
3. Graph-search 

 It is a search system 

– global workspace: stores all paths going from the start in 

part (this is a subgraph of the representation graph) and 

separately records the nodes, they are called open nodes, 

that have already been achieved but their successors have 

not been discovered yet 

• initial value: start node 

• termination condition: goal node appears or  

       the algorithm gets stuck 

– searching rules: expand an open node 

– control strategy: selects an open node to be expanded 
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3.1. General graph-search 

– search graph (G) : the subgraph of the representation 
graph that has been discovered 

– set of open nodes (OPEN ) : they are waiting for 
their expansions because their descendents are not known 
or not well-known 

– closed nodes : the nodes of the search graph that has 
already been expanded 

– expansion () : generating all successors of a node 
with its outgoing arcs 

– f: OPEN  ℝ  evaluation function: helps to select the 

appropriate open node to be expanded. 
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Procedure GK0 

 1. G := ({start}, ∅): OPEN := {start} 

 2. loop 

 3.  if empty(OPEN) then return cannot find solution  

 4.  n := minf(OPEN) 

 5.  if  goal(n) then  return there is a solution 

 6.  OPEN := OPEN {n}  (n) 

 7.  G := G  {(n,m)  A  m(n)} 

 8. endloop 

end 

First (wrong) version 
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DATA := initial value 

while  termination condition(DATA) loop 

      SELECT R FROM rules that can be applied 

      DATA := R(DATA) 

endloop 



Faults 

 At termination the solution path cannot be got. 

 The traces of the paths should be signed. 

 The optimal solution is not guaranteed (neither solution) 

 The costs of the discovered paths should be stored.   

If several paths to the same node were found, the best path 

cost needs to be stored. 

 Circles cause fault 

 Storing the costs of the paths can help to avoid the circle 

because in -graph  a path with a circle is always more 

expensive than its acyclic version. 
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Functions of the graph-search 

 : N  N parent pointer function 

– (n) = one parent of n in G,      

(start) = nil 

 

 

 

• If only the  spanning tree preserved the optimal paths to any 

node from start in G:  spanning tree was optimal  

 g: N  ℝ cost function 

– g(n) = c(start,n) – cost of  a discovered path  {startn} 

• If only g(n) was the cost of the path startn denoted by  for 

each node n :  and g were consistent 
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correct nodes,  

correct search graph 

 records an unique path to each node from start in G. 

It determines a directed spanning tree in G with start 

as a root node.  

start 



Maintaining the correctness  

of the search graph 

 Initially:   (start) := nil,  g(start) := 0  

 for all m(n) (after expansion of the node n) : 

o 1. m is a new node 

 if mG then   (m) := n,  g(m) := g(n)+c(n,m) 

    OPEN := OPEN{m} 

o 2. m is an old node to that a cheaper path has been found 

 if mG and g(n)+c(n,m)<g(m) then 

    (m) := n,  g(m) := g(n)+c(n,m) 

o 3. m is an old node to that a not cheaper path has been found 

 if mG and g(n)+c(n,m)g(m) then SKIP 
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The search graph  

does not even preserve its correctness 

If mG and g(n)+c(n,m)<g(m) then 
(m):=n,  g(m):=g(n)+c(n,m) 

s m k l 

n 

1 

1 4 
1 

5 

g(m)=4 

g(k)=5 g(l)=5 

g(n)=1 

g(s)=0 

1 

2 

? ? 

 Possible answers: 
1. The pointers and costs of all descendants of the node m should be 

modified using some traversal method. 

2. Such a case could be avoided with a good evaluation function. 

3. Do not care of this just put the node m back into OPEN. 
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incorrect nodes 

Danger: how many times 

will a node be expanded? 

start 



1. G := ({start}, ∅) : OPEN := {start} : (start) := nil : g(start) := 0 

2. loop 

3.     if empty(OPEN) then return cannot find solution  

4.      n := minf(OPEN) 

5.     if  goal(n) then  return  solution (n, ) 

6.     OPEN := OPEN‒{n} 

7.     for m(n) loop 

8.         if mG or g(n)+c(n,m)<g(m) then 

9.        (m) := n,  g(m) := g(n)+c(n,m), OPEN := OPEN {m}  

10      endloop 

11.     G := G  {(n,m)  A  m(n)} 

12. endloop 

Algorithm of  

general graph-search 
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DATA := initial value 

while  termination condition(DATA) loop 

      SELECT R FROM rules that can be applied 

      DATA := R(DATA) 

endloop 



Summarization of  

execution and outcomes 
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It can be proved: 

 Any node is expanded only finite times in -graphs.  

 

 The general graph search always terminates in finite 

-graphs.  

 

 The general graph search  finds a solution in finite 

-graphs if there exists a solution 

 

 



Execution diagram 

 The expanded nodes with their evaluation function values   

are enumerated in order of their expansions (the same node 

can occur several times). 
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3.2. Famous graph-search algorithm 

 How can we define the evaluation function? 

 Depth graph-search  

 Breadth graph-search   

 Uniform-cost graph-search 

 Look forward (best-first) 

 A, A*, Ac 

 B 

Heuristic Non-informed 
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Decreasing evaluation function 

 An evaluation function is decreasing if its value on a 

node never increases but it always decreases when a 

cheaper path to this node has been found. 

 It can be proved that the graph-search with a decreasing 

evaluation function re-establishes automatically the 

correctness of the search graph over and over again. 
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About the correctness of the search graph 

with decreasing evaluation function   

 A monotone increasing subsequence Fi (i=1,2,…) is constructed 

from the values of the diagram so that it starts with the first value 

and then always the closest non smaller one must be selected. 

 It can be shown that the graph-search with a decreasing evaluation 

function has correct search graph at expansion of a threshold node, 

and never expands incorrect nodes. 
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Non-informed graph-search 

depth first 

graph-search 
f = -g, c(n,m) = 1 in infinite 𝛿-graphs a depth 

bound is needed 

breadth first  

graph-search 

 

f = g, c(n,m) = 1 • finds optimal (the shortest)  

  solution if there exists one  

  even in infinite 𝛿-graph 

• any node is expanded at most  

  once 

uniform-cost 

graph-search 
f = g • finds optimal (the cheapest)  

  solution if there exists one  

  even in infinite 𝛿-graph 

• any node is expanded at most  

  once 

not identical to the backtracking 

similar to Dijkstra’s shortest path algorithm 
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Heuristics in graph-search 

 The heuristic function h:N ℝ estimates the cost of 

the cheapest path from n to the goal. 

 

 h(n)  min tT c*(n,t) = c*(n,T) = h*(n)      h*:N  ℝ 

 

 Examples: 

• 8-puzzle : W, P 

• 0 (zero function) ~ fake heuristic function 
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remaining optimal cost 



Properties of heuristic function 

 Famous properties: 

– Non-negative:   h(n) ≧ 0  nN 

– Admissible:   h(n) ≦ h*(n)   nN 

– Monotone (consistent):  h(n)‒ h(m) ≦ c(n,m) (n,m)A  

 Remarks 

• 8-puzzle : W, P is non-negative, admissible and 

monotone. 

• Zero function is non-negative, admissible and monotone. 
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Outcomes 

of the heuristics graph-search  

look forward 

graph-search 

f = h 

algorithm A f=g+h , 0≦h • finds solution if there exists one  

  (even in infinite 𝛿-graph) 

algorithm A* f=g+h, 0≦h, h≦h* 
(admissible) 

• finds optimal solution if there   

  exists one (even in infinite 𝛿- 
  graph) 

algorithm Ac f=g+h, 0≦h, h≦h* 

h(n)-h(m) ≦ c(n,m) 

(monotone) 

• finds optimal solution if there  

  exists one (even in infinite 𝛿- 
  graph) 

• expands a node at most once 

•  if h is monotone and gives zero   

   on goal, then it is admissible 
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3.3. Efficiency of algorithm A* 

Efficiency 

Memory requirement Running time 

Number of the closed 

nodes can estimate 

the size of search 

graph at termination 

Number of expansions 

with respect to the 

number of  the closed 

nodes at termination 

Those problems are focused on that have got a solution and have got 

an admissible heuristic function because only these conditions  can 

guarantee that algorithm A* terminates with an optimal solution. 
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f Graph-search solution G 𝛤 

-g Depth first 5 8 5 

g Breadth first 4 10 8 

I Look forward 5 8 5 

g+I algorithm A 4 9 7 

g+2*I algorithm A 4 8 6 

g+2*I‒1(if…) algorithm A 4 7 5 

Black&White problem 



 CLOSEDS  ~ the set of the nodes closed (expanded) by the 
path-finding algorithms S until its termination 

 

 Fix a problem. Let X and Y be two path-finding algorithms. 
X is not worse than Y  if CLOSEDX ⊆CLOSEDY  
X is better than Y   if CLOSEDX ⊂CLOSEDY 

 

 Using these definitions we can compare 

1. two algorithms A* using different admissible heuristics on 
the same problem. 

2. algorithm A* and another path-finding algorithm using the 
same admissible heuristics on a given subset of problems.  

3.3.1. Analysis of memory requirement 
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Comparing two algorithms A* 

using different heuristics  

 Let A1 (with heuristics h1) and A2  (with heuristics 

h2) be algorithms A
*.  

 A2 is more informed than A1 if for all nodes nN \T: 

h1(n)<h2(n). 

      

 It can be proved that a more informed A2  is not 

worse than a less informed A1, i.e., 

CLOSEDA2
 ⊆ CLOSEDA1

 

 In practice, CLOSEDA2
 ⊂ CLOSEDA1

 even if h1(n)≦h2(n). 
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h1(n)<h2(n) ≦h*(n) 
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f = g+0 g+W g+P 

6 steps solution 117 7 6 

13 steps solution not enough 

memory 

119 13 

21 steps solution not enough 

memory 

3343 145 

30 steps solution not enough 

memory 

not enough 

memory 

1137 

34 steps solution not enough 

memory 

not enough 

memory 

3971 

15-puzzle 



Comparing algorithm A* 

with other graph-searches 
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 Our aim is to show that algorithm A* does not require much 
more memory than the other graph-searches on the same 
problems.  

 

 An admissible problem is the path-finding problem that has 
got a solution and has got an admissible heuristic function. 

• In this investigation the heuristic function will be embedded in 
the problem rather than in the control strategy.  

• From this perspective there is no difference between algorithm 
A, A* and Ac since the heuristics of the problem determines that 
an algorithm A could be A* or Ac. 



X dominates Y 
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 Let X and Y be two sets of path-finding algorithms. 

 X dominates Y relative to a given subset of admissible 
problems if  for all problems and for each member y of Y 
there exists a member x of X so that  
CLOSEDx ⊆CLOSEDy  

 X strictly dominates Y relative to a given subset of admissible 
problems if X dominates Y but Y does not dominate X. 

 
A non-deterministic algorithm can be treated as a set of its deterministic 

versions. In a graph-search, a secondary (tie-breaking) rule can choose 

from the open nodes that have got the same evaluation function value. 

Thus an algorithm A* can be mapped to many deterministic graph-

searches that are defined by their tie-breaking rules. 



 A path-finding algorithm is admissible if it can find 
an optimal solution on each admissible problem. 

 Examples: 

– Uniform-cost graph-search 

– Algorithm A* 

– Algorithm A** :  f(n)=maxmstartn(g(m)+h(m))  
    tie-breaking rule: prefers the goal node 

– Algorithm IDA* (it is backtracking algorithm using a  
   special cutting process, embedded in a  
   loop that calls it with an increasing depth  
   bound repeatedly) 

Admissible path-finding algorithms 
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Provable results 

 Algorithm A* dominates all admissible path-finding 

algorithms on the problems that have got monotone 

admissible heuristics. 

 No admissible path-finding algorithm dominates all 

other admissible path-finding algorithms on all 

admissible problems. 

 Algorithm A** strictly dominates algorithm A* on all 

admissible problems. 
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3.3.2. Analysis of running time 
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 Denote the number of the closed nodes as k 

 

 Lower limit on the number of the iterations:   k  

– If algorithm A* uses a monotone heuristics, (so it is an 

algorithm Ac) it expands a node at least once thus the 

number of the closed nodes is equal to the number of 

expansions. 

 Upper limit on the number of the iterations: 2k-1 

‒ See Martelli’s problem 



Martelli’s example 

s

t n n nn 1234

11 9 6 1

3 4

6

1 1 110 137300

0

k=5 
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Discussion 

 One node – even in the same ditch – can be expanded several times. 

 A secondary evaluation function is introduced in the ditches. It can 

be proved that the set of the nodes expanded in a ditch does not 

depend on this inner function, it influences only the order and the 

number of expansions of the nodes in the ditch. (Thus neither the 

threshold nodes nor threshold values nor their order change.) 

 Martelli suggested using the cost function g as an inner evaluation 

function. 
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Algorithm B 

 Algorithm B is derived from algorithm A.  

 Introduce the variable F to store the current threshold 

value. Change the step 1 and step 4 of the algorithm: 

– Step 1. +  F := f(s)  

– Step 4. if minf(OPEN)<F  

–        then  n := ming(mOPEN  f(m)<F)  

–        else   n := minf (OPEN); F  f(n) 

–    endif 
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Running time of algorithm B 

 Algorithm B works in the same way as algorithm A* except 

that it expands a node in a ditch only once. 

• In the worst case all closed nodes are threshold nodes and 

their first expansions are the thresholds because of the 

decreasing evaluation function. 

• The first ditch consists of only the start node, in the 

second ditch only the second threshold node can be found, 

the ith ditch contains at most the previous i‒1 threshold 

nodes (that is, all nodes except for the start node), thus the 

last kth ditch has got at most k‒1 nodes.  

• It follows that the number of expansions is at most ½⋅k2.  

32 Gregorics Tibor                                                                                     Artