

as a function of frequency. bode automatically determines frequencies to plot based on 

system dynamics. 

 

Example 6.5: Bode plot of a first order stable system 

 

  
Figure 6.12: Bode magnitude (upper) and phase (bottom) plots for a first order stable 

system(left). MATLAB code (right). 

 

 

 
 

 

Figure 6.13: Bode magnitude (upper) and phase (bottom) plots for a first order stable 

system(left). MATLAB code (right). 

 

 

 

clc; 

clear all; 

close all; 

num1= [ 3 ]; 

den1 = [ 1 3 ]; 

disp ('Transfer function :-  '); 

TF1= tf (num1 , den1) 

bode (TF1) 

 

 

clc; 

clear all; 

close all; 

num1= [ 1 ]; 

den1 = [ 1 1 ]; 

disp ('Transfer function :-  '); 

TF1= tf (num1 , den1) 

bode (TF1) 
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Figure 6.14: Bode magnitude (upper) and phase (bottom) plots for a first order stable 

system(left). MATLAB code (right). 
 

The influence of a stable pole in the bode diagram is depicted by the decrease in 

magnitude of 20 dB (-20dB ) decade( from frequency 101 rad/s to frequency 102 rad/s) 

and − 𝜋
2⁄  in phase per decade. In this case as, the pole at the frequency 30 rad/s starts 

the change. Please note the change in magnitude due to the DC-gain, K, according to the 

logarithm of 20 log(K) when comparing figures 6.13 and 6.14. 
 

 

Example 6.6: Bode plot of a second order with stable pair of complex poles 

(underdamped system) 
 

 

 
 

𝜔𝑛 = 4 

Figure 6.15: Bode magnitude (upper) and phase (bottom) plots for a second order stable 

system with a pair of complex poles (left). MATLAB code (right). 
 

The influence of a stable pole in the bode diagram is depicted by the decrease in 

magnitude of 40 dB (-40dB ) decade (from frequency 101 rad/s to frequency 102 rad/s) 

and −𝜋 degrees in phase per decade at 𝜔𝑛.  

 

 

 

 

clc; 

clear all; 

close all; 

disp ('Transfer function :-  '); 

H = tf(16,[1 5.6 16]) 

bode ( H ) 
 

 

 

clc; 

clear all; 

close all; 

num1= [ 30 ]; 

den1 = [ 1 3 ]; 

disp ('Transfer function :-  '); 

TF1= tf (num1 , den1) 

bode (TF1) 
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Figure 6.16: Bode magnitude (upper) and phase (bottom) plots for a second order stable 

system with a pair of complex poles (left). MATLAB code (right). 

 

 
Table 6.1: Influence of the zeros and poles in the bode diagram. 

 
 

Sketching the Bode plot is just to get a rough idea of the characteristics of a system, to 

interpret results, and to detect potential errors obtained from calculations. 

 

6.6 Mention about Nyquist polar plot 

 

The Nyquist plot, or polar plot is the graph in polar coordinates of 𝐺(𝑗𝜔) for 𝜔 ∈ [0, +∞) 

in the complex plane. The Nyquist plot combines the Bode magnitude and phase plots 

and therefore provides a more compact representation.  

The stability assessment of the Nyquist plot says; for an open-loop asymptotically stable 

system 𝐺(𝑠), the closed-loop system 𝑊(𝑠) is asymptotically stable if and only of the 

Nyquist plot 𝐺(𝑗𝜔) does not encircle the critical point −1 + 𝑗0. 

 

 

 

 

 

clc; 

clear all; 

close all; 

disp ('Transfer function :-  '); 

H = tf(16,[1 0.56 16]) 

bode ( H ) 
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Example 6.7: Generate the Bode and Nyquist plots of a first order system, 𝐺(𝑠) =
1

𝑠+1
 

and sine wave and step responses in MATLAB. Analyse results. 

 

To generate the Bode and Nyquist plots and sine wave and step responses of the system 

described by the following transfer function, 𝐺(𝑠) =
1

𝑠+1
 in the time domain, MATLAB 

commands bode(sys), nyquist(sys), y=lsim(sys,u,t), and step(sys) are used. 

 
Figure 6.17: Bode magnitude (upper) and phase (bottom) plots of the first order system, 𝐺(𝑠) =

1

𝑠+1
. 

 

 

 
Figure 6.18: Nyquist plot of the first order system, 𝐺(𝑠) =

1

𝑠+1
. 
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Figure 6.19: Time domain response of the first order system, 𝐺(𝑠) =

1

𝑠+1
 ,against sinusoidal 

input with 𝜔 = 1.47
𝑟𝑎𝑑

𝑠
. 

 

 

 

 
Figure 6.20: Time domain response of the first order system, 𝐺(𝑠) =

1

𝑠+1
 , against unity step 

input. 

 

It is left for the reader to analyze the graphs and try to understand what these analyses are 

intended for. 

 

Example 6.8: Generate the Bode and Nyquist plots and sine wave and step responses of 

the system described by the second-order system transfer function, 𝐺(𝑠) =
1

5𝑠2+𝑠+1
. 

Analyse results. 
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To generate the Bode and Nyquist plots and sine wave and step responses of the system 

described by the following transfer function, 𝐺(𝑠) =
1

5𝑠2+𝑠+1
 in the time domain, the 

MATLAB commands bode(sys), nyquist(sys), y=lsim(sys,u,t), and step(sys) are used. 

 

 

 
Figure 6.21: Bode magnitude (upper) and phase (bottom) plots of the second order system, 

𝐺(𝑠) =
1

5𝑠2+𝑠+1
. 

 

 

 
Figure 6.22: Nyquist plot of the second order system, 𝐺(𝑠) =

1

5𝑠2+𝑠+1
. 

 

Sine wave response (𝜔 = 0.446
𝑟𝑎𝑑

𝑠
) 
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Figure 6.23: Time domain response of the second order system, 𝐺(𝑠) =

1

5𝑠2+𝑠+1
 ,against 

sinusoidal input with 𝜔 = 0.446
𝑟𝑎𝑑

𝑠
. 

 

 

 
Figure 6.24: Time domain response of the underdamped second order system, 𝐺(𝑠) =

1

5𝑠2+𝑠+1
 , 

against unity step input. 

 

It is left for the reader to analyze the graphs and try to understand what these analyses are 

intended for. 

 

Exercises:  

 

1. Calculate if the following characteristic equations correspond to a stable system 

according to the Routh Hurwitz criterion. 

 

a. 𝑄𝑎(𝑠) = 𝑠5 + 2𝑠4 + 2𝑠3 + 4𝑠2 + 11𝑠 + 10 
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b. 𝑄𝑏(𝑠) = 𝑠4 + 𝑠3 + 3𝑠2 + 2𝑠 + 2 

c. 𝑄𝑐(𝑠) = 𝑠3 + 𝑠2 + 𝑠 + 1 

 

2. Root locus exercises: 

 

a. Calculate the root locus of the following block diagram: 

 

Can the system be stable? Obtain the time domain response for some values of K and 

comment on the results. 

b. Calculate the root locus of the following block diagram: 

 

Study the root locus plot and give adequate values of the gain K justifying the given 

solution. 
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Chapter 7: Z-transform and inverse Z-

transform 

 
This chapter addresses Z-transform. The Z-transform converts time-domain 

differential equations and operations into algebraic domains. It facilitates the 

algebra behind the equations, providing a graphical solution to time-domain 

differential equations in a parameterized form that represents physical systems. The 

inverse Z-transform performs the transformation between the algebraic (sequence 

of numbers) and time domains of the system, providing a bidirectional relationship.  
 

 

The Laplace transform is a mathematical tool widely used in the analysis and design of 

linear and time-invariant continuous control systems, which are described by linear and 

time-invariant differential equations. Analysis of discrete-time LTI systems can be done 

using Z-transforms. It is a powerful mathematical tool to convert differential equations 

into algebraic equations. Applied computer-based controllers have the characteristic of 

using discrete-time signals and controllers based on the Z-transform.  Figure 7.1 presents 

a digital controller for a continuous plant.   

 

Figure 7.1: Digital controller 

 

 
7.1  Z-transform 

 
The Z-transform is a series representation that maps the time domain into the Z-domain. 

Z-domain is a complex domain, also known as complex frequency domain, consisting of 

a real axis (x-axis) and an imaginary axis (y-axis). A signal is usually defined as a 

sequence of real or complex numbers that is then converted to the Z-domain by the 

process of z-transformation. 

The two-sided or bilateral Z-transform (ZT) of sequence x[n] is defined as: 

𝑋(𝑧) = 𝑍{𝑥[𝑛]} = ∑ 𝑥[𝑛]∞
𝑛=−∞ 𝑧−𝑛   (7.1) 

From the previous definition, the unilateral (one-sided) Z-transform of a discrete time 

signal x(n) is given as 
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𝑋(𝑧) = 𝑍(𝑥[𝐾𝑇]) = ∑ 𝑋[𝐾𝑇]𝑧−𝑘∞
𝑘=0 = 𝑋(0) + 𝑋(𝑇)𝑧−1 + 𝑋(2𝑇)𝑧−2 + 𝑋(3𝑇)𝑧−3 +

⋯             (7.2)  

 n=KT represents the discrete values of the function at certain instants given by multiples 

of the sampling period, T, where the signal is measured in the discrete-time domain. 

There are regions of the Z-plane where it converges and others where it does not. The 

power of the variable z indicates the position in time, which is a multiple of T, in which 

the signal has amplitude x[KT]. 

The ZT operator transforms the sequence x[n] to X(z), a function of the continuous 

complex variable z. The relationship between a sequence and its transform is denoted as: 

𝑥[𝑛]
𝓏
↔𝑋(𝑧)  (7.3) 

At this point, it is possible to establish the connection between the discrete-time Fourier 

transform (DTFT) and the ZT. Despite being aware of the importance of this relationship 

in engineering, the interested reader is referred to the reference [1] and references therein. 

Some of the properties and theorems of the Z-transform, which are useful in the study 

of discrete-time control systems, are presented. They are the following: 

1. Unicity: The Z-transform of a sequence is unique. 

2. Addition: The Z-transform of the sum of the sequencies of numbers is equal to the 

sum of the sum of the Z-transform of the sequences, 𝑍[𝑥1(𝑘) + 𝑥2(𝑘)] = 𝑋1(𝑧) +
𝑋2(𝑧)  where 𝑍[𝑥1(𝑘)] = 𝑋1(𝑧)  and 𝑍[𝑥2(𝑘)] = 𝑋2(𝑧)  . 

3. Multiplication by a constant: Z-transform of a sequence of numbers by a constant is 

equal to the Z-transform of the sequence multiplied by a constant: 𝑍[𝑎 ∗ 𝑥(𝑘)] = 𝑎 ∗
𝑍[𝑥(𝑘)]. 

4. Linearity: From properties 1 and 2, it is obtained:  𝑍[𝑎 ∗ 𝑥1(𝑘) + 𝑏 ∗ 𝑥2(𝑘)] = 𝑎 ∗
𝑋1(𝑧) + 𝑏 ∗ 𝑋2(𝑧)  where 𝑍[𝑥1(𝑘)] = 𝑋1(𝑧)  and 𝑍[𝑥2(𝑘)] = 𝑋2(𝑧) . 

5. Time shifting or delay: If x(k)=0 for k<0, X(z)=Z[x(k)] , and being n, a positive 

integer, then 𝑍[𝑥(𝑘 − 𝑛)] = 𝑧−𝑛𝑋(𝑧) and 𝑍[𝑥(𝑘 + 𝑛)] = 𝑧𝑛[𝑋(𝑧) −
∑ 𝑥(𝑘)𝑧−𝑘]𝑛−1
𝑘=0  where the sum term is considered in the initial conditions.  

From the equations:  

Z[x(k+1)] =z X(z)-z x(0); 

Z[x(k+2)] =z2X(z)-z2x(0)-z x(1);  

Z[x(k+3)] =z3X(z)-z3 x(0)-z2 x(1)-z x(2); 

multiplication of X(z) by z-1 has the effect of delaying the signal x(k) one sampling 

time and the multiplication of X(z) by z that has the effect of moving forward the 

signal x(k) by one sampling time.  

6. Time scaling by a complex exponential sequence: being X(z)=Z[x(t)], then the Z-

transform of y(t)=ak x(t) is Y(z)=Z[y(t)] = Z[ak x(t)]=X(a-1z).  

Example 7.1: Calculate the Z-transform of y(t)=ak t.  

Sol.: Z(t) =
𝑇𝑧

(𝑧−1)2
 

Then,  Z(𝑎𝑘t ) =
𝑇𝑎−1𝑧

(𝑎−1𝑧−1)2
=

𝑇𝑎𝑧

(𝑧−𝑎)2
  . 
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7. Differentiation in Z-Domain: The differentiation in the z-domain property of the Z-

transform states that the multiplication by n in the time domain corresponds to the 

differentiation in the z-domain. This property is also called the multiplication by n 

property of the Z-transform. Therefore, if 

𝑥[𝑛]
𝓏
↔𝑋(𝑧); 𝑅𝑂𝐶 = 𝑅 

      then, according to the differentiation in the z-domain property, 

𝑛𝑥[𝑛]
𝓏
↔− 𝑧

𝑑𝑋(𝑧)

𝑑𝑧
; 𝑅𝑂𝐶 = 𝑅 

 

7.2 The Region of Convergence (ROC) of the Z-Transform 

The range of variation of z for which the Z-transform converges is called the region of 

convergence of the Z-transform: 𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛𝑛=∞
𝑛=−∞ . 

The Z-transform has two parts, which are the expression and the Region of Convergence 

(ROC), respectively. Whether the Z-transform X(z) of a signal x(n) exists or not depends 

on the complex variable “z” as well as the signal itself. All complex values of “z=Re(jω)” 

for which the summation in the definition converges form a region of convergence (ROC) 

in the Z-plane. A circle with r =1 is called a unit circle, and the complex variable in the 

Z-plane is represented as shown below in figure 7.2. Please note that this is a simplified 

representation of the complex plane.  

 

Figure 7.2: Complex variable in the Z-plane. 

 

The concept of ROC can be understood easily by finding the Z-transform of two 

functions given below: 

a) 𝑥(𝑛) = 𝑎𝑛𝑢(𝑛) where u(n) is the step function for 𝑛 ≥ 0 

𝑋(𝑧) = ∑ 𝑎𝑛𝑢(𝑛)𝑧 .𝑛 = ∑𝑎𝑛𝑧−𝑛 = ∑(𝑎𝑧−1)𝑛
∞

𝑛=0

∞

𝑛=0

∞

𝑛=−∞

 

For convergence of X(z), it is required that ∑ |𝑎𝑧−1|𝑛∞
𝑛=0 < ∞ Consequently, the region 

of convergence is that range of values of z for which |az − 1| < 1, or equivalently, 𝑧 > 

𝑎, and it is shown in Figure 7.3. 
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Figure 7.3: Z-plane for case a).  

 

Then, 𝑋(𝑧) = ∑ (𝑎𝑧−1)𝑛 =
1

1−𝑎𝑧−1
=

𝑧

𝑧−𝑎
∞
𝑛=0  

b) 𝑥(𝑛) = −𝑎𝑛𝑢(−𝑛 − 1) 

𝑋(𝑧) = ∑ −𝑎𝑛𝑢(−𝑛 − 1)𝑧 .𝑛 = ∑ 𝑎𝑛𝑧−𝑛 = −∑(𝑎−1𝑧)𝑛
∞

𝑛=1

−1

𝑛=−∞

∞

𝑛=−∞

= 1 −∑(𝑎−1𝑧)𝑛 = 1 −
1

1 − 𝑎−1𝑧
=

1

1 − 𝑎𝑧−1
=

∞

𝑛=0

𝑧

𝑧 − 𝑎
 

This result converges only when 𝑎−1 𝑧 < 1, or equivalently, |z| < |a|. The ROC is shown 

below: 

 

 

Figure 7.4: Z-plane for case b). 

If it is considered the signals an u(n) and -an u(-n-1), it can be noticed that although the 

signals are differing, their Z-transforms are identical, which is 𝑧 𝑧 − 𝑎⁄ . Thus, it is 

possible to determine that to distinguish the Z-transforms uniquely, their ROC's must be 

specified. 
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Properties of ROC of Z-Transforms 

• ROC of Z-Transform is indicated with a circle in the z-plane. 

• The ROC does not contain any poles. 

• If x(n) is a finite distance causal sequence or right sided sequence, then the ROC is the 

entire z-plane except at z = 0. 

• If x(n) is a finite distance anti-causal sequence or left sided sequence, then the ROC is 

the entire z-plane except at z = ∞. 

• If x(n) is an infinite distance causal sequence, ROC is the exterior of the circle with radius 

a. i.e., |z| > a. 

• If x(n) is an infinite distance anti-causal sequence, ROC is the interior of the circle with 

radius a. i.e., |z| < a. 

• If x(n) is a finite distance two-sided sequence, then the ROC is the entire z-plane except 

at z = 0 & z = ∞. 

The concept of the ROC can be explained by the following example: 

Example 7.2: Find z-transform and ROC of the sequence  anu[n]+a−nu[−n−1] 

 

Z[anu[n]+a−nu[−n−1]]=Z[anu[n]]+Z[a−nu[−n−1]]=
1

1−𝑎𝑧−1
+

1

1−𝑎𝑧−1
 (check Table 7.1 

below) 
 

ROC:|z|>a and, ROC:|z|<1/a 

The plot of the ROC has two conditions as a > 1 and a < 1 (or 1/a>1), as you do not know a. 

 

 
 

Figure 7.5: z-plane for case a), where the value of a>1.  
 

In this case, there is no ROC combination. 
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Figure 7.6: z-plane for case b), where the value of a<1.  
 

Here, the ROC combination is of the form: a<|z|<1/a and a<|z|<1/a 

Hence, for this problem, the Z-transform is possible when a < 1. 

 

7.3  Discrete-time signals 

 
Discrete-time signals are represented mathematically as sequences of numbers. A 

sequence of numbers x, in which the nth number in the sequence is denoted x[n], is 

formally written as x = {x[n]}, −∞ < n < ∞, (7.4), where n is an integer. In a practical 

setting, such sequences can often arise from periodic sampling of an analog (i.e., 

continuous time) signal x a (t). In that case, the numeric value of the nth number in the 

sequence is equal to the value of the analog signal, x a (t), at time nT :  

i.e., x[n] = xa (nT ), −∞ < n < ∞. (7.5) 

The quantity T is the sampling period, and its reciprocal is the sampling frequency. 

Although sequences do not always arise from sampling analog waveforms, it is 

convenient to note that it is used [ ] to enclose the independent variable of discrete-

variable functions, and it is used ( ) to enclose the independent variable of continuous-

variable functions to refer to x[n] as the “nth sample” of the sequence. Also, although, 

strictly speaking, x[n] denotes the nth number in the sequence, the notation of Eq. (7.4) is 

often unnecessarily cumbersome, and it is convenient and unambiguous to refer to “the 

sequence x[n]” when that means the entire sequence, just as it is referred to “the analog 

signal x(t).” 

Discrete-time signals (i.e., sequences) are depicted graphically, as shown in Figure 7.7. 

Although the abscissa is drawn as a continuous line, it is important to recognize that x[n] 

is defined only for integer values of n. It is not correct to think of x[n] as being zero when 

n is not an integer; x[n] is simply undefined for non-integer values of n. 

 
Figure 7.7: Graphic representation of a discrete-time signal 
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In discussing the theory of discrete-time signals and systems, several basic sequences are 

of particular importance. These sequences are shown in Figure 7.7 and will be discussed 

next. 

The unit sample sequence (Figure 7.8a) is defined as the sequence: 

 

𝛿[𝑛] = {
0, 𝑛 ≠ 0
1, 𝑛 = 0

 (7.6) 

 

The unit sample sequence plays the same role for discrete-time signals and systems that 

the unit impulse function (Dirac delta function) does for continuous-time signals and 

systems. For convenience, the unit sample sequence is referred to as a discrete time 

impulse or simply as an impulse. It is important to note that a discrete-time impulse does 

not suffer from the mathematic complications of a continuous-time impulse; its definition 

given in Eq. (7.6) is simple and precise. 

 

 
 

 

 
 

 
 

 
 

Figure 7.8: Some basic sequences: a) unit sample, b) unit step, c) real exponential, and 

d) sinusoidal. The sequences shown play important roles in the analysis and 

representation of discrete-time signals and systems. 
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One of the important aspects of the impulse sequence is that an arbitrary sequence 

can be represented as a sum of scaled, delayed impulses. For example, the sequence 

p[n] in Figure 7.9 can be expressed as: 

 

p[n] = a−3δ[n + 3] + a1δ[n − 1] + a2δ[n − 2] + a7δ[n − 7] (7.7). 

 

 
Figure 7.9: Example of a sequence to be represented as a sum of scaled, delayed 

impulses. 

 

 

More generally, any sequence can be expressed as: 

 

𝑥[𝑛] = ∑ 𝑥[𝑘]𝛿[𝑛 − 𝑘]∞
𝑘=−∞    (7.8). 

 

 

We will make specific use of Eq. (7.8) in discussing the representation of discrete time 

linear systems. 

The unit step sequence (Figure 7.8b) is defined as: 

 

𝑢[𝑛] = {
1, 𝑛 ≥ 0
0, 𝑛 < 0

  (7.9). 

 

The unit step is related to the unit impulse by: 

 

𝑢[𝑛] = ∑ 𝛿[𝑘]𝑛
𝑘=−∞  (7.10) 

 

that is, the value of the unit step sequence at (time) index n is equal to the accumulated 

sum of the value at index n and all previous values of the impulse sequence. An alternative 

representation of the unit step in terms of the impulse is obtained by interpreting the unit 

step in Figure 7.8b in terms of a sum of delayed impulses, as in Eq. (7.8). In this case, the 

nonzero values are all unity, so 

 

u[n] = δ[n] + δ[n − 1] + δ[n − 2] + · · · (7.11) 

 

or, 

 

𝑢[𝑛] = ∑ 𝛿[𝑛 − 𝑘]∞
𝑘=0   (7.12) 

 

Yet another alternative, the impulse sequence can be expressed as the first backward 

difference of the unit step sequence, i.e., 

 

δ[n] = u[n] − u[n − 1]  (7.13). 
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7.4 Z-Transform Table of Basic Signals 
 

Table 7.1: Z-Transform Table of Basic Sequences.  
 

x(t) X[z] ROC 

δ [n] 1 All z 

u(n) 
𝟏

𝟏 − 𝒛−𝟏
 

|𝒛| > 𝟏 

-u(−n−1) 
𝟏

𝟏 − 𝒛−𝟏
 

|𝒛| < 𝟏 

δ(n−m) 
z−m All z except 0 

or ∞ 

anu[n] 
𝟏

𝟏 − 𝒂𝒛−𝟏
 

|𝒛| > 𝒂 

-anu[−n−1] 
𝟏

𝟏 − 𝒂𝒛−𝟏
 

|𝒛| < 𝒂 

nanu[n] 
𝒂𝒛−𝟏

(𝟏 − 𝒂𝒛−𝟏)𝟐
 

|𝒛| > 𝒂 

-nanu[−n−1] 
𝒂𝒛−𝟏

(𝟏 − 𝒂𝒛−𝟏)𝟐
 

|𝒛| < 𝒂 

ancos(ωon)u[n] 
𝟏 − 𝒂𝒛−𝟏𝒄𝒐𝒔𝝎𝒐

𝟏 − 𝟐𝒂𝒛−𝟏𝒄𝒐𝒔𝝎𝒐 + 𝒂
𝟐𝒛−𝟐

 
|𝒛| > 𝒂 

ansin(ωnu[n]) 
𝒂𝒛−𝟏𝒔𝒊𝒏𝝎𝒐

𝟏 − 𝟐𝒂𝒛−𝟏𝒄𝒐𝒔𝝎𝒐 + 𝒂
𝟐𝒛−𝟐

 
|𝒛| > 𝒂 

 

 
 

7.5 Inverse Z-transform methods 

 

If it is required to analyze a system, which is already represented in frequency domain, 

as discrete time signal, then, analogous to the Laplace transform, it is introduced the 

inverse Z-transformation. 

Mathematically, it can be represented as: 

x(n)=Z−1 [X(z)]  (7.14) 

 

where x(n) is the signal in the time domain and X(z) is the signal in the frequency domain. 

Note that the Z-inverse transform of a signal X(z) is obtained in the sampling times n=kT, 

k=0,1,2… 
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Methods to Find Inverse Z-Transform 

When the analysis is needed in discrete format, we convert the frequency domain signal 

back into discrete format through inverse Z-transformation. The following four ways to 

determine the inverse Z-transformation are considered: 

• Long Division Method, 

• Partial Fraction Expansion Method, 

• Residue or Contour Integral Method, 

 

a) Long Division Method 

 

In this method, the Z-transform of the signal x(z) can be represented as the ratio of 

polynomials: 

x(z)=N(z)/D(z)  (7.15). 

Dividing the numerator by the denominator, a series of polynomials is obtained: 

X(z)=x(0)+x(1)z−1+x(2)z−2+...  (7.16). 

 

The above sequence represents the series of the inverse Z-transforms of the given 

signal for n≥0 and the above system is causal. 

However, for n<0 the series can be written as: 

x(z)=x (−1) z1+x (−2) z2+x (−3) z3+........(7.17). 

 

Example 7.3: Calculate the inverse Z-transform of 𝑋(𝑧) =
𝑧

𝑧2−3𝑧+2
 . Sol: 𝑋(𝑧) =

𝑧

𝑧2−3𝑧+2
= 𝑧−1 + 3𝑧−2 + 7𝑧−3 + 15𝑧−4 +⋯. So, x (0) =0, x(T) =1, x(2T) =3, x(3T) 

=7, x(4T) =15, …, 𝑥(𝑘𝑇) = 2𝑘 − 1. Not always is it possible to find a closed form of 

the series.  

 

In MATLAB, deconv ([1,0,0,0,0,0,0,0,0], [1,-3,2]), the number of zeros depends on the 

number of the element it is required to calculate. In general, this method is adequate if it 

is expected to calculate the first values of the series numbers, as they don´t have a closed 

form. 

 

b) Partial Fraction Expansion Method 

 
In this case, the signal is also expressed first in N(z)/D(z) form. If it is a rational fraction, 

it will be represented as follows: 

 

x(z)=(b0+b1z
−1+b2z

−2+.........+bmz−m)/(a0+a1z
−1+a2z

−2+.........+anz
−n) (7.18). 

The above one is improper when m<n and an≠0. 

If the ratio is not proper, i.e., improper, then it must be converted to the proper form to 

solve it. 
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Example 7.4: Calculate the inverse Z-transform of 𝑋(𝑧) =
𝑧

𝑧2−3𝑧+2
 . 𝑋(𝑧) =

𝑧

𝑧2−3𝑧+2
=

−1

𝑧−1
+

2

𝑧−2
 , using the table of the Z-transform, 𝑥(𝑘𝑇) = −1 + 2𝑘 = 2𝑘 − 1 

 

c) The Residue or Contour Integral Method 

 
In this method, the inverse Z-transform 𝑥[𝑛] is obtained by summing residues 

of [x(z)Zn−1] at all poles. Mathematically, this may be expressed as: 

 

𝑥[𝑛] = ∑ 𝑅𝑒𝑠 (𝑋(𝑧)𝑥𝑛−1)𝑎𝑙𝑙 𝑝𝑜𝑙𝑒𝑠  (7.19). 

corresponding to the poles 𝑋(𝑧)𝑥𝑛−1 that lie inside C that encloses 𝑧 = |𝑅|.  

The residue of 𝑋(𝑧)𝑥𝑛−1 at a given pole, 𝑧 = 𝑧𝑖 with multiciplity, m, can be calculated 

as:  

 

    𝑅𝑒𝑠𝑧=𝑧𝑖 =
𝑑𝑚−1

𝑑𝑧𝑚−1
[
(𝑥−𝑥𝑖)

𝑚

(𝑚−1)!
𝑋(𝑧)𝑥𝑛−1]|

𝑧=𝑧𝑖

 (7.20). 

 

Example 7.5: Calculate the inverse Z-transform of the function 𝑋(𝑧) =
𝑧

𝑧2−3𝑧+2
=

𝑧

(𝑧−1)(𝑧−2)
 

 

Solution: First, it is calculated the poles of the function 𝑋(𝑧)𝑧𝑘−1: 
 

𝑋(𝑧)𝑧𝑘−1 =
𝑧 ∗ 𝑧𝑘−1

(𝑧 − 1)(𝑧 − 2)
=

𝑧𝑘

(𝑧 − 1)(𝑧 − 2)
 

It can be shown that for every value of k=0,1,2,3…, the function 𝑋(𝑧)𝑧𝑘−1 has two 

single poles in z=1 and z=2, so the calculus of the residues may be done for all the values 

of k at the same time. Then, x(k)=k1+k2, where: 

k1=residue of 𝑋(𝑧)𝑧𝑘−1 in z=1 =(𝑧 − 1) 
𝑧𝑘

(𝑧−1)(𝑧−2)
|
𝑧=1

=
1𝑘

1−2
= −1 

k2=residue of 𝑋(𝑧)𝑧𝑘−1 in z=2 =(𝑧 − 2) 
𝑧𝑘

(𝑧−1)(𝑧−2)
|
𝑧=2

=
2𝑘

2−1
= 2𝑘 

Finally, 

x(k)= -1 + 2k   k=0,1,2… 

Example 7.6 Calculate the inverse Z-transform of the function 𝑋(𝑧) =
1

𝑧(𝑧−𝑒−2𝑇)
 

Solution: First, it is calculated the poles of the function 𝑋(𝑧)𝑧𝑘−1 

𝑋(𝑧)𝑧𝑘−1 =
𝑧𝑘−1

𝑧(𝑧 − 𝑒−2𝑇)
=

𝑧𝑘−2

(𝑧 − 𝑒−2𝑇)
 

As it may be observed, for k=0 the function 𝑋(𝑧)𝑧𝑘−1 has a simple pole in 𝑧 = 𝑒−2𝑇 and 

a double pole in z=0; for k=1 the function 𝑋(𝑧)𝑧𝑘−1 has a simple pole in 𝑧 = 𝑒−2𝑇 and 

a simple pole in z=0; and for 𝑘 ≥ 2 the function 𝑋(𝑧)𝑧𝑘−1 has a simple pole in 𝑧 =
𝑒−2𝑇. As a result, it must be calculated residues in k=0, k=1 and 𝑘 ≥ 2 independently.  

1.  For k=0, 𝑋(𝑧)𝑧𝑘−1 =
1

𝑧2(𝑧−𝑒−2𝑇)
, so, 𝑥(𝑘) = 𝑘01 + 𝑘02 
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k01=residue of 𝑋(𝑧)𝑧𝑘−1 in 𝑧 = 𝑒−2𝑇 = (𝑧 − 𝑒−2𝑇)
1

𝑧2(𝑧−𝑒−2𝑇)
|
𝑧=𝑒−2𝑇

=
1

𝑒−4𝑇
=

𝑒4𝑇 

k02=residue of 𝑋(𝑧)𝑧𝑘−1 in the double pole 𝑧 = 0 =
1

(2−1)!

𝑑2−1

𝑑𝑧2−1
[𝑧2

1

𝑧2(𝑧−𝑒−2𝑇)
]
𝑧=0

=
𝑑

𝑑𝑧
[

1

(𝑧−𝑒−2𝑇)
]
𝑧=0

=
−1

(𝑧−𝑒−2𝑇)2
|
𝑧=0

=
−1

(−𝑒−2𝑇)2
=

−𝑒4𝑇 

Then, 𝑥(0) = 𝑘01 + 𝑘02 = 𝑒
4𝑇 − 𝑒4𝑇 = 0 

 

2.  For k=1, 𝑋(𝑧)𝑧𝑘−1 =
1

𝑧(𝑧−𝑒−2𝑇)
, so, 𝑥(𝑘) = 𝑘11 + 𝑘12 

k11=residue of 𝑋(𝑧)𝑧𝑘−1 in 𝑧 = 𝑒−2𝑇 = (𝑧 − 𝑒−2𝑇)
1

𝑧(𝑧−𝑒−2𝑇)
|
𝑧=𝑒−2𝑇

=
1

𝑒−2𝑇
=

𝑒2𝑇 

k12=residue of 𝑋(𝑧)𝑧𝑘−1 in 𝑧 = 0 = 𝑧
1

𝑧(𝑧−𝑒−2𝑇)
|
𝑧=0

=
1

𝑒−2𝑇
= 𝑒2𝑇 

Then, 𝑥(0) = 𝑘01 + 𝑘02 = 𝑒
2𝑇 − 𝑒2𝑇 = 0 

 

3. For 𝑘 ≥ 2, 𝑋(𝑧)𝑧𝑘−1 =
𝑧𝑘−1

(𝑧−𝑒−2𝑇)
, so, 𝑥(𝑘) = 𝑘1 

 

k01=residue of 𝑋(𝑧)𝑧𝑘−1 in 𝑧 = 𝑒−2𝑇 = (𝑧 − 𝑒−2𝑇)
𝑧𝑘−2

(𝑧−𝑒−2𝑇)
|
𝑧=𝑒−2𝑇

=

𝑧𝑘−2|𝑧=𝑒−2𝑇 = 𝑒
−2𝑇(𝑘−2) 

Then,  𝑥(𝑘) = 𝑘1 = 𝑒
−2𝑇(𝑘−2)  𝑘 ≥ 2 

The total solution will be, 

𝑥(𝑘) = { 
0                      𝑘 = 0,1

𝑒−2𝑇(𝑘−2)      𝑘 ≥ 2  
 

 

7.4 The concept of a discrete-time system. From difference equations to transfer 

functions. 

 

A LTI system is completely characterized by its impulse response h[n], or equivalently, 

the Z-transform of the impulse response H(z) which is called the transfer function. 

Remember: 

𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛]
𝑧
→ 𝑌(𝑧) = 𝑋(𝑧)𝐻(𝑧) (7.20). 

Note that it is obtained: 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
 (7.21). 

In case the impulse response is given to define the LTI system, it can be simply calculated 

the Z-transform to obtain H(z), often called the transfer function of the system. 
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If the system is defined by a difference equation, it could be first calculated the impulse 

response and then calculate the Z-transform. But it is far easier to calculate the Z-

transform of both sides of the difference equation. 

Example 7.7: As a first example, it is considered the difference equation: 

 𝑦[𝑛] = 𝑥[𝑛] + 𝛼𝑦[𝑛 − 1] 

applying the Z-transform to both sides of the equation: 

𝑍{𝑦[𝑛]}=𝑍{𝑥[𝑛] + 𝛼𝑦[𝑛 − 1]} 

𝑌(𝑧) = 𝑍{𝑥[𝑛]} + 𝛼𝑍{𝑦[𝑛 − 1]} 

𝑌(𝑧) = 𝑋(𝑧) + 𝛼𝑧−1𝑌(𝑧) 

(1 − 𝛼𝑧−1)𝑌(𝑧) = 𝑋(𝑧) 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

1

(1 − 𝛼𝑧−1)
 

showing that H(z) can be directly calculated from the difference equation without explicit 

construction of the (infinite length) impulse response function. 

Example 7.8: Consider the following difference equation and calculate the transfer 

function. 

y[n]=1.5y[n−1]−0.5y[n−2]+0.5x[n] 

Solution: 

Y(z)=1.5z−1Y(z)−0.5z−2Y(z)+0.5X(z) 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

0.5

1 − 1.5𝑧−1 + 0.5𝑧−2
=

𝑧2

2𝑧2 − 3𝑧 + 1
 

 

7.6.1 Pulse transfer function 

The transfer function of a continuous system relates the Laplace transform of the output 

with the Laplace transform of the input. Similarly, the pulse transfer function relates a 

sequence of samples at the output of a system to the sequence producing it. The input 

and output sequencies are represented here as a discrete transfer function that relates the 

Z-transform of the output with the Z-transform of the input at sampling times.  

The pulse transfer function of a discrete-time system is defined as the Z-transform of the 

output between the Z-transform of the input, taking initial conditions as nulls.  

𝐺(𝑧) =
𝑌(𝑧)

𝑅(𝑧)
|
𝑛𝑢𝑙𝑙 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

(7.22). 
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Example 7.9: Calculate the pulse transfer function for the system described as the 

following difference equation: 

𝑦(𝑘 + 3) = −0.3𝑦(𝑘 + 2) + 𝑦(𝑘 + 1) − 0.5𝑦(𝑘) + 𝑢(𝑘 + 3) − 𝑢(𝑘 + 1) − 0.6𝑢(𝑘) 

Solution: Calculating the Z-transform of the difference equation for null initial 

conditions: 

(𝑧3 + 0.3𝑧2 − 𝑧 + 0.5)𝑌(𝑧) = (4𝑧3 − 𝑧 − 0.6)𝑅(𝑧) ⟹ 𝐺(𝑧) =
𝑌(𝑧)

𝑅(𝑧)

=
4𝑧3 − 𝑧 − 0.6

𝑧3 + 0.3𝑧2 − 𝑧 + 0.5
 

Example 7.10: Calculate the output of the discrete time system, whose pulse transfer 

function is 𝐺(𝑧) =
1

𝑧−0.5
  

Solution: According to Table 7.1 the Z-transform of the unit step function is 𝑅(𝑧) =
𝑧

𝑧−1
. 

So, the Z-transform of the output will be 𝑌(𝑧) = 𝐺(𝑧)𝑅(𝑧) =
1

𝑧−0.5

𝑧

𝑧−1
=

𝑧

(𝑧−0.5)(𝑧−1)
=

−2𝑧

𝑧−0.5
+

2𝑧

𝑧−1
 . 

Calculating the anti-transform Z: 𝑌(𝑧)
−2𝑧

𝑧−0.5
+

2𝑧

𝑧−1

𝑍−1

⇒ 𝑦(𝑘𝑇) = −2 ∗ (0.5)𝑘 + 2 ∗ 1𝑘 =

−2 ∗ (0.5)𝑘 +2 

7.6.2 Transfer function: poles and zeros 

The generic difference equation for an LTI system is: 

 

a0 y[k]+a1 y[k−1]+⋯+an y[k−n]=b0 x[k]+b1 x[k−1]+⋯+bn x[k−n] (7.22). 

 

It is taken that the number of terms is both equal to n. In practice, some of the 𝑎𝑖 and 𝑏𝑖 
terms can be zero. 

Taking the Z-transform on both sides of the equation and rearranging terms leads to the 

transfer function H(z): 

 

𝐻(𝑧) =
Y(z)

X(z)
=
b0+b1z

−1+⋯+bn z
−n 

a0+a1z−1+⋯+anz−n
 (7.23). 

 

Multiplying by zn/zn results in 

 

𝐻(𝑧) =
Y(z)

X(z)
=
b0z

n+b1z
n−1+⋯+bn 

a0zn+a1zn−1+⋯+an
 (7.24). 

 

The fundamental theorem of algebra, which states that every nth order complex 

polynomial has exactly n roots. The roots of the nominator are called the zeros of the 

transfer function, and they are indicated with 𝑞𝑖, and the roots of the denominator are 

called the poles of H, and they are indicated as 𝑝𝑖. With these zeros and poles, it can be 

rewritten the transfer function as: 

 

𝐻(𝑧) =
Y(z)

X(z)
=
𝐾(𝑧−𝑞1) (𝑧−𝑞2)…(𝑧−𝑞𝑛)

(𝑧−𝑝1)(𝑧−𝑝2)…(𝑧−𝑝𝑛)
 (7.25). 
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The factor K expresses the fact that 𝑏0and 𝑎0 need not be equal to one. 

The zeros and poles of such a rational function in z for a system with real valued 

coefficients come in conjugate pairs. That is, if p is a pole, then p∗ is a pole (its 

conjugate)  as well. In the same way, when z is a zero of H(z) then z∗ is a zero as well. 

For a system characterized by a difference equation with real coefficients, 

• the poles should be inside the unit circle for the system to be stable, 

• Any such system (arbitrary n) can be built as the cascade (sequence) of second 

order systems (each with n=2) and possibly a first order system n=1, 

Because a LTI system is completely characterized by its transfer function H(z), the system 

is also completely characterized by its set of zeros and poles (together with the gain factor 

K). Plotting the zeros and poles in the complex plane characterizes the LTI system. As an 

example, it is considered the LTI system with the transfer function H(z): 

 

𝐻(𝑧) =
𝑧2 − 1.9𝑧 + 1

𝑧2 − 1.8𝑧 + 0.9
=
(𝑧 − 0.95 − 0.31𝑗)(𝑧 − 0.95 + 0.31𝑗)

(𝑧 − 0.9 − 0.3𝑗)(𝑧 − 0.9 + 0.3𝑗)
 

 

The poles and zeros are plotted in the complex plane, poles are indicated with a small 

cross × and zeros are indicated with a small circle ∘. In the complex plane, the unit 

circle is also shown. 

 

 
Figure 7.10: Poles and zeros placement in the z-plane for the previous transfer function. 

 

7.7 Stability of discrete-time domain systems 

It is distinguishing between internal system stability (stability of the system with zero-

input response) and bounded input-bounded output (BIBO) stability (stability of the 

system with zero state response). As in the continuous time domain, discrete-time 

internal system stability depends on the location of the system eigenvalues, and system 

BIBO stability is determined by the nature of the system impulse response.  

A discrete-time input-free system is stable if its zero-input response is bounded in time. 

The linear discrete-time system is asymptotically stable if, in addition to being stable, its 

zero-input response tends to zero as time increases. 

Internal system stability is related to the system eigenvalues. The discrete-time linear 

system eigenvalues are the solutions of the corresponding system characteristic equation. 
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If every eigenvalue of the system resides inside the unity circle of the Z-plane, the system 

is said to be asymptotically stable. If there are one or more eigenvalues that reside in the 

circle z=1 of the z-plane and the rest inside, the system is said to be marginally stable. 

And if there are one or more eigenvalues outside the circle of radius unity, the system is 

said to be unstable. Figure 7.11 represents graphically this idea.    

 

 

Figure 7.11: Z-plane stability regions. 

For a discrete transfer function, there are two conditions, the causality and stability.  

The causal condition for discrete-time LTI systems is as follows: 

A discrete-time LTI system is causal when: 

• ROC is outside the outermost pole. 

• In the transfer function H[z], the order of the numerator cannot be greater than 

the order of the denominator. 

Stability Condition for Discrete Time LTI Systems 

A discrete time LTI system is stable when: 

• its system function H[z] includes the unit circle |z|=1. 

• all poles of the transfer function lie inside the unit circle |z|=1. 

 

7.8 State variables 

In the same vein as in continuous systems, discrete-time systems may be modeled as state 

variable equations. The model in state variables is obtained by decomposing the nth-order 

difference equation into n-difference equations of first order. In linear systems, the 

structure of these equations of first order is such that they may be written as matrix 

equations.  

Example 7.11: Calculate the state equation of a system described by,  

𝑦(𝑘 + 2) = 𝑢(𝑘) + 1.7𝑦(𝑘 + 1) − 0.72𝑦(𝑘) (7.26) 

Solution:  
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As equation (6.4) is a second-order difference equation, there will be two state variables. 

The selection of the state variables is not unique. Given a system, it is possible to choose 

different state variables to model its dynamic behavior. It is convenient to choose the ones 

that have physical meaning.  

In this example, the following two state variables are chosen: 

𝑥1(𝑘) = 𝑦(𝑘) 

𝑥2(𝑘) = 𝑥1(𝑘 + 1) = 𝑦(𝑘 + 1) 

where the state variables are the input and output of the system delayed by one sampling 

time. Substituting in the difference equation (7.26), the following state is obtained 

equation: 

[
𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)
] = [

0 1
−0.72 1.7

] [
𝑥1(𝑘)

𝑥2(𝑘)
] + [

0
1
] 𝑢(𝑘) 

𝑦(𝑘) = [1 0] [
𝑥1(𝑘)
𝑥2(𝑘)

] 

The general expression that describes the state equations of a linear and time-invariant 

system of n-order with r inputs and m outputs is: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) 

Where x(k) is the state vector of (nx1) order, u(k) is the input vector of (rx1) order, y(k) 

is the output vector of (mx1) order. A is the state matrix of (nxn) order, B is the input 

matrix of (nxr) order, C is the output matrix of (mxn) order. and D is the direct transition 

matrix of (mxr) order. 

 

7.9 From state space to pulse transfer function 

It has been stated that discrete-time systems of one input and one output may be modeled 

as pulse transfer functions. 

Consider the system: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) 

applying the Z-transform, 

𝑧𝑋(𝑧) − 𝑧𝑋(0) = 𝐴𝑋(𝑧) + 𝐵𝑈(𝑧) 

𝑌(𝑧) = 𝑐𝑋(𝑧) + 𝐷𝑈(𝑧) 

where X(0)=0, condition to calculate the pulse transfer function. 

So, clearing X(z) in the first equation, it is obtained: 

𝑋(𝑧) = (𝑧𝐼 − 𝐴)−1𝐵(𝑧) 

And substituting in the second equation, 

𝑌(𝑧) = [𝐶(𝑧𝐼 − 𝐴)−1𝐵 + 𝐷]𝑈(𝑧) 

𝐺(𝑧) =
𝑌(𝑧)

𝑈(𝑧)
= 𝐶(𝑧𝐼 − 𝐴)−1𝐵 + 𝐷 

The inverse of a matrix is defined as, 𝑀−1 =
𝑎𝑑𝑗(𝑀)𝑇

|𝑀|
, G(z) may be written as, 
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𝐺(𝑧) = 𝐶
𝑎𝑑𝑗(𝑧𝐼 − 𝐴)−1

|𝑧𝐼 − 𝐴|
𝐵 + 𝐷 

Where the poles of the system are the roots of the characteristic equation, |𝑧𝐼 − 𝐴| = 0. 

Example 7.12: Consider the system given by the following state equations: 

𝑥(𝑘 + 1) = [
0 1
−2 3

] 𝑥(𝑘) + [
0
1
] 𝑢(𝑘) 

𝑦(𝑘) = [0 1]𝑥(𝑘) 

Calculate the pulse transfer function. 

Solution:  

(𝑧𝐼 − 𝐴)−1 = [
𝑧 −1
2 𝑧 − 3

]
−1

=
1

𝑧2 − 3𝑧 + 2
[
𝑧 − 3 1
−2 𝑧

] 

Then,  

𝐺(𝑧) = 𝐶
𝑎𝑑𝑗(𝑧𝐼 − 𝐴)−1

|𝑧𝐼 − 𝐴|
𝐵 + 𝐷 = [0 1]

1

𝑧2 − 3𝑧 + 2
[
𝑧 − 3 1
−2 𝑧

] [
0
1
] =

𝑧

𝑧2 − 3𝑧 + 2
 

The same example using MATLAB: 

𝐴 = [0 1;−2 3]; 𝐵 = [0; 1]; 𝐶 = [0 1]; 𝐷 = 0; 

[𝐺𝑛𝑢𝑚, 𝐺𝑑𝑒𝑛] = 𝑠𝑠2𝑡𝑓(𝐴, 𝐵, 𝐶, 𝐷) 

The command ss2tf transforms the state space system into a transfer function system. 

 

7.10  Sampled data control systems.  

The sampled-data control systems include clock-driven elements and reflect the current 

trends in the design of feedback control systems. In control systems technology, data 

acquisition cards (DAQ) are commonly used to sense, sample, and process variables of 

interest. The controller is digitally implemented as a software routine on a programmable 

logic controller (PLC), microcontroller, digital signal processor (DSP), or Field 

Programmable Gate Array (FPGA). 

The sampled-data control systems employ software-based controllers that work with 

discretized time. The discrete-time system models are represented by difference 

equations, with input and output variables represented by number sequences. The analog-

to-digital (ADC) and digital-to-analog (DAC) converters are modeled as sampler and 

hold devices (Figure 7.12). 

Figure 7.12: Discrete-time closed-loop system. 
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A continuous-time system model may be converted to a discrete system model by 

assuming a piece-wise constant input generated by a zero-order hold (ZOH) in general, 

but other kinds of holds exist. In MATLAB, the continuous-to-discrete conversion is 

handled by the ‘c2d’ function in the Control Systems Toolbox. The function allows a 

variety of input methods. 

The Z-transform for discrete-time systems serves as the equivalent of the Laplace 

transform for continuous-time systems. Discrete system models are represented by pulse 

transfer functions that are valid at sampling instances. The added phase angle due to 

sampling adversely affects the dynamic stability of the closed-loop system. The discrete 

system stability, which is depicted by the roots of the characteristic polynomial being 

restricted to the inside of a unit circle, is indicated. 

Analog controllers designed for transfer function models of continuous-time systems can 

be approximated for their application to sampled-data systems. Assuming a high enough 

sampling rate (five to ten times the system bandwidth), the digital controller obtained by 

emulation gives comparable performance to the analog controller it mimics. 

There is a technique called root locus [3] that can be used for controller design in the case 

of discrete systems. The design is performed on the z-plane, keeping in view the stability 

boundary, i.e., the unit circle. The performance criteria, defined in terms of settling time, 

damping ratio, and so on, can be reflected on the z-plane. 

In this section, models of sampled-data systems, their properties, stability 

characterization, and the analysis and design of controllers for such systems are discussed. 

a) A/D Converter. Sampled data device. 

An ADC converts a continuous-time and continuous-amplitude analog signal to a 

discrete-time and discrete-amplitude digital signal. The conversion involves quantization 

of the input, so it necessarily introduces a small amount of error or noise. Furthermore, 

instead of continuously performing the conversion, an ADC does the conversion 

periodically, sampling the input, limiting the allowable bandwidth of the input signal. 

The performance of an ADC is primarily characterized by its bandwidth and signal-noise 

ratio (SNR). The bandwidth of an ADC is characterized primarily by its sampling rate. 

The SNR of an ADC is influenced by many factors, including resolution, linearity, 

accuracy (how well the quantization levels match the true analog signal), aliasing, and 

jitter. The SNR of an ADC is often summarized in terms of its effective number of bits 

(ENOB), the number of bits of each measure it returns that are, on average, not noise. An 

ideal ADC has an ENOB equal to its resolution. ADCs are chosen to match the bandwidth 

and required SNR of the signal to be digitized. If an ADC operates at a sampling rate 

greater than twice the bandwidth of the signal, then, per the Nyquist-Shannon sampling 

theorem, perfect reconstruction is possible. The presence of quantization error limits the 

SNR of even an ideal ADC. However, if the SNR of the ADC exceeds that of the input 

signal, its effects may be neglected, resulting in an essentially perfect digital 

representation of the analog input signal. 

The resolution of the converter indicates the number of different, i.e., discrete, values it 

can produce over the allowed range of analog input values. Thus, a particular resolution 

determines the magnitude of the quantization error and therefore determines the 

maximum possible signal-noise ratio for an ideal ADC without the use of oversampling. 

The input samples are usually stored electronically in binary form within the ADC, so the 

resolution is usually expressed as the audio bit depth. In consequence, the number of 
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discrete values available is usually a power of two. For example, an ADC with a 

resolution of 8 bits can encode an analog input to one of 256 different levels (28 = 256). 

The values can represent the ranges from 0 to 255 (i.e., as unsigned integers) or from 

−128 to 127 (i.e., as signed integers), depending on the application. 

 

b) Sampling theorem 

The sampling theorem specifies the minimum sampling rate at which a continuous-time 

signal needs to be uniformly sampled so that the original signal can be completely 

recovered or reconstructed by these samples alone. This is usually referred to as 

Shannon´s sampling theorem in the literature. 

The Shannon´s sampling theorem says that if a continuous time signal contains no 

frequency components higher than W Hz, then it can be completely determined by 

uniform samples taken at a rate of  fs samples per second where: 

fs≥2W 

or, in terms of the sampling period: 

(T≤1/2W). 

A signal with no frequency component above a certain maximum frequency is known as 

a bandlimited signal.  

The minimum sampling rate allowed by the sampling theorem (fs = 2W) is called the 

Nyquist rate. 

 

c) D/A Converter. Reconstruction filter. 

In a mixed-signal system (analog and digital), a reconstruction filter, sometimes called 

an anti-imaging filter, is used to construct a smooth analog signal from a digital input, as 

in the case of a digital-analog converter (DAC) or other sampled data output device. 

The sampling theorem describes why the input of an ADC requires a low-pass analog 

electronic filter, called the anti-aliasing filter:  the sampled input signal must be 

bandlimited to prevent aliasing (here meaning waves of higher frequency 

being recorded as a lower frequency). 

For the same reason, the output of a DAC requires a low-pass analog filter, called a 

reconstruction filter - because the output signal must be bandlimited to prevent imaging 

(meaning Fourier coefficients being reconstructed as spurious high-frequency 'mirrors'). 

This is an implementation of the Shannon interpolation formula.  

Ideally, both filters should be brick wall filters, with a constant phase delay in the 

bandpass and a constant flat frequency response, and zero response from the Nyquist 

frequency. This can be achieved by a filter with a ´sinc´ impulse response. 

d) Implementation 

While in theory a DAC outputs a series of discrete Dirac impulses, in practice, a real DAC 

outputs pulses with a finite bandwidth and width. Both idealized Dirac pulses have zero-

order holding steps, and other output pulses, if unfiltered, would contain spurious high-

frequency replicas, "or images" of the original bandlimited signal. Thus, the 

reconstruction filter smooths the waveform to remove image frequencies (copies) above 

the Nyquist limit. In doing so, it reconstructs the continuous time signal (whether 

originally sampled or modeled by digital logic) corresponding to the digital time 

sequence. 
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Practical filters have a non-flat frequency or phase response in the pass band and 

incomplete suppression of the signal elsewhere. The ideal sinc waveform has an infinite 

response to a signal, in both the positive and negative time directions, which is impossible 

to perform in real time as it would require infinite delay. Consequently, real 

reconstruction filters typically either allow some energy above the Nyquist rate, attenuate 

some in-band frequencies, or both. For this reason, oversampling may be used to ensure 

that frequencies of interest are accurately reproduced without excess energy being emitted 

out of band. 

In systems that have both, the anti-aliasing filter and a reconstruction filter may be of 

identical design. For example, both the input and the output of audio equipment may be 

sampled at 44.1 kHz. In this case, both audio filters block as much as possible above 

22 kHz and pass as much as possible below 20 kHz. 

Alternatively, a system may have no reconstruction filter and simply tolerate some energy 

being wasted reproducing higher frequency images of the primary signal spectrum. 

 

7.11 Analysis of closed-loop discrete-time systems 

 

In this section, it is discussed converting continuous-time models into discrete-time (or 

difference equation) models. It also introduces the Z-transform and show how to use it to 

analyze and design controllers for discrete-time systems. 

The MATLAB commands which will be used in this example are the 

following: c2d , pzmap, zgrid, step, and rlocus. 
 

7.11.1 Introduction 

 

Figure 7.13 below shows the typical continuous-time feedback system that we have been 

considering so far in this document. Almost all continuous-time controllers can be 

implemented using analog electronics. 

 

 

 
Figure 7.13: Closed-loop continuous-time control scheme.  

 

The continuous controller, enclosed in the shaded rectangle (Figure 7.13), can be replaced 

by a digital controller, shown below, that performs the same control task as the continuous 

controller. The basic difference between these controllers is that the digital system 
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operates on discrete signals (samples of the sensed signals) rather than on continuous 

signals. Such a change may be necessary if it is required to implement the control 

algorithm in software on a digital computer, which is frequently the case. 

 

Figure 7.14: Closed-loop discrete-time control scheme.  

 

The various signals in the above digital system schematic can be represented by the 

following plots (Figure 7.15): 

 

Figure 7.15: Examples of signals, �̂�(𝑡), continuous control signal, �̂�(𝑡),output signal, y(k), 

discrete-time output signal, r(k), discrete-time reference signal, e(k), discrete-time error signal , 

and u(k), discrete-time control signal corresponding to the block diagram of figure 6.10. 

 

The purpose of this digital control example is to demonstrate how to use MATLAB to 

work with discrete functions, either in transfer function or state-space form, to design 

digital control systems. 

7.11.2 Zero-hold equivalence 

In the above schematic of the digital control system, it is seen that the system contains 

both discrete and continuous portions. Typically, the system being controlled is in the 

physical world and generates and responds to continuous-time signals, while the control 
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algorithm may be implemented on a digital computer. When designing a digital control 

system, it is first necessary to find the discrete equivalent of the continuous portion of the 

system. 

For this technique, it is considered the following portion, see figure 7.16 of the digital 

control (Figure 7.14) system and rearrange as follows: 

  

 

Figure 7.16: Portion of the digital controller considered in this section.  

 
 

The clock connected to the D/A and A/D converters supplies a pulse every  seconds 

and each D/A and A/D sends a signal only when the pulse arrives. The purpose of having 

this pulse is to require that 𝐻𝑧𝑜ℎ(𝑧) (equivalent discrete transfer function of G(s)) acts 

only on periodic input samples 𝑢(𝑘), and produces periodic outputs 𝑦(𝑘) only at discrete 

intervals of time; thus, 𝐻𝑧𝑜ℎ(𝑧)  can be realized as a discrete function. 
The idea behind the design is the following: it is required to find a discrete 

function 𝐻𝑧𝑜ℎ(𝑧) so that for a piecewise constant input to the continuous system 𝐺(𝑠) , 
the sampled output of the continuous system equals the discrete output. Suppose the 

signal 𝑢(𝑘) represents a sample of the input signal. There are techniques for taking this 

sample 𝑢(𝑘) and holding it to produce a continuous signal �̂�(𝑡) . The sketch below shows 

one example where the continuous signal �̂�(𝑡) is held constant at each sample 𝑢(𝑘) over 

the interval 𝑘𝑇  to (𝑘 + 1)𝑇. This operation of holding �̂�(𝑡) constant over the sample 

period is called a zero-order hold. 

A zero-order hold (ZOH) reconstructs a piece-wise constant signal from a number 

sequence and represents a model of the digital-to-analog converter (DAC). Assuming that 

the input to the ZOH is a sampled signal, 𝑟(𝐾𝑇) = 𝑟(𝑡)|𝑡=𝐾𝑇, its output is given as: 

𝑟(𝑡) = 𝑟((𝑘 − 1)𝑇) for (𝑘 − 1)𝑇 ≤ 𝑡 < 𝑘𝑇 

The output of the ZOH to an arbitrary input, 𝑟(𝐾𝑇), is a staircase reconstruction of the 

analog signal, 𝑟(𝑡). The impulse response of the ZOH is a square pulse (Figure 

7.17):𝑔𝑧𝑜ℎ(𝑡) = 1, 0 < 𝑡 < 1. 
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Figure 7.17: Unit impulse response of a ZOH. 

By applying the Laplace transform to the ZOH impulse response, its transfer function is 

obtained as: 

𝐺𝑧𝑜ℎ(𝑠) =
1

𝑠
−
𝑒−𝑠𝑇

𝑠
=
1 − 𝑒−𝑠𝑇

𝑠
 

As a result, the pulse transfer function of a continuous-time plant, G(s), is obtained as: 

 

𝐺(𝑧) = 𝑍 {
1 − 𝑒−𝑠𝑇

𝑠
𝐺(𝑠)} = (1 − 𝑧−1)𝑍 {

𝐺(𝑠)

𝑠
} 

where 𝑍 {
𝐺(𝑠)

𝑠
} denotes the z-transform of a sequence obtained by sampling ∫g(t)dt. 

Example 7.13: Let 𝐺(𝑠) =
𝑎

𝑠+𝑎
; then 𝐺(𝑧) = (1 − 𝑧−1)𝑍 {

𝑎

𝑠(𝑠+𝑎)
}. 

By using the z-transform table: 𝐺(𝑧) =
𝑧−1

𝑧
(
𝑧

𝑧−1
−

𝑧

𝑧−𝑒−𝑎𝑇
) =

1−𝑒−𝑎𝑇

𝑧−𝑒−𝑎𝑇
. 

For numerical purposes, suppose a=1, T=0.2s . Then, the pulse transfer function is 

obtained as follows: 𝐺(𝑧) =
1−𝑒−0.2

𝑧−𝑒−0.2
=

0.181

𝑧−0.819
. 

Figure 7.18 shows the reconstruction of a signal from a ZOH. 
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Figure 7.18: Reconstruction of the continuous time signal �̂�(𝑡) (𝑢ℎ𝑎𝑡(𝑡)) using a ZOH 

from the discrete time sequence 𝑢(𝑘).  

The held signal �̂�(𝑡)  then is passed to 𝐻2(𝑠)  and the A/D produces the output 𝑦(𝑘) , 
which will be the same piecewise signal as if the discrete signal 𝑢(𝑘) had been passed 

through 𝐻𝑧𝑜ℎ(𝑧) to produce the discrete output 𝑦(𝑘) (see Figure 7.19) 

 

Figure 7.19: Analogy to visualize the conversion of a continuous transfer function into a 

discrete time and the processing of the signals under a ZOH.  

 

Now it will be redrawing the schematics , replacing the continuous portion of the system 

with 𝐻𝑧𝑜ℎ(𝑧) (Figure 7.20) 

�̂�(𝑡) 

𝑢(𝑘)
. 
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Figure 7.20: A digital filter or controller acting on a discrete transfer function.  

 

Now it is possible to design a digital control system dealing with only discrete functions. 

Note: There are certain cases where the discrete response does not match the continuous 

response generated by a hold circuit implemented in a digital control system.  

There is a MATLAB function c2d that converts a given continuous system (either in 

transfer function or state-space form) to a discrete system using the zero-order hold 

operation explained above. The basic syntax for this in MATLAB is sys_d = 

c2d(sys,Ts,'zoh'). 

 
The sampling time (Ts in sec/sample) should be smaller than 1/(30BW), where BW is the 

system's closed-loop bandwidth frequency. 
 

Example 7.14: From continuous to discrete transfer function for mass-spring-

damper system with MATLAB 

 

The following continuous transfer function models the mass-spring-damper system as 

shown in previous chapters: 

𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚𝑠2 + 𝑏𝑠 + 𝑘
 

 

Assuming the closed-loop bandwidth frequency is greater than 1 rad/sec, the sampling 

time (Ts) is chosen to be equal to 1/100 sec. Now, a new m-file is created.  The system is 

defined with the following values for the mass-spring system. 

% Define input parameters 

m = 1; 

b = 10; 

k = 20; 

% Define continuous transfer function 

s = tf('s'); 

sys = 1/(m*s^2+b*s+k); 

% Define sampling time 

Ts = 1/100; 

% Define discrete transfer function from continuous transfer function 
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sys_d = c2d(sys,Ts,'zoh') 

 

% Output of the discrete transfer function in MATLAB 

sys_d = 

 

4.837e-05 z + 4.678e-05 

----------------------- 

z^2 - 1.903 z + 0.9048 

 

Sample time: 0.01 seconds. 

Discrete-time transfer function. 

 

State-Space model. 

A continuous-time state-space model of this system is the following: 

�̇� = [
�̇�
�̈�
] = [

0 1

−
𝑘

𝑚
−
𝑏

𝑚

] [
𝑥
�̇�
] + [

0
1

𝑚

]𝐹(𝑡) 

𝑦 = [1 0] [
𝑥
�̇�
] 

 

All constants are the same as before. The following m-file converts the above continuous-

time state-space model to a discrete-time state-space model. 

% Define the matrixes A, B, C and D 

A = [0       1; -k/m   -b/m]; 

B = [ 0; 1/m]; 

C = [1 0]; 

D = [0]; 

% Sampling time is the same as before 

Ts = 1/100; 

% State-space model in continuous-time 

sys = ss (A, B, C, D); 

% State-space model in discrete-time 

sys_d = c2d (sys, Ts, 'zoh') 

% Output values of the state-space model in discrete-time 

sys_d = 

 

A = 

x1        x2 

x1     0.999 0.009513 

x2   -0.1903    0.9039 

 

B = 
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u1 
x1 4.837e-05 

x2   0.009513 

 

C = 

x1 x2 

y1   1   0 

 

D = 

u1 

y1   0 
 

Sample time: 0.01 seconds. 

 

From these matrices, the discrete state-space can be written as 

[
𝑥(𝑘)
𝑣(𝑘)

] = [
0.9990 0.0095
−0.1903 0.9039

] [
𝑥(𝑘 − 1)
𝑣(𝑘 − 1)

] + [
0

0.0095
] 𝐹(𝑘 − 1) 

𝑦(𝑘 − 1) = [1 0] [
𝑥(𝑘 − 1)
𝑣(𝑘 − 1)

] 

 

And the discrete-time state-space model is obtained. 

 

Example 7.15: Discrete-time transfer function in Z-domain: connection with 

Laplace domain 

For continuous systems, it is known that certain behaviors result from different pole 

locations in the s-plane. For instance, a system is unstable when any pole is located to the 

right of the imaginary axis. For discrete systems, the system behavior is analyzed from 

different pole locations in the z-plane. The characteristics in the z-plane can be related to 

those in the s-plane by the following expression. 

𝑧 = 𝑒𝑠𝑇  

▪ T = sampling time (sec/sample) 

▪ s = location in the s-plane 

▪ z = location in the z-plane 

 

It is supposed that the following discrete transfer function models the system: 

𝑌(𝑧)

𝐹(𝑧)
=

1

𝑧2 − 0.3𝑧 + 0.5
 

The following m-file program collocates the poles in the z-plane: 

 

numDz = 1; 

denDz = [1 -0.3 0.5]; 

sys = tf(numDz, denDz,-1); % the -1 indicates that the sample time is undetermined 

 

pzmap(sys) 

axis ([-1 1 -1 1]) 

zgrid 
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Figure 7.21: Pole colocation in the Z-plane of Example 7.15.  

 

From this plot, we see the poles are located approximately at a natural frequency of 

9𝜋 20𝑇⁄   (rad/sample) and a damping ratio of 0.25.  

 

Figure 7.21 shows the mapping of lines of constant damping ratio (𝜁) and natural 

frequency (𝜔𝑛) from the s-plane to the z-plane using the expression shown above. 

It is noticed that in the z-plane, the stability boundary is no longer the imaginary axis but 

rather the circle of radius one centered at the origin, |z| = 1, referred to as the unit circle. 

A discrete system is stable when all poles are located inside the unit circle and unstable 

when any pole is located outside the circle. 
 

If the sampling time of 1/20 sec (which leads to 𝜔𝑛 = 28.2 rad/sec) and using the 

equations shown in Chapter 4 for second order systems, it can be determined that this 

system should have a rise time of 0.06 sec, a settling time of 0.65 sec, and a maximum 

percent overshoot of 45% (0.45 times more than the steady-state value). The step response 

is obtained to check these values. The following commands are added to the above m-file 

and rerun it in the command window.  Figure 7.22 shows the obtained step response. 

 

sys = tf(numDz, denDz,1/20); 

step(sys,2.5); 
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Figure 7.22: Discrete-time step response.  

 
 
As it is seen from figure 7.22, the rise time, settling time, and overshoot came out to be what 

it is expected. This explains how the locations of poles and the equations of overshoot, rise 

time, and settling time can be used to analyze the transient response of a discrete system. 

 

Important: The natural frequency (𝜔𝑛) in the z-plane has units of rad/sample, but when 

it is used in the equations shown above,  𝜔𝑛 must be represented in units of rad/sec. 
 

Example 7.16: Discrete root locus using MATLAB  
 
The root locus is the locus of points where roots of the characteristic equation can be 

found as a single parameter is varied from zero to infinity. The characteristic equation of 

our unity-feedback system with simple proportional gain, , is: 
 

1 + 𝐾𝐺(𝑧)𝐻𝑧𝑜ℎ(𝑧) = 0 
 
where G(z) is the digital controller and 𝐻𝑧𝑜ℎ(𝑧) is the plant transfer function in the z-

domain (obtained by implementing a zero-order hold). 

The mechanics of drawing the root-loci are the same in the z-plane as in the s-plane. 

Recalling the continuous root-locus example (Section 6.3 Root Locus), it was used with 

the MATLAB function sgrid to find the root-locus region that gives an acceptable gain 

(K) for specifications in the damping ratio and natural frequency, or, in other words, 

specifications in the time domain, such as overshoot, settling time, and rise time. For the 
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discrete root-locus analysis, the function zgrid has the same function as sgrid. The syntax 

zgrid (𝜁, 𝜔𝑛)  draws lines of constant damping ratio (𝜁) and natural frequency (𝜔𝑛). 

 

Supposing the following discrete transfer function is analyzed: 

𝑌(𝑧)

𝐹(𝑧)
=

𝑧 − 0.3

𝑧2 − 1.6𝑧 + 0.7
 

the requirements are a damping ratio greater than 0.6 and a natural frequency greater than 

0.4 rad/sample (these can be found from the design requirements, the sampling period 

(sec/sample), and the three equations shown in the previous section). The following 

commands draw the root-locus with the lines of constant damping ratio and natural 

frequency. Running the following m-file, it generates the root-locus plot of figure 7.23. 

 

% Define discrete closed loop transfer function 

numDz = [1 -0.3]; 

denDz = [1 -1.6 0.7]; 

sys = tf(numDz, denDz,-1); 

% Calculate root locus and define axis of plot 

rlocus(sys) 

axis ([-1 1 -1 1]) 

% Define specifications of the controller 

𝜁 = 0.4; 

𝜔𝑛 = 0.3; 

zgrid (𝜁, 𝜔𝑛) 

 

 
Figure 7.23: Root-locus with the lines of constant damping ratio and natural frequency.  
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From this plot, it can be observed that the system is stable for some values of K since 

there are parts of the root locus where both branches are located inside the unit circle. 

Also, it is observed that two dotted lines represent the constant damping ratio and natural 

frequency. The natural frequency is greater than 0.3 outside the constant-𝜔𝑛 line, and the 

damping ratio is greater than 0.4 inside the constant-zeta line. In this example, parts of 

the generated root locus are within the desired region. Therefore, the gain (K) chosen to 

place the two closed-loop poles on the loci within the desired region should provide a 

response that satisfies the given design requirements[4]. 
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Chapter 8: PID Control 

 
This chapter addresses some different approaches to control systems. These are 

control structures and components. According to the natural evolution of control 

theory, they may be classified as open and closed loop control. Open-loop control is 

a straightforward strategy that requires complete knowledge of the system to be 

successful. A closed-loop controller is a more sophisticated strategy and relies on 

feedback from the signal of the output to the input. Once the error of the output 

with respect to the input or reference signal is identified, the controller is designed 

based on that error. There are several methodologies for closed-loop controller 

which will be reviewed in this chapter. Some of the most significant are PID 

controllers based. The PID controller is presented in more detail. 

 

 

In an open-loop controller, also called a non-feedback controller, the control action 

from the controller is independent of the "process output," which is the process variable 

that is being controlled. It does not use feedback to determine if its output has achieved 

the desired goal of the input command or process "set point." 

There are many open-loop controls, such as on-off switching of valves, machinery, lights, 

stepping motors, or heaters, where the control result is known to be approximately 

sufficient under normal conditions without the need for feedback. The advantage of using 

open-loop control in these cases is the reduction in component count and complexity. 

However, an open-loop system cannot correct any errors that it makes or correct for 

outside disturbances, and it cannot engage in machine learning. 

 

Figure 8.1: Open-loop control architecture. 

 

Figure 8.1 shows a typical open loop control architecture. It is represented by the plant of 

the process, 𝐺(𝑠), disturbances, 𝑑, that influence the process, a sensor that measures 

disturbance signals, and the controller, which proposes actions to command the goals set 

by the designer or manager, avoiding, or minimizing disturbances.  

Mathematically, the loop is composed of: 

 

Plant process model: 𝑦 = 𝐺𝑢 + 𝑑 = 𝐺𝑢 + 𝐺𝑑𝑝 

Actual commanded control action: 𝑢 = 𝐺−1[𝑦𝑟 − 𝐺𝑝𝑑] 
 

Measured disturbance: �̂� = 𝐺𝑑�̂� 

 

Process – G

Disturbance

Controller

Sensor - 𝐺𝑑

Goals

Control
Action

𝑦𝑢

𝑑= 𝐺𝑑𝑝

𝑝

𝑦𝑟
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The process model is represented as the relation between the input, 𝑢, and output, 𝑦, 

adding the disturbances affecting the system. The control action should invert the 

dynamics of the process, 𝐺, and remove disturbance, �̂� = 𝐺𝑑�̂� (estimation of the 

disturbance). In this way, the reference signal, 𝑦𝑟, is achieved, which means goals are 

achieved. Please, note that the mathematical model of the process might be invertible, 

i.e., ∃𝐺−1, 𝑠 ∈ ℂ , where ℂ represents the complex numbers.  
 

As a result, for a successful controller, perfect knowledge about the plant/process/model 

of the system is required. Moreover, the feasibility and stability of the inverse transfer 

function of the plant/system/process G-1 are needed. Finally, knowledge about the 

measurement system and its model is involved in cases of disturbances affecting the 

system for effective estimation.  

 

If the objective of the controller is to track the reference signal, then the control objective 

is such as: u=Gryr≅G−1yr. However, if the objective of the controller becomes the 

rejection of the disturbance, the design of the controller turns out to be 

u=−Gdrp≅−G−1Gdp, which requires the measurement of the disturbance or having access 

to the disturbance and the feasibility of the transfer function of the measurement system 

multiplied by the disturbance itself -Gdp. 

 

As a review of the open loop controllers: 1) It is required knowledge of the 

plant/process/system, i.e., the transfer function of the system must be modeled. 2) The 

measurement system and its model must be known to avoid the effects of the disturbances. 

Otherwise, no disturbances must affect the system if adequate control action is expected. 

3) A track reference signal and rejection of the disturbance may be achieved at the same 

time. Feasibility and stability of the inverse transfer function of the plant/system/process 

G-1 is needed for these purposes, or, in other words, there will not be stability problems in 

control action. 4) With previous characteristics, zero error may be achieved. Note that 

this characteristic is not possible in closed loop arrangements. 

 

A feedback control system can be improved by combining the feedback (or closed-loop) 

control of a controller with feed-forward (or open-loop) control. Knowledge about the 

system (such as the desired acceleration and inertia) can be fed forward and combined 

with the controller output to improve the overall system performance. The feed-forward 

value alone can often provide most of the controller output. The controller primarily must 

compensate for whatever difference or error remains between the setpoint (SP) and the 

system response to the open-loop control. Since the feedforward output is not affected by 

the process feedback, it can never cause the control system to oscillate, thus improving 

the system response without affecting stability. Feedforward can be based on the setpoint 

and on extra measured disturbances. Setpoint weighting is a simple form of feedforward. 

For example, in most motion control systems, to accelerate a mechanical load under 

control, more force is required from the actuator. If a velocity loop controller is being 

used to control the speed of the load and command the force being applied by the actuator, 

then it is beneficial to take the desired instantaneous acceleration, scale that value 

appropriately, and add it to the output of the velocity loop controller. This means that 

whenever the load is being accelerated or decelerated, a proportional amount of force is 

commanded from the actuator, regardless of the feedback value. The loop in this situation 

uses the feedback information to change the combined output to reduce the remaining 

difference between the process setpoint and the feedback value. Working together, the 
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combined open-loop feed-forward controller and closed-loop controller can provide a 

more responsive control system in some situations.  

 
Figure 8.2: Feedback control loop 

 

Figure 8.2 shows the closed-loop controller. The controller measures the model of the 

plant process, the absence of disturbances, and the set goals. The basic closed-loop control 

system shown in Figure 8.2 can describe a variety of control systems, including those 

driving elevators, thermostats, and cruise control. 

 

Closed-loop control systems typically operate at a fixed frequency. The frequency of 

changes to the drive signal is usually the same as the sampling rate (for discrete-time 

systems), and certainly not any faster. After reading each new sample from the sensor, 

the software reacts to the plant's changed state by recalculating and adjusting the drive 

signal. The plant responds to this change, another sample is taken, and the cycle repeats. 

Eventually, the plant should reach the desired state, and the software will cease making 

changes. Please, note the negative feedback loop of the retro-alimentation (Figure 8.3) 

which gives the control loop the error signal to design the controller to minimize it.   
 

 
 

Figure 8.3: Detailed explanation of feedback control loop 
 
 
 

On-off closed loop structure 
 
 

On-off control is the simplest form of feedback control. An on-off controller simply 

drives the manipulated variable from fully closed to fully open, depending on the position 

of the controlled variable relative to the setpoint. A common example of on-off control is 

the temperature control in a domestic heating system. When the temperature is below the 

thermostat setpoint, the heating system is switched on, and when the temperature is above 

the setpoint, the heating switches off. 

 

There is, however, a bit of subtlety applied in practical on-off systems. If the heating 

switches on and off the instant the measured temperature crosses the setpoint, then the 

system would chatter,  repeatedly switching on and off at very high frequency. If this 
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happened, the boiler wouldn’t last very long. To avoid chattering, practical on-off 

controllers usually have a deadband around the setpoint. When the measured value lies 

within this dead band the controller does nothing: it is only when the value moves outside 

that action is taken. The effect of this is to introduce continuous oscillation in the value 

of the controlled variable; the larger the deadband the higher the amplitude and lower the 

frequency. 
 

 
 

Figure 8.4: Detailed explanation of the ON/OFF feedback control loop. 

 
Figure 8.5: ON/OFF control loop with dead band. 

 
 

As a summary of the ON/OFF control, it is possible to account for: 1) In an on/off control, 

the control signal is either 0% or 100% or -V or +V. 2) If the control at the setpoint is not 

achievable, a dead-band must be incorporated. 3) It is useful for large, sluggish systems, 

particularly those incorporating electric heaters. 

 

PID closed-loop controller 
 

The PID circuit is often utilized as a control loop feedback controller and is very 

commonly used for many forms of servo circuits. The letters making up the acronym PID 

correspond to Proportional (P), Integral (I), and Derivative (D), which represent the three 

control settings of a PID circuit. The purpose of any servo circuit is to hold the system at 

a predetermined value (set point) for long periods of time. The PID circuit actively 

controls the system to hold it at the set point by generating an error signal that is 

essentially the difference between the set point and the current value. The three controls 

relate to the time-dependent error signal; at its simplest, this can be thought of as follows: 

Proportional is dependent upon the present error; Integral is dependent upon the 

accumulation of past errors (please note that the integral part sums previous errors and 

accumulates them); and Derivative is the prediction of future errors (the derivative part is 

represented by the slope of the controller that directs the error signal). The results of each 

of the controls are then fed into a weighted sum, which then adjusts the output of the 

Reference 𝑦𝑟 ON/OFF 
Control

Control
Action

Measurement

Set point

 = 𝑦𝑟 − 𝑦 

𝑢 =  ( )

𝑢
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circuit, u(t). This output is fed into a control device, its value is fed back into the circuit, 

and the process is allowed to actively stabilize the circuit’s output to reach and hold at the 

set point value. The block diagram below illustrates very simply the action of a PID in a 

parallel circuit. One or more combinations of the PID control parameters can be utilized 

in any servo circuit depending on system demand and requirements (i.e., P, I, PI, PD, or 

PID). 

 

 
Figure 8.6: Detailed explanation of PID feedback control loop 

 

 

 
 

Figure 8.7: Detailed explanation of PID in parallel feedback control loop 
 

Through proper setting of the controls in a PID circuit, relatively quick response with 

minimal overshoot (passing the set point value) and ringing (oscillation about the set point 

value) can be achieved.  

 

Improper setting of the PID controls can cause the circuit to oscillate significantly and 

lead to instability in control. It is up to the user to properly adjust the PID gains to ensure 

proper performance. 

 

Hereby, the PID controller in parallel is explained in more detail from physical and 

mathematical points of view. The output of the PID control circuit, u(t), is given as: 

𝒖 = 𝑲𝒑𝒆 + 𝑲𝑰∫ 𝒆𝒅𝒕
𝒕

0

+𝑲𝒅
𝒅𝒆

𝒅𝒕
(8.1) 

where 𝐾𝑝, 𝐾𝐼 , 𝐾𝑑 are proportional, integral, and derivative gains.   is the error signal, 

which is defines as the difference between the set point or reference signal and the process 

variable or output signal. From here, the control units through their mathematical 

definitions can be defined and discussed each in a little more detail.  

 

Proportional control is proportional to the error signal and the current values of the 

signals, denoted by the proportionality; as such, it is a direct response to the error signal 

generated by the closed loop system: 

 
𝒖 = 𝑲𝒑𝒆 

Reference 𝑦𝑟
Control

Control
Action

Measurement

Set point

 = 𝑦𝑟 − 𝑦 

𝑢 =  ( )

 𝑢
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Larger proportional gain results in larger changes in response to the error, and thus affects 

the speed at which the controller can respond to changes in the system. As a result, 

increasing the value of 𝐾𝑝 results in a faster but more oscillatory response, reducing the 

steady-state error. Too low values of 𝐾𝑝 mean the controller cannot efficiently respond to 

changes in the system. The proportional control sees the current state of the error signal, 

i.e., it evaluates the actual error signal.  

 

Integral control goes a step further than proportional gain, as it is proportional to not just 

the magnitude of the error signal but also the duration of the error, past values of the 

signals, denoted by the integral. 

 

𝒖 = 𝑲𝑰∫ 𝒆𝒅𝒕
𝒕

0

 

 

Integral control is highly effective at increasing the response time of the system along 

with eliminating or canceling the steady-state error associated with purely proportional 

control. In essence integral control sums over the previous error, which was not corrected, 

and then multiplies that error by 𝐾𝐼 to produce the integral response. Thus, for even small, 

sustained error, larger values of integral value, 𝐾𝐼 , response may achieve zero steady-

state error. However, due to the fast response of integral control, high gain values can 

cause significant overshoot of the reference signal or set point value and lead to oscillation 

and instability. Too low and the system will be significantly slower in responding to 

changes in the system. An integral part of the control sees at past values of the error signal 

as it integrates over past errors, i.e., it evaluates past actions of the system.   

 

Derivative control attempts to reduce the overshoot and has potential from the use of 

proportional and integral control. It determines how quickly the response of the system is 

changing over time (by looking at the derivative of the error signal, i.e., future values of 

the signal) and multiplies it by 𝐾𝑑 to produce the derivative response. 

 

𝒖 = 𝑲𝒅
𝒅𝒆

𝒅𝒕
 

 

Unlike proportional and integral control, derivative control will slow the response of the 

system. It considers the error signal trend. It may compensate overshoot and damp out 

oscillations caused by integral and proportional parts of the control. High gain values 

cause the system to respond very slowly, and it can place and amplify noise and high 

frequency oscillation (as the system becomes too slow to respond quickly). Too low and 

the system is prone to overshooting the reference signal, goals or set point value. 

However, in some cases overshooting the set point value by any significant amount must 

be avoided and thus a higher derivative gain (along with lower proportional gain) may be 

used. The derivative part of the PID controller gives the slope which the error trajectory 

is forwarded, i.e., it evaluates future tendencies in the control system.  

 

The use of a derivative part works well for errors that show low dynamic changes. A 

temperature control, for example, is not subject to fast changes. But if the value it is 

controlled is subject to very high dynamic changes or if the retrieved error is very noisy, 

its differentiation can result in even higher amplitude than the desired signal, leading to 

an unstable system.  
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As result, to implement PID controllers; it is not required a good model of the process. 

As the PID controller directly acts to the output signal the PID parameters may be tuned 

to accommodate the output signal with low dependency on the dynamics of the system. 

Moreover, the PID control may be used to filter disturbances while achieving specific 

output signal, but as closed loop system zero tracking error is not achievable. Finally, 

some extra instrumentation may be required to close the system (output signal 

measurement) and, if necessary, to quantify disturbances.  

 

When using the control law given by Equation 8.1, it follows that a step change in the 

reference signal will result in an impulse in the control signal. This is often highly 

undesirable: therefore, derivative action is frequently not applied to the reference signal. 

This problem can be avoided by filtering the reference value before feeding it to the 

controller. Another possibility is to let proportional action act only on part of the reference 

signal. This is called set point weighting. 

 

The transfer function of Eq. 8.1 is known as the ideal transfer function because, in 

practice, it is not possible to calculate the derivative term, and it is substituted by a 

pseudo-derivative.  In real practical cases, the Eq. 8.1 in the Laplace domain occurs as 

follows: 

 

𝑈(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+

𝑇𝑑

𝛼𝑇𝑑𝑠+1
𝑠) 𝐸(𝑠)  (8.1) 

 

Where 𝑇𝑖 and 𝑇𝑑 are time constants associated with the integral and derivative terms of 

the controller, and 𝛼 (𝛼 < 1) is a derivative filter factor, that takes typical values 0.05 <
𝛼 < 0.1. This modification can be interpreted as the ideal derivative action is filtered by 

a first-order system with a time constant 𝛼𝑇𝑑. The new derivative action: 

 

𝑈𝑑(𝑠) =
𝐾𝑝𝑇𝑑𝑠

𝛼𝑇𝑑𝑠 + 1
𝐸(𝑠) 

 

will act as a true derivative just at low frequencies, and its gain at high frequencies is 

limited by 
𝐾𝑝
𝛼⁄ . Then the noise at high frequencies will be amplified by at most for this 

value and not at high values as the ideal case.  

   

The chart below (Table 8.1) explains the effects of increasing the gain of any one of the 

parameters independently. 

 
Table 8.1: Tunning PID control parameters. 

 

Parameter 

Increased Rise Time Overshoot 

Settling 

Time 

Steady-State 

Error Stability 

Kp Decrease Increase Small Change Decrease Degrade 

Ki Decrease Increase Increase 
Decrease 

Significantly 
Degrade 

Kd 
Minor 

Decrease 

Minor 

Decrease 

Minor 

Decrease 
No Effect 

Improve (for small 

Kd) 
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To tuning the parameters of the PID controller, in general, the gains of P, I, and D will 

need to be adjusted by the user to best serve the system. While there is not a static set of 

rules for what the values should be for any specific system, following the general 

procedures should help in tuning a circuit to match one’s system and environment. In 

general, a PID circuit will typically overshoot the set point value slightly and then quickly 

damp out to reach the set point value. 

 

Manual tuning of the gain settings is the simplest method for setting the PID controls. 

However, this procedure is done actively (the PID controller turned on and properly 

attached to the system) and requires some amount of experience to fully integrate. To 

tune your PID controller manually, first the integral and derivative gains are set to zero. 

Increase the proportional gain until you observe oscillation in the output. Your 

proportional gain should then be set to roughly half this value. After the proportional gain 

is set, increase the integral gain until any offset is corrected for on a time scale appropriate 

for your system. If you increase this gain too much, you will observe significant overshoot 

of the SP value and instability in the circuit. Once the integral gain is set, the derivative 

gain can then be increased. Derivative gain will reduce overshoot and damp the system 

quickly to the SP value. If you increase the derivative gain too much, you will see large 

overshoot (due to the circuit being too slow to respond). By playing with the gain settings, 

you can maximize the performance of your PID circuit, resulting in a circuit that quickly 

responds to changes in the system and effectively damps out oscillation about the SP 

value. 

While manual tuning can be very effective at setting a PID circuit for your specific 

system, it does require some amount of experience and understanding of PID circuits and 

response. The Ziegler-Nichols method for PID tuning offers a bit more structured guide 

to setting PID values.  

Anti-wind up PID controller 

 

Integral windup, also known as integrator windup or reset windup, refers to the 

situation in a PID controller where a large change in setpoint occurs (say a positive 

change) and the integral term accumulates a significant error during the rise (windup), 

thus overshooting and continuing to increase as this accumulated error is unwound (offset 

by errors in the other direction). The specific problem is the excess overshooting. 

 

This problem can be addressed by: 

• Initializing the controller integral to a desired value, for instance to the value 

before the problem. 

• Increasing the setpoint in a suitable ramp. 

• Conditional Integration: disabling the integral function until the to-be-controlled 

process variable (PV) has entered the controllable region. 

• Preventing the integral term from accumulating above or below pre-determined 

bounds. 

• Back calculating the integral term to constrain the process output within feasible 

bounds.  

• Clegg integrator: Zeroing the integral value every time the error is equal to or 

crosses zero. This avoids having the controller attempt to drive the system to 

have the same error integral in the opposite direction as was caused by a 

perturbation. 
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Integral windup particularly occurs as a limitation of physical systems, compared with 

ideal systems, due to the ideal output being physically impossible (process saturation: the 

output of the process being limited at the top or bottom of its scale, making the error 

constant). For example, the position of a valve cannot be any more open than fully open 

and cannot be closed any more than fully closed. In this case, anti-windup can involve 

the integrator being turned off for periods of time until the response falls back into an 

acceptable range.  

 

This usually occurs when the controller's output can no longer affect the controlled 

variable, or if the controller is part of a selection scheme and it is selected right.  

Integral windup was more of a problem in analog controllers. Within modern distributed 

control systems and programmable logic controllers, it is much easier to prevent integral 

windup by either limiting the controller output, limiting the integral to produce feasible 

output, or by using external reset feedback, which is a means of feeding back the selected 

output to the integral circuit of all controllers in the selection scheme so that a closed loop 

is maintained. Figure 8.8 represents PID controller with anti-wind-up action.  

 

 

 
 

Figure 8.8: Schematic representation of PID controller with anti-wind up. 
 
 

Example 8.1: PID control of a generic transfer function by tuning PID parameters 

manually 
 
 

In this example, it is shown how to tune the PID parameters by insight and understanding 

gained over previous experiences. If this is the case, for any transfer function it is possible 

to apply this methodology when the transfer function of the system is simple enough to 

account for every physical parameter which is involved in the process. The open loop 

transfer function of the system is the following: 

 

𝐺(𝑠) =
1

𝑠2 + 3𝑠 + 1
 

 

hold on 

grid on 

%PID example 

 

clear all 

clc 

 

% The transfer function variables. We have the values for the numerator. 
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% and the denominator 

num = [ 1 ]; 

den = [ 1 3 1]; 

 

% We denote the transfer function as tf. 

Gp = tf(num, den);  % setting the transfer function. 
 

At this point, it is possible to observe the output of the system in open loop against step 

unit input. This view gives insight on how the output of the system will increase the 

performance when the control is added. 

 

step(Gp)     % step response of the open loop system 
 

 
  

Figure 8.9: Step output of the open loop transfer function 𝐺(𝑠) =
1

𝑠2+3𝑠+1
 

 

It is observed (figure 8.9) that the output signal reaches the reference in about 15 seconds, 

but the signal looks smooth and feasible. 

 

In this example, the sensor transfer function, feedback transfer function represented by 

H in this case, is modeled as unity. 
 

H = 1;   % feedback transfer function. It shows the expected. 

% unit response. 

 

Gcl = feedback(Gp, H);  %feedback of the plant. 

step(Gcl)     % step response 
 

The response of the closed loop system can be plotted without control and now, the 

control is initiated. 
 

%% 

Kp = 1;   % proportional constant 

Ki = 0;    % integral constant 

Kd = 0;    % derivative constant 

 

Gc = pid(Kp,Ki,Kd);  % the controller. 
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Gclcontrol = feedback(Gc*Gp, H);  % transfer function with control. 

step(Gclcontrol)    % step response of the transfer function with control. 

grid on 
 

The effects of changing P, I, and D parameters are shown against an input step response, 

and PID controller parameters are tuned to check the influence in the closed loop system. 

If the values of Kp are varied in the program and it can be seen how the increase of these 

values influences the output of plotted results after running the program for every change. 

The initial value of Kp is 1 but it can be changed  to different values, for example, 2, 5, 

10, 15, 20, 25, 30, 40 in the command line of the program. To see the effect of these 

variations in the Kp  values in one graph, it is added the ´hold on´ function immediately 

after step M. This is to be able to see each plot in one figure after changing the value. 

When the program is run after adding the hold on function, the output is shown in figure 

8.10. 

 

Figure 8.10: Plot of step responses when Kp is changed from 1 to 2. 

In the figure above, it is obtained a plant with the feedback and Kp equal to 1 which is the 

blue plot, and it goes asymptotic to 0.5 in about 5 secs. The red plot corresponds to Kp 

equal to 2. . 

It is introduced a peak controller. The peak controllers make the system go faster and to 

change the steady-state error without changing other characteristics of the output signal. 
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To see the steady-state characteristics visible in our plot, it is possible if it is right-clicked 

any point within the graph (Figure 8.11). 

 
Figure 8.11: Steady state characteristics of plots. 

When it is hovered over the dots, it is seen that as time goes to infinity, the blue plot goes 

to 0.5 and the red plot to 0.668. It is required the steady state of the red plot go to 1, for 

this purpose the parameters of the controller are tuned for. In this case, there exits some 

steady state-state error which is necessary to fix. To do so, it is increased or tuned the Kp 

until it is attained. 

In Figure 8.12, the outputs of the system corresponding to the values of Kp previously 

mentioned are plotted in the same graph. The increased of Kp allows higher frequencies 

into the systems, but the system becomes more oscillatory.  

If the derivative part of the control is introduced, i.e., the Kd value is tuned, the effect will 

make the oscillations to be squared in the edges as it can be shown in the output (Figure 

8.13). It is possible to tune both parameters with the ideas mentioned within this chapter.  
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Figure 8.12: Effect of changing Kp value in amplitude 0.979 for Kp =50 and plot of 

previous mentioned Kp parameters. 

 
Figure 8.13: Effect of changing Kd values for a fixed Kp. 
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Figure 8.14: Final plot with required output response Kd = 8 and the Kp = 24 

The system stabilizes when the Kd is 8 and the Kp is 24. When the step response is 

outputted, the control response went to 0.96 but we require it to be at 1 since it is a unit 

response. The integration part enhances these characteristics, so adding and tunning the 

Ki value less steady error can be achieved as observed in Figures 8.13 and 8.14. 

  

Figure 8.15: Effect of changing Ki with constants Kp and Kd. 
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Figure 8.16: Final plot with required output responses Kp=24, Kd =8 and Ki=2. 

The PID controller is the final values of Kp, Kd, and Ki. Adding the PID function to the 

closed loop system the resulted transfer function which represents the closed loop system 

is obtained. With the command Gclcontrol the resulted transfer function is taken. 

Example 8.2: PID Control design of a DC motor by root locus in MATLAB [1] 

 

The transfer function of a small armature-controlled DC motor may be modelled as (see 

chapter 2 to know how to get the model):  
 

𝐻(𝑠) =
𝜃(𝑠)

𝑉(𝑠)
=

𝐾𝑇
𝑠((𝐽𝑠 + 𝐵)(𝐿𝑠 + 𝑅) + 𝐾𝑇𝐾𝑒)

[
𝑟𝑎𝑑

𝑉
] 

 

To define an m-file in MATLAB (the program is shown at the end of this chapter, please 

follow it at the same time with the explanations) to model the system and design the 

controller, it is first defined typical parameters of the motor, which are: 

 

% DC motor Transfer Function 
 

J = 3.2284e-6; % Rotacional inertia [Nms2/rad] 

b = 3.5077e-6;  % Viscous friction [Nms/rad] 

𝐾𝑇 = 0.0274; % Torque constant [Nm/A] 

𝐾𝑒 = 0.0274;  % back emf constant [Vs/rad] 

R = 4;  % Armature resistance [Ω] 

L = 2.75e-6; % Armature inductance [H] 
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s = tf('s'); 

P_motor = K/(s*((J*s+b)*(L*s+R)+K^2)); 
 

The structure of the system is as follows (figure 8.17): 

 
Figure 8.17: Feedback control loop for an armature-controlled DC motor. 

 

The specifications of the system output for controller design purposes are the following: 

 

With a 1-radian step reference, the design criteria are the following: 

• Settling time less than 0.040 seconds; 𝑡𝑠 =
4

𝜎
→ 𝜎 < 100 . 

• Overshoot less than 16%; 𝑀𝑝 =  

−𝜁𝜋

√1−𝜁2
→ 𝜁 > 0.5. 

• No steady-state error, even in the presence of a step disturbance input. 

 

The variables in the “sgrid” command are the damping ratio (𝜁 = 0.5) and the natural 

frequency (𝜔𝑛 = 0). The variable in the sgrid command is the damping ratio term (𝜁). The 

𝜁 and 𝜔𝑛 used above correspond to an overshoot of 16% and a settling time of 0.040 

seconds, respectively, for a canonical second-order system. Even though the transfer 

function of the motor is third order, it will be explained that these second order-based 

definitions will work well. No value is given for 𝜔𝑛since we have no requirement on rise 

time. 

 

% Drawing the open-loop root locus K*P_motor 

 

rlocus(P_motor) 

title('Root Locus - P Control') 

sgrid(.5, 0) 

sigrid(100) 

 

The function sigrid needs to be incorporate to the library, it is possible to be 

downloaded from MATLAB exchange files on the internet.  

Drawing the open-loop root locus K*P_motor:  
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Figure 8.18: Root locus P-control for an armature-controlled DC motor. 
 

From the above figure, the two open-loop poles near the origin cannot be distinguished 

because the scale of the axes is set to show the third pole which is much farther to the left 

than the other two poles. The MATLAB command pole can be employed to determine 

the exact values of the open-loop poles. 

 

% Poles TF 

 

poles = pole(P_motor) 
 

 

poles = 

1.0e+06 * 

0 

-1.4545 

-0.0001 
 

The open-loop pole located very far to the left (further than 1e+06) does not affect the 

closed-loop dynamics unless very large gains are used. These large gains place two of the 

closed-loop poles in the right-half complex s-plane where the system becomes unstable. 

Since it is not used gains that will make the closed-loop system unstable, the pole can be 

neglected by performing a model reduction. 
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Model reduction 

 

In general, the real part of a pole indicates how quickly the transient portion of the 

corresponding mode decays to zero (assuming negative real part). Therefore, a transfer 

function which has one (or more) poles much farther to the left in the complex plane 

(more negative) than the other poles, their effect on the dynamic response will be hidden 

by the slower, more dominant poles. In the case of the motor position example, the 

transient closed-loop response for small gains will not be affected much by the open-loop 

pole at -1.45e6. The correct way to neglect this pole to maintain its steady-state 

contribution is to keep the DC gain of the transfer function the same, as follows: 

 

𝐻(𝑠) =
𝐺(𝑠)
𝑠
𝑝
+ 1
≈ 𝐺(𝑠)  for 𝑠 ≪ 𝑝 

As shown above, the poles of the open-loop transfer function can be identified using the 

MATLAB command pole. The two poles that dominate are difficult to identify from 

above because of the notation, but they can be seen more clearly by recognizing that they 

are the first and third elements of the resulting vector which we have named poles. 

 

% Model reduction 

 

poles(1), poles(3) 

poles = pole(P_motor); 

rP_motor = minreal(P_motor*(s/max(abs(poles)) + 1)) 

pole(rP_motor) 

poles(1), poles(3) 

ans = 0 

ans = -59.2260 

To construct the reduced transfer function to neglect the pole at -1.45e6 without affecting 

the steady-state behavior of the system, the MATLAB command “minreal” is introduced,  

adding the following commands to the m-file, and re-running the program. 
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Figure 8.19: P-control for an armature-controlled DC motor with model reduction. 

When the original root locus near the origin is examined, it would closely approximate 
the locus of the reduced transfer function shown above. It can be seen from this new plot 
that the closed-loop poles are never fast enough to meet the settling time requirement (that 
is, they never move to the left of the 𝜎 = 100 vertical line). Also, it is needed an integrator 
in the controller (not just in the system) to remove the steady-state error due to a constant 
disturbance. 

 
% rlocus 

 

rlocus(rP_motor) 

title('Root Locus - P Control') 

axis([ -300 100 -200 200]) 

sgrid(.5, 0) 

sigrid(100) 

 

Integral control 

It is using integral control to remove the steady-state error due to a constant disturbance. 
Note that this adds a 1/s term to the forward path of the system. When this m-file is run 
and a plot like the one shown in figure 7.21 is obtained. From this root locus it is observed 
that the closed-loop system under integral control is never stable, therefore, a different 
controller must be employed. 

% Integral control 

 

C = 1/s; 
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rlocus(C*rP_motor) 

title('Root Locus - I Control') 

axis([ -300 100 -200 200]) 

sgrid(.5, 0) 

sigrid(100) 

 
Figure 8.20: Root locus I-control for an armature-controlled DC motor. 

PI Controller 

At this point, the integral controller is switched to a PI controller. Using PI instead of I 
control adds a zero in the transfer function of the closed loop respect to the open-loop 
system. This zero is placed at s = -20 . It must lie between the open-loop poles of the 
system in this case so that the closed-loop system will be stable. Changing the commands 
to define the controller in the m-file to the following. If the program is re-run and a plot 
like the one shown in figure 8.21 is obtained. The system is stabilized, and it is achieved 
zero steady-state error to a constant disturbance, but the system is still not fast enough. 

 

% PI Control 

 

C = (s + 20) / s; 

rlocus(C*rP_motor) 

title('Root Locus - PI Control') 

axis([ -300 100 -200 200]) 

sgrid(.5, 0) 

sigrid(100) 
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Figure 8.21: Root locus PI-control for an armature-controlled DC motor. 

PID Controller 

To pull the root locus further to the left, to make it faster, it is needed to place a second 
open-loop zero, resulting in a PID controller. After some experimentation, it is placed the 
two PID zeros at s = -60 and s = -70. The program is updated with the corresponding 
commands and re-running it and it is generated a plot like the one shown in figure 8.22. 

 
 

% PID Control 

 

C = (s + 60)*(s + 70) / s; 

rlocus(C*rP_motor) 

 title('Root Locus - PID Control')  

axis([ -300 100 -200 200]) 

sgrid(.5, 0) 

sigrid(100) 
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Figure 8.22: Root locus PID-control for an armature-controlled DC motor. 

 

Reduced PID Controller 

Now, the two of the closed-loop poles can be placed well within both the settling time 
and percent overshoot requirements. The third closed-loop pole moves from the open-
loop pole at s = -59.2 to the open-loop zero at s = -60. This closed-loop pole nearly cancels 
with the zero (which remains in the closed-loop transfer function) because they are so 
close together. Therefore, it is possible to neglect its effect. The new model is reduced 
again by performing the zero-pole cancelation using the “mineral” command. It is 
inputted 0.1 as a tolerance parameter as follows.  

 
% Reduced PID Control 

 

rsys_ol = minreal(C*rP_motor, 0.1); 

rlocus(rsys_ol) 

title('Root Locus - PID Control') 

axis([ -300 100 -200 200]) 

sgrid(.5, 0) 

sigrid(100) 
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The root locus for this further reduced system with controller is shown in figure 8.23. 
Note how closely it resembles the root locus without the pole-zero cancelation. Even 
though the one open-loop zero was cancelled, the other open-loop zero remains in the 
closed-loop transfer function and cannot be neglected. The effect of an additional zero (if 
there is no cancellation) is in general to speed up the response and add overshoot.  

 
Figure 8.23: Root locus PID-control for an armature-controlled DC motor with model 

reduction. 

Determining gain using rlocfind command 

 

As control specifications, it is required the settling time and the overshoot to be as small 

as possible, particularly because of the effect of the extra zero. Large damping 

corresponds to points on the root locus near the real axis. A fast response corresponds to 

points on the root locus far to the left of the imaginary axis. To find the gain corresponding 

to a point on the root locus, the rlocfind command provides that functionality.  
 

% Determining gain using rlockfind command 

 

[k,poles] = rlocfind(rsys_ol) 
 

Then on the plot and it is possible to select a point on the root locus on left side of the 
loop, close to the real axis as shown in figure 7.25 with the small + marks. This will ensure 
that the response will be nearly as fast as possible with minimal overshoot. These pole 
locations indicate that the response would have almost no overshoot if the system were a 
canonical second-order system. However, the presence of the zero will add some 
overshoot. 
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Figure 8.24: Root locus PID-control for an armature-controlled DC motor. 

 

After doing this, in the command window appears the following sentence:  

Select a point in the graphics window 

Choosing the point in the plot, the selected point appears in the command window: 

 

selected_point = -1.2417e+02 + 4.3344e+01i 

k =0.1175 

poles =1.0e+02 * 

-1.2466 + 0.4373i 

-1.2466 - 0.4373i 
 

Note that the values returned in the MATLAB command window may not be the same 

but should at least have the same order of magnitude. The step response plot for the 

reference and the output to external unity step disturbance with this specific controller 

and loop gain by executing the following code.  

 

% step response plots for the reference and disturbance with this 

% specific controller and loop gain 

 

sys_cl = feedback(k*rsys_ol,1); 

t = 0:0.0001:0.1; 

step(sys_cl, t) 

grid 

ylabel('Position, \theta (radians)') 
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title('Response to a Step Reference with PID Control') 

 

% Response step disturbance 

 

dist_cl = feedback(P_motor,k*C); 

figure;step(dist_cl, t) 

grid 

ylabel('Position, \theta (radians)') 

title('Response to a Step Disturbance with PID Control') 

 

 

These commands should produce the plots in figures 8.25 and 8.26 where the annotations 

to the figures are added by choosing Characteristics from the right-click menu of each of 

the plots. 

 

 
Figure 8.25: Step response of PID-control for an armature-controlled DC motor. 

 

 

Step response system with disturbance. 

 

It can be appreciated that in response to a step reference the system has an overshoot of 

approximately 14%, a settling time just under 0.04 seconds, and no steady-state error. 

Also, the response to a step disturbance reaches a steady-state value of zero. Therefore, 

all the design requirements have been met. 

In this example the zeros of our compensator are placed such as to reshape the root locus 

so that the closed-loop poles could be placed in the region of the complex plane that would 

achieve the given design requirements. It is in general helpful to understand the principles 
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of how the root locus is drawn, however, MATLAB can be very helpful in refining the 

design and verifying the resulting performance. 

 

 
Figure 8.26: Step response PID-control for an armature-controlled DC motor with 

disturbances. 
 

 

Exercises: 

 

1. Suppose that at t=0.5s the disturbance considered in Example 2 with the PID 

controller is acquired . Show the step response of the system considering the 

disturbance and how it is damped by the PID controller. 

 

 

References:  
 

[1]https://ctms.engin.umich.edu/CTMS/index.php?example=MotorPosition&section=ControlRo

otLocus 

 

[2] Wang, Liuping. (2020). PID Control System Design and Automatic Tuning using 

MATLAB/Simulink. 10.1002/9781119469414.   
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MATLAB program of PID control of a DC motor [1] 
 
 
% DC motor Transfer Function 
 
J = 3.2284E-6; 
b = 3.5077E-6; 
K = 0.0274; 
R = 4; 
L = 2.75E-6; 
s = tf('s'); 
P_motor = K/(s*((J*s+b)*(L*s+R)+K^2)); 
 
% Drawing the open-loop root locus K*P_motor 
 
rlocus(P_motor) 
title('Root Locus - P Control') 
sgrid(.5, 0) 
sigrid(100) 
 
% Poles TF 
 
poles = pole(P_motor) 
 
% Model reduction 
 
poles(1), poles(3) 
 
poles = pole(P_motor); 
rP_motor = minreal(P_motor*(s/max(abs(poles)) + 1)) 
 
pole(rP_motor) 
 
% rlocus 
 
rlocus(rP_motor) 
title('Root Locus - P Control') 
axis([ -300 100 -200 200]) 
sgrid(.5, 0) 
sigrid(100) 
 
% Integral control 
 
C = 1/s; 
rlocus(C*rP_motor) 
title('Root Locus - I Control') 
axis([ -300 100 -200 200]) 
sgrid(.5, 0) 
sigrid(100) 
 
% PI Control 
 
C = (s + 20) / s; 
rlocus(C*rP_motor) 
title('Root Locus - PI Control') 
axis([ -300 100 -200 200]) 
sgrid(.5, 0) 
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sigrid(100) 
 
% PID Control 
 
C = (s + 60)*(s + 70) / s; 
rlocus(C*rP_motor) 
title('Root Locus - PID Control') 
axis([ -300 100 -200 200]) 
sgrid(.5, 0) 
sigrid(100) 
 
% Reduced PID Control 
 
rsys_ol = minreal(C*rP_motor, 0.1); 
rlocus(rsys_ol) 
title('Root Locus - PID Control') 
axis([ -300 100 -200 200]) 
sgrid(.5, 0) 
sigrid(100) 
 
% Determining gain using rlockfind command 
 
[k,poles] = rlocfind(rsys_ol) 
 
% step response plots for the reference and disturbance with this  
% specific controller and loop gain 
 
sys_cl = feedback(k*rsys_ol,1); 
         t = 0:0.0001:0.1; 
         step(sys_cl, t) 
         grid 
         ylabel('Position, \theta (radians)') 
         title('Response to a Step Reference with PID Control') 
          
% Response step disturbance 
 
dist_cl = feedback(P_motor,k*C); 
         figure;step(dist_cl, t) 
         grid 
         ylabel('Position, \theta (radians)') 
         title('Response to a Step Disturbance with PID Control') 
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Chapter 9: Control Structures 

 
This chapter covers some control structures that provide more refined but complex 

solutions to certain system configurations. These are the following: 

 

• Feed-forward control. 

• Two degrees of freedom control. 

• Supervisory control. 

• Hierarchical control. 

• Cascade control. 
 

9.1 Feed-forward control 
 

A feed-forward is an element or pathway within a control system that passes a 

controlling signal from a source in its external environment to a load elsewhere in its 

external environment. This is often a command signal from an external operator. 

 

 

 

 

 

 

 

 Figure 9.1: Feedforward Controller 

 

Figure 9.1 shows a Feedforward Controller, which manipulates two input variables for 

the system. The feedforward controller is entered with a set point, an input variable or 

goal (note the three are the same also, reference and command denote the identical 

concept), and outputs signals to the manipulated variables and disturbances, which are 

the objectives of the control, and the output-controlled variable.   

A feed-forward control system of the type shown in figure 9.1 responds to its control 

signal in a pre-defined way without responding or noticing how the load reacts (does not 

have feedback from the output, where normally the load is situated); in contrast, a system 

that also has feedback, which adjusts the input to take account of how it affects the load 

(output signal and physical variable that interacts with the system), and how the load itself 

may vary unpredictably, is considered to belong to the external environment of the 

system. 

In a feed-forward system, the control variable adjustment is not error-based. Instead, it is 

based on knowledge about the process in the form of a mathematical model of the process 

and knowledge about, or measurements of, the process disturbances.  

+ 

+ 

Set-point Disturbance 

Controlled variable Control variable 

Process 

Feedforward 
controller 
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Some prerequisites are needed for a control scheme to be reliable by pure feed-forward 

without feedback: the external command or controlling signal must be available, and the 

effect of the output of the system on the load should be known (that usually means that 

the load must be predictably unchanging with time). So, normally, a feedforward 

controller may be found associated with a feedback loop. 

 
 

9.2  Two-degrees of freedom control 
 

Two-degree-of-freedom (2DOF) controller is a 2DOF controller composed of a serial 

compensator and feedforward compensator. In general terms, the serial compensator 

deals with tracking the reference signal, while the feedforward compensator deals with 

tracking the reference value. Also, a noise filter may be incorporated. Any kind of 

combination of controllers may be considered to deal with the structure, including PID or 

advanced controllers.  The rationale of operation associated with both the inner and outer 

controllers determines the need for good performance for disturbance attenuation 

(regulation) as well as set-point following (tracking) [1].  
 
 

 
 

Figure 9.2: 2DOF control loop. 
 

 

9.3 Supervisory control 
 

Supervisory control is a usual term for controlling several individual controllers or 

control loops, namely, distributed control systems, which may be implemented in 

standalone [1] or distributed [2] systems. It describes a high level of overall monitoring 

of individual process controllers, which is not necessary for the operation of each 

individual controller, but gives the operator a complete plant process view, and allows 

integration of operation between controllers. 

 

A more specific use of the term is for a Supervisory Control and Data Acquisition System, 

or SCADA, which refers to a specific class of system for use in process control, often on 

small and remote applications such as pipeline transport, water distribution, or wastewater 

utility system stations [2]. 
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Supervisory control relies on a main CPU to provide setpoint values while one or more 

‘regulatory’ controllers perform the continuous, real-time feedback and output loops for 

the final control elements.  

Supervisory control often proceeds in one of the following two forms: On one hand, the 

controlled machine or process continues autonomously. It is observed from time to time 

by a human who, when seeing it necessary, intervenes to modify the control algorithm in 

some way. On the other hand, the process accepts an instruction, carries it out 

autonomously, reports the results, and awaits further commands. With manual control, 

the operator interacts directly with a controlled process or task using switches, levers, 

screws, valves, etc., to control actuators [3].  

This concept was incorporated into the earliest machines, which sought to extend the 

physical capabilities of operators and managers. In contrast, with automatic control, the 

machine adapts to changing circumstances and makes decisions in pursuit of some goal, 

which can be as simple as switching a heating system on and off to maintain a room 

temperature within a specified range [3]. In [4], supervisory control is defined as follows: 

"In the strictest sense, supervisory control means that one or more human operators are 

intermittently programming and continually receiving information from a computer that 

itself closes an autonomous control loop through artificial effectors to the controlled 

process or task environment." 

 

As mentioned before, supervisory control may be applied to standalone systems or 

distributed systems. In this case, a control closed loop with supervisory control (Figure 

9.3) is introduced. 

 
Figure 9.3: General scheme of supervisory control of standalone wind turbine components. 

 

Figure 9.3 shows a standalone control structure. It is composed of the control of the 

different physical variables of the wind turbine, such as the pitch and yaw angles of the 

blades and the power system. These variables are monitored and passed to the central 

unit, called reliable control, which gives an overview of the system and checks its 

reliability. 
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Figure 9.4: Supervisory control of distributed manufacturing plants. 

 

Moreover, distributed systems may propose supervisory controllers naturally. Typical 

examples are production plants, such as assembly systems, where several subprocesses 

are carried out. In figure 9.4, the architecture of a distributed plan is designed as a 

supervisory control system.  Each different station of the shop floor is controlled by 

several microprocessors or microcomputers (µC, in figure 8.4) that, at the same time, are 

supervised and coordinated accordingly to the production requirements or scheduling of 

the whole plant. The architecture also presents a hierarchical control structure. 

 

9.4 Hierarchical control 
 

A hierarchical control system (HCS) is a form of control system in which a set of 

devices and governing software is arranged in a hierarchical tree. When the links in the 

tree are implemented by a computer network, then that hierarchical control system is also 

a form of networked control system. 
 

Figure 9.5 represents a network of interrelated subsystems that belong to the considered 

system under study. Each subsystem holds local control and adaptive supervision, which 

means they can control individual processes with the ability to adapt the parameters of 

the controller accordingly to a certain supervision requirement, i.e., possess an 

interchange of information according to a dynamic system. 

 

Hierarchical control can be interpreted as an attempt to handle complex problems by 

decomposing them into smaller subproblems and reassembling their solutions into a 

"functioning" hierarchical structure. So far, heuristic approaches have been prevalent. 

However, they cannot guarantee that the overall solution does indeed meet the 

specifications. In contrast, our project aims at a formal synthesis method that can provide 

such a guarantee. A hierarchical control system (HCS) is a form of control system in 

which a set of devices and governing software is arranged in a hierarchical tree. When 
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the links in the tree are implemented by a computer network, then that hierarchical control 

system is also a form of networked control system [6]. Figure 9.6 shows a standard 

hierarchical control system. 
 
 

Figure 9.5: Hierarchical control architecture. 

 

 
 

 

Figure 9.6: Standard ANSI/ISA-95 hierarchical control architecture. 
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9.5 Virtual sensors, estimators, observers, or filters. Soft sensors. 

 

 

Virtual sensing techniques, also called soft sensing, are used to provide feasible and 

economical alternatives to costly or impractical physical measuring instruments. A 

virtual sensing system uses information available from other measurements and process 

parameters to calculate an estimate of the quantity of interest.  

 

In the field of gas sensors, an array of virtual sensors can substitute electronic noise. 

Virtual gas sensors can be obtained by using a single sensor working in dynamic mode, 

i.e., working in repeated cycles that include a customized range of temperature, voltage, 

or both, which is equivalent to an array of real sensors. The choice of the temperature or 

voltage range depends on the gas type and its concentration.  

 

In statistics, an estimator is a rule for calculating an estimate of a given quantity based 

on observed data; thus, the rule (the estimator), the quantity of interest (the “estimand”), 

and its result (the estimate) are distinguished. For example, the sample mean is a 

commonly used estimator of the population mean [7].  

 

There are point and interval estimators. The point estimators yield single-valued results. 

This contrasts with an interval estimator, where the result would be a range of plausible 

values. "Single value" does not necessarily mean "single number," but includes vector-

valued or function-valued estimators.  

 

Estimation theory is concerned with the properties of estimators, that is, with defining 

properties that can be used to compare different estimators (different rules for creating 

estimates) for the same quantity based on the same data. Such properties can be used to 

determine the best rules to use under given circumstances. However, in robust statistics, 

statistical theory goes on to consider the balance between having good properties, if 

tightly defined assumptions hold, and having fewer good properties that hold under wider 

conditions [7].  
 

 
 

Figure 9.7: Closed-loop scheme with virtual sensor. 
 

Figure 9.7 shows a closed-loop scheme incorporating a virtual sensor. In this case, the 

virtual sensor is taking signals from the process control and output of the physical system. 

They may be used to filter outputs from noise, estimate disturbances, and consider other 

internal variables. Within this scenario, a virtual sensor may be used to reduce the effect 

of measurement noise, estimate disturbances, and get richer information from the plant 
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process. As a result, virtual sensors include filters (noise), estimators (disturbances), and 

observers (internal variables).  

 

Optimal estimators (or observers or filters) for nonlinear systems are, in general, difficult 

to derive or implement. The common approach is to use approximate solutions such as 

extended Kalman filters, ensemble filters, or particle filters. However, no optimality 

properties can be guaranteed by these approximations, and even the stability of the 

estimation error cannot often be ensured. Another relevant issue is that, in most practical 

situations, the system whose variables must be estimated is not known, and a two-step 

procedure is adopted based on model identification from data and filter design from the 

identified model.  

 

9.6 Cascade structure/master-slave control. 

     

Master/slave is a model of asymmetric communication or control where one device or 

process (the "master") controls one or more other devices or processes (the "slaves") and 

serves as their communication hub. In some systems, a master is selected from a group of 

eligible devices, with the other devices acting in the role of slaves.  

The master/slave terminology was coined in 1904. Since the early 21st century, it has 

become a subject of controversy for its association with slavery, and organizations and 

products have begun replacing them with alternative terms, such as cascade control.  

In automotive engineering, the master cylinder is a control device that converts force into 

hydraulic pressure in the brake system. This device controls slave cylinders located at the 

other end of the hydraulic system. 

 
Figure 9.8: Cascade control loop. 

 

The control structure, which represents the master/slave controller, is shown in figure 9.8. 

Following the structure of cascade control, a secondary loop (slave loop) usually responds 

fast and can overcome the effect of secondary disturbances on the primary loop 

efficiently. The secondary loop may reduce the nonlinearity of control valves and 

secondary processes. The control scheme or structure may be as sophisticated as 

subprocesses of the system.  
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Cascade control setpoints are sent to a secondary controller from a primary control 

system, each monitoring a different variable, with the secondary controller monitoring 

the data with the most time-sensitive response. 

Information from the measuring device (sensor or transmitter) goes to the controller, then 

to the final control device (solenoid coil, motor drive, or control valve), influencing the 

process, which is sensed again by the measuring device. The controller’s task is to inject 

the proper amount of negative feedback so that the process variable stabilizes over time. 

This flow of information is collectively referred to as a feedback control loop. 

To cascade controllers means to connect the output signal of one controller to the setpoint 

of another controller, with each controller sensing a different aspect of the same process. 

The first controller (called the primary, or archaically, master) essentially “gives orders” 

to the second controller (called the secondary, or archaically, slave) via a remote setpoint 

signal. Thus, a cascade control system consists of two feedback control loops, one nested 

inside the other: 

 
Figure 9.9: Cascade control loop. 

 

In general terms, a multi-loop scheme (Figure 9.9) uses an electronic device as the 

controller of several subprocesses. It can read multiple input variables from several 

measuring devices, providing the outputs to reach and maintain separate desired set-

points, reference signals, and commands values for each one. The controlled 

variables are measured by suitable sensors and converted to various signals acceptable to 

the multiloop controller. The controller compares those measured values to the command 

values or set points and actuates the control devices as needed. The control devices alter 

the controlled variable (control signal) by changing the appropriate properties to reach 

and maintain accurate and stable levels of the signal related to the control behavior at or 

near the setpoint.   

The purpose of cascade control is to achieve greater stability of the primary process 

variable by regulating a secondary process variable in accordance with the needs of the 

first. An essential requirement of cascaded control is that the secondary process variable 

be faster-responding (shorter lag and dead times) than the primary process variable. This 

allows the secondary controller to be more immediately responsible for fine-tuning 

setpoint adjustments because of its proximity to the final control element. The primary 

controller may then be left to handle numerous other variables and remote setpoints for 

other secondary controllers. The cascade controller makes the internal subprocess faster, 

reducing the effects of the inner disturbance. Furthermore, the desired closed-loop 

behavior is achieved, reducing the effect of disturbances in both loops. It provides a 

suitable solution for tracking.  
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A very common example of cascade control is a valve positioner, which sends a command 

signal from a regular process controller and, in turn, works to ensure the valve stem 

position precisely matches that command signal. The control valve’s stem position is the 

process variable (PV) for the positioner, just as the command signal is the positioner’s 

setpoint (SP). Valve positioners therefore act as “slave” controllers to “master” process 

controllers controlling pressure, temperature, flow, or some other process variable. 

Typical schemes are the P-PI controllers for electrical drives [8, 9] shown in figure 9.10. 

 

Figure 9.10: P-PI Control for electrical drives [9]. 

References: 
 

[1] Taguchi, H.  and Araki, M. ,(2000), Two-Degree-of-Freedom PID Controllers — Their 

Functions and Optimal Tuning IFAC Proceedings Volumes, Vol. 33 (4), pp. 91-96,  IFAC 

Workshop on Digital Control: Past, Present and Future of PID Control, Terrassa, Spain, 5-7 

April 2000, https://doi.org/10.1016/S1474-6670(17)38226-5 . 

 

[2] Landers, R.G.,(1997). Supervisory Machining Control: A Design Approach Plus Chatter 

Analysis and Force Control Components,9780591307450, University of Michigan. 

 

[3] Landers, Robert & Ulsoy, A. (1998). Supervisory Machining Control: Design Approach and 

Experiments. CIRP Annals - Manufacturing Technology. 47. 301-306. 10.1016/S0007-

8506(07)62838-8. 

 

[4] Sharma, K.L.S. (2011). Overview of Industrial Process Automation. 10.1016/C2011-0-

04273-4, 2nd ed. 

 

[5] G. Pritschow et al. “Open Systems Controllers - A Challenge for the Future of the Machine 

Tool Industry,” CIRP Annals (1993). 

 

[6] Senehi, M.K., Kramer, T.R., Ray, S.R., Quintero, R., Albus, J.S. (1994). Hierarchical 

control architectures from shop level to end effectors. In: Joshi, S.B., Smith, J.S. (eds) 

Computer control of flexible manufacturing systems. Springer, Dordrecht. 

https://doi.org/10.1007/978-94-011-1230-7_2 

 

[7] Fortuna, Luigi & Graziani, Salvatore & Rizzo, Alessandro & Xibilia, M.G. (2007). Soft 

Sensors for Monitoring and Control of Industrial Processes. 10.1007/978-1-84628-480-9. 

 

 [8] L. Rubio, A. Ibeas and X. Luo, "P-PI and super twisting sliding mode control schemes 

comparison for high-precision CNC machining," 2016 24th Iranian Conference on Electrical 

Engineering (ICEE), Shiraz, Iran, 2016, pp. 1825-1830, doi:10.1109/IranianCEE.2016.7585818. 

 

[9] Hecker, Rogelio & Flores, G. & Xie, Q. & Haran, R. (2008). Servocontrol of machine-tools: 

A review. Latin American applied research. 38. 85-94. 

155

https://doi.org/10.1016/S1474-6670(17)38226-5
https://www.sciencedirect.com/science/article/pii/S0007850607607586
https://www.sciencedirect.com/science/article/pii/S0007850607607586
https://doi.org/10.1007/978-94-011-1230-7_2


Manual on Control Techniques for Engineers  Advanced Control Methods 
 

ELTE  SIT 
 

 

Chapter 10: Advanced Control Methods 

 
This chapter covers some advanced control methods that provide more elegant and 

sophisticated solutions to certain system configurations.  

 

1. Model predictive control. 

2. Adaptive control. 

3. Neural network control. 

4. Sliding mode control. 

5. Optimal control. 

6. Intelligent control. 

a. Leaning control. 

b. Expert control. 

c. Fuzzy control. 

 
The previous control structures or architectures may be implemented with advanced 

control methods. Advanced control methods have been proven to be more beneficial and 

profitable than elementary control methods. Some claim that applying advanced control 

has resulted in cost savings or product quality improvements from 2% to tens of percent. 

Advanced control methods involve more complex calculations than the conventional PID 

controller algorithm. 

Advanced control requires modeling the process and identifying the parameter, either 

offline or online. Moreover, the process behavior can be predicted using the model of the 

process. The system is subjected to an evaluation performance criterion subject to process 

constraints, and its optimization may be required. In multivariable control, state variables 

appear, and matrix calculations are needed.  

Often, advanced control is a high-level control procedure that takes care of subprocesses 

controlling low-level unit control loops such as, PID controllers. In this case, the 

advanced control strategy aims to fulfill economic objectives by providing appropriate 

set points for the lower level. 

As a class of control methods, advanced control is rather vague− not because of the large 

number of methods that can be included but the indistinct classification criteria that 

control loops use to minimize a given performance criterion. 

Fundamentally, advanced control does not differ from any other control strategy in the 

sense that it is also based on feedback control. Yet, it is the intelligence behind advanced 

control that makes the difference when compared to conventional controllers. 

 

The use of process models is a common characteristic of advanced control methods. 

Advanced control relies strongly on process models that describe the process behavior. 

The models try to capture the essence of the process information. The most important use 

of the model is to enable prediction of the process output behavior when facing changes 

in either set point or load disturbance variables. For control design purposes, the more 

accurate the process model is, the better the control performance that can be achieved by 

a successful control design. Small process model uncertainties can be allowed because of 

the feedback control that corrects deviations due to, not only process disturbances but 

also modeling errors. 

Process models can be divided into qualitative, mathematical, and statistical models. 
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Qualitative models are basically rule-based tables of process behavior laws. Fuzzy-based 

models can be regarded as qualitative. 

 

10.1 Model predictive control 

Model Predictive Control (MPC) is referred to as a family of controllers in which there is 

a direct use of an explicit model of the system. Control design methods based on the MPC 

concept have found wide acceptance in industrial applications and have been studied by 

academia. The reason for such popularity is the ability of MPC designs to yield high-

performance control systems capable of operating without expert intervention for long 

periods of time.  

Model predictive control (MPC) is an optimal control-based method to select control 

inputs by minimizing an objective function. The objective function is defined in terms of 

both present and predicted system variables and is evaluated using an explicit model to 

predict future process outputs.  Model predictive control incorporates ideas from systems 

theory, system identification, and optimization. MPC is implemented with digital 

computers; it carries discrete-time formulations [1].  

 

10.2 Adaptive control 

 

Adaptive control is the methodology used by a controller that must adapt to a system with 

parameters that vary or are initially uncertain. An adaptive control system utilizes on-line 

identification of either a system parameter or a controller parameter, which does not 

require a priori information about the bounds on these uncertain or time-varying 

parameters. The adaptive control approaches consider their control design in the sense of 

Lyapunov. An adaptive control system can also be defined as a feedback control system 

intelligent enough to adjust its characteristics in a changing environment to operate in an 

optimal manner according to some specified criteria.  

 

Adaptive control systems have achieved great success in aircraft, missile, and spacecraft 

control applications. Traditional adaptive control methods are mainly suitable for (1) 

mechanical systems that do not have significant time delays and (2) systems that have 

been designed so that their dynamics are well understood.  In industrial process control 

applications [2], however, traditional adaptive control has not been very successful. 

Traditional adaptive control methods, either model reference or self-tuning, usually 

require some kind of identification of the process dynamics. This contributes to a few 

fundamental problems, such as (1) the amount of offline training required, (2) the tradeoff 

between the persistent excitation of signals for correct identification and the steady 

system response for control performance, (3) the assumption of the process structure, and 

(4) the model convergence and system stability issues in real applications. Traditional 

adaptive control methods assume knowledge of the process structure. They have major 

difficulties in dealing with nonlinear, structure-variant, or large-time-delayed processes. 

The field of electrical drives and some manufacturing processes seem to be the most 

promising areas for the application of adaptive control. The dynamics of such systems are 

well understood, and the limitations of theory are less restrictive.  
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In general, it is recommended that more experimental work be done in connection with 

proven theoretical methods. These methods, however, must provide a systematic design 

procedure that can be understood and also implemented by industrial engineers. 

 

The classification of adaptive control schemes can be found in [3], while the theory 

behind them is well addressed, for instance, in the series of books and articles by Åström 

and Wittenmark [4] and further research by the authors in the field.  

 

Example 10.1: As a practical example, model reference adaptive control schemes are 

shown and implemented in [5, 6] where the cutting forces in milling processes are kept 

constant despite sudden variations in the cutting conditions, in that case, coming from the 

axial depth of cut changes in the workpiece, as figure 10.1 shows.  
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feed

 
Figure 10.1: Workpiece profile when adaptive control is tested in milling processes for 

aeronautic applications.  

 

The model reference adaptive control scheme in Figure 10.2 estimates the parameters of 

the transfer function in real-time, and the controller is adapted to keep the forces under a 

prescribed upper limit.  
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Figure 10.2: Model reference adaptive control applied in the milling cutting force control. 

 

Figure 10.3 shows the results of the system, with discrete and continuous force responses 

keeping constant except at the point where the axial depth of cut is changed, the error 

signal, and the control law that adapts the system.  
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Figure 10.3: Responses of the system, discrete and continuous time, error, and control signal. 

 

10.3 Neural Network Control 

 

Neural network (NN) control involves using neural networks to design controllers for 

dynamic systems. These controllers power the learning capabilities of neural networks to 

manage complex, nonlinear, or time-varying systems that are difficult to model using 

traditional methods. Neural networks are computational models inspired by the human 

brain, composed of interconnected layers of neurons. Neural networks can approximate 

complex functions and learn from data. They can be used to identify the model of the 

system or to adapt the control law.  NN can optimize the control law and effectively learn 

the dynamics of the system. As a result, NN controllers can identify the system´s 

dynamics, design the controller, and be trained using data from previous experiments. On 

the other hand, NN requires large amounts of data to train effectively, the generalization 

of unconsidered situations is not straightforward, and the stability of the system is not 

ensured. 

 

One class of NN is deep learning. Deep learning is a subset of machine learning that 

involves neural networks with many layers (hence "deep") that can learn and model 

complex patterns in large amounts of data. They include some NN architectures such as 

feedforward neural networks, convolutional neural networks, or generative adversarial 

networks. Deep learning models typically require large amounts of labeled data. Training 

deep learning models is computationally intensive and often requires specialized 

hardware. Deep learning models are often seen as "black boxes," making it difficult to 

understand how they make decisions. Choosing the right model architecture and training 

parameters can be complex and time-consuming. 

 

 

10.4  Sliding mode control 

 

To overcome the influences of disturbances and model parameter uncertainties, a natural 

control approach is adopted by the sliding mode controller (SMC), which was first 

proposed by Utkin [5]. These controllers have some desirable closed-loop properties, 
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including invariance, dynamic order reduction, and robustness against parameter 

variations and disturbances. The design of SMC consists of two stages, i.e., an equivalent 

control and a switching control. The equivalent control is derived from the definition of 

sliding surface to which the controlled system trajectories must belong. The switching 

control forces the system to slide along the sliding surface despite being influenced by 

parameters or external disturbances. As switching control usually takes a discontinuous 

form, it often results in undesirable chattering in the control signals of the close-loop 

system [5].  

Sliding mode control is widely used in the speed control of electric drive systems. It 

provides attractive features such as fast dynamic response, insensitivity to variations in 

plant parameters, and external disturbance. 

 

Example 10.2: One example of this approach is given to show how the linear motor feed 

drive (movement of the axes of the system in milling processes) is controlled against 

disturbances inherently acquired [6, 7]. Figure 10.4 shows the presented algorithm.  

 

 
 
Figure 10.4: Closed-loop description, including feed drive machine tools and SMC algorithms. 

 

The results show four figures. The upper left figure plots the reference position in dashed 

red and the actual position in blue; the second one represents the position error; the third 

one outputs velocity error; and the fourth one is the control signal.  

 

Figure 10.5: Outputs of the SMC with 𝚲 = 𝟒𝟎 . 

+
+

Axis Dynamics
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Figure 10.5 represents the SMC with the control parameter Λ = 40  under the influence 

of the cutting force acting as an external disturbance. It can be shown that the control 

signal is smooth, but the tracking error is significant, leading to the system not following 

pre-established tool path references.   

 

Figure 10.6: Outputs of the  SMC with 𝚲 = 𝟒𝟎𝟎 . 

To deal with error, the control parameter Λ is increased to 400, as can be seen in figure 

10.6. In this case, adequate tracking performance is obtained; however, chattering due to 

the high frequencies introduced by the sign function in the control signal appears, as can 

be seen in the control signal plot in Figure 10.6. The trade-off between precision in 

tracking the reference signal and chattering limits the control algorithm.  

 
Figure 10.7: Outputs of Super-twisting SMC with (𝛂, 𝛃)  = (𝟐𝟎𝟎, 𝟐𝟎𝟎) . 

To deal with the chattering problem, super-twisting SMC has been applied. Figure 10.7 

shows that better performance in tracking the reference signal can be achieved without 

introducing chattering in the control signal.  A balance between tuning control parameters 

to reach adequate tracking and chattering is required to achieve satisfactory performance 

indexes. 

 

High values of control parameters make the algorithms more demanding in terms of 

control power, i.e., amplifiers, and more sensitive to introducing noise to the system. 
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10.5  Robust Control 

 

Robust control is a controller design methodology that focuses on the reliability 

(robustness) of the control algorithm. Robustness is usually defined as the minimum 

requirement a control system must satisfy to be useful in a practical environment. Once 

the controller is designed, its parameters do not change, and control performance is 

guaranteed.  

 

Robust control methods, either in the time domain or the frequency domain, usually 

assume knowledge of process dynamics and their variation ranges. Some algorithms may 

not need a precise process model but then require some kind of off-line identification.  

The design of a robust control system is typically based on the worst-case scenario, so the 

system usually does not work at optimal status in terms of control performance under 

normal circumstances.  

 

Some approaches to robust control are 𝐻2 and 𝐻∞. 𝐻2 optimized control aims to minimize 

the energy of the system´s response to disturbances, quantified by the 𝐻2 norm of the 

transfer function from the disturbance to the controlled output. This approach is 

particularly useful when the system is subject to stochastic disturbances or when 

minimizing the average performance over all frequencies is desired. 𝐻∞optimized control 

aims to minimize the worst-case gain (the 𝐻∞ norm) from disturbances to the controlled 

output, providing robustness against model uncertainties and disturbances. It is 

particularly useful in scenarios where the system may face unexpected or unmodeled 

disturbances. 

 

Robust control methods are well suited to applications where control system stability and 

reliability are the top priorities, process dynamics are known, and variation ranges for 

uncertainties can be estimated. Aircraft and spacecraft controls are some examples of 

these systems.  

 

In process control applications, some control systems can also be designed with robust 

control methods, especially for those processes that are mission-critical and naturally 

have large uncertainty ranges and small stability margins. However, the design of a robust 

control system requires high-level expertise. Once the design is properly accomplished, 

the system should work well without the need for much operator attention. But on the 

other hand, if upgrades or major modifications are required, the system must be 

redesigned [9]. 

 

10.6 Optimal Control 

The statement of a typical optimal control problem can be expressed in the following 

paragraph: The state equation and its initial condition of a system to be controlled are 

given. The defined objectives or requirements are also provided. Find a feasible control 

such that the system, starting from the given initial condition, transfers its state to the 

objective set and minimizes a performance index. 

 

In principle, optimal control problems belong to the calculus of variations. Pontryagin’s 

Maximum Principal and Bellman’s Dynamic Programming are two powerful tools to 
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solve closed-set constrained variation problems, which are related to the most optimal 

control problems [10].  

 

Optimal control is an important component in modern control theory. It has great success 

in space, aerospace, and military applications such as the moon landing of a spacecraft, 

the flight control of a rocket, and the missile blocking of a defense missile.  In industrial 

systems, most process control problems are related to the control of flow, pressure, 

temperature, and level.  

10.7 Intelligent Control 

Intelligent control is another major field in modern control technology. There are different 

definitions regarding intelligent control, but it is referred to as a control paradigm that 

uses various artificial intelligence techniques, which may include the following methods:  

(1) learning control, (2) expert control, and (3) fuzzy control. 

 

 

10.7.1  Learning Control 

 

Learning control uses pattern recognition techniques to obtain the status of the control 

loop; and then makes control decisions based on the loop status as well as the knowledge 

or experience stored previously. Since learning control is limited by its stored knowledge, 

its application has never been popular.  

 

 

10.7.2  Expert Control 

 

Expert control, based on expert system technology, uses a knowledge base to make 

control decisions. The knowledge base is built by human expertise, system data acquired 

online, and inference machines designed. Mathematical models of the system are also a 

widely accepted approach to tackling the knowledge base of expert systems. Since the 

knowledge in expert control is represented symbolically and is always in discrete format, 

it is suitable for solving decision making problems such as production planning, 

scheduling, and fault diagnosis. 

 

Example 10.3: The expert system developed in [11] to choose cutting parameters in 

milling processes  according to some specifications of the process to carry out is briefly 

introduced in this section.   

 

163



Manual on Control Techniques for Engineers  Advanced Control Methods 
 

ELTE  SIT 
 

Milling Process 

determination (up, 

down, immersion, 

etc.)

Modal 

characteristics, 

diameter, number of 

teeth of the tool

Process restrictions 

(Maximum power 

available in the 

spindle motor, 

chatter threshold..)

Expert system 

inputs

Selected Cutting 

Parameters

Expert System
Expert system 

OutputsKnowledge Base Module V: Rules to cost function inference

Initial weighting factors 

selection

Declaration of the standardazing 

factors

Change requirements??

Finer selection of the cutting 

parameters
Adequate MRR, TOL, 

SURF and ROS ?

Program Cutting 

Parameters and 

record data

Weighting factors modification 

Automatic weighting 

factors modification

Steepest method for 

automatic weighting 

factor modification

Weighting factors 

renormalization

1.

2.

Heuristic modification of the weighting 

factors
3.

COST FUNCTION

Transfer function 

cutting constant and 

time constants 

Feedback module VI

Expert Interaction 

Module VII

Yes

No

M

o

d

u

l

E

 I

Allowable cutting space 

parameters

Robustness in calculate 

the lobes

M

o

d

u

l

e 

II

Forces digital controller

Automatic sampling time 

selection

M

o

d

u

l

e 

III

Feed velocity restriction

Efficiency of the spindle 

power consumption

M

o

d

u

l

e

 IV

Initial cutting parameters 

selection

Chatter detection 

system

Chatter suppression 

system

Monitoring

Expert HMI

 
Figure 10.8: Schematic representation of the expert system. 

The approach consists of a series of rules split into seven modules (Figure 10.8). Each 

module can interact independently, leading to a universal system in the sense that it can 

be applied to every machine. The first module gives robustness to the system and presents 

the rough allowable input cutting parameters. The second module includes the model 

reference adaptive control of milling forces functionality, keeping the forces of the system 

under the prescribed upper limit despite variations in system parameters. Moreover, the 

possibility of manipulating the sampling time of the system is added to preserve computer 

resources if necessary. The third module covers the spindle and feed-drive motor 

constraints. The fourth module gives initial computational input parameters subjected to 

constraints on the motors and suggests potential initial spindle speed candidates. The fifth 

module presents a novel multi-objective cost function to evaluate the performance of the 

system. It has been devised from first principles and depends on the material to be 

removed, tool life, surface roughness, and a stability margin. Weighting factors indicate 

the importance of each term in the cost function. Each term is then modulated by a 

weighting factor, where the most important term is associated with the largest weighting 

factor to obtain Pareto optimal cutting parameters. Pareto optimal fronts can be obtained 

by two methods. First, by refining the searching cutting parameters around the selected 

one, and secondly, by modulating the weighting factors automatically if new production 

requirements are required or by interacting with system engineers or operators to take 

advantage of their experience. This information is stored in a database to register and 

modify previous data. Module 6 gives automatic feedback to the system if chatter 

vibrations are experienced due to non-modelled nonlinear effects such as wear or run out 

of the tool. Finally, module 7 proposes to monitor key parameters for better interaction 

with expert engineers and operators and to infer with them, providing in this way the best 

qualities of traditional expert systems and model based expert systems. Nevertheless, 

since the presented expert system is based on mathematical models of the system, its 

output selection is dominated by the modal parameters of the tool, tool and workpiece 

material properties, the linear transfer function, which gives the relationship between the 

resultant force and the feed velocity, stability and robustness constants, the determination 

of the process, and the process restrictions.  

 

The inference rules are presented in Table 10.1. 
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Table 10.1: Application of the expert rules 

Rule Knowledge Base 

1. Since stability lobes are calculated from a linear approximation, stability region inexactitude is added. 

Also, a robustness factor that influences the axial depth of the cut is considered. 

2. Cutting space parameters extracted from lobes, restrictions in spindle power availability, and cutting 

force controllers. 

3. Considerations about controlling the forces; using model reference adaptive control for keeping forces 

under the prescribed upper limit. 

4. Sampling period considerations to maximize computer resources. 

5. Spindle power consumption restrictions. 

6. Feed drive limitations. 

7. Giving the appropriate initial cutting space parameter to decrease searching time. 

Rules for inference with the cost function  

8. Initial weighting factor selection: the selection of the right initial weighting factors plays an important 

role in achieving good solutions in a short time. 

9. Declaration of standardizing factors. 

10. Selection of cutting parameters criteria; coarse and fine criteria. 

11. Automatic rule of weighting factors modification. 

12. Automatic weighting factor modification through the gradient descendent method. An alternative way to 

automatically modify the weighting factors is proposed. 

13. Renormalization of the weighting factors if they are re-programmed automatically through rules 11 and 

12. 

14. Re-parameterization of weighting factors. 

 Feedback and expert HMI rules 

15. A chatter vibration detection algorithm is added to be more reliable. 

16. Chatter suppression algorithm to lead the system to stable and reliable cutting conditions. 

17. Monitoring signals  

18.  Interaction with expert engineers and operators 
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Figure 10.9: Programmed cutting parameters in the lobes chart, programmed feed rates, 

and frequencies. 

Figure 10.9 shows the represented cutting parameters on the stability charts: spindle speed 

and axial depth of cut for the three working points, namely 1, 2, and 3, and the 

programmed feed velocity for the three cases, represented by changes in the feed velocity. 

It can be observed that the control signal (feed velocity) is smooth and feasible except in 

the transient response, when cutting parameters change and the pairs of spindle speed and 

axial depth of cuts are both under the border line in the stable zone.  The control signal 

has a peak at the transitory due to the selection of initial conditions that are not close to 

the real values. It also experiments with a not smooth transition when changing from 

working point 2 to 3.  The frequency response of points 1 and 3 gives the tooth pass 

frequency and its harmonics in each case, as with case 2, which has not been considered 

in the graphs.  

 

The expert system can move around the cutting parameter space subject to different 

production states or requirements. This fact can be achieved by programming easy and 

intuitive 𝑐𝑖 −parameters, which leads to giving adequate cutting parameters to the milling 

system according to production requirements. In this way, the expert system provides an 

intuitive but intelligent plan for cutting parameters, giving a fast solution if changeable 

situations happen. Finally, through rule 14, the obtained 𝑐𝑖 parameters are stored and 

subjected to learning and adaptive skills to help improve proven solutions. 
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10.7.3  Fuzzy Control 

Fuzzy control, unlike learning control and expert control, is built on mathematical 

foundations with fuzzy set theory. It represents knowledge or experience in a 

mathematical format that processes, and system dynamic characteristics can be described 

by fuzzy sets and fuzzy relational functions. Control decisions can be generated based on 

fuzzy sets and functions with rules.  

Although fuzzy control has great potential for solving complex control problems, its 

design procedure is complicated and requires a great deal of specialty. In addition, fuzzy 

math does not belong to the field of mathematics since many basic mathematical 

operations do not exist. For instance, the inverse addition is not available in fuzzy math. 

Then, it is very difficult to solve a fuzzy equation, yet solving a differential equation is 

one of the basic practices in traditional control theory and applications. Therefore, a lack 

of good mathematical tools is a fundamental problem for fuzzy control to overcome. 
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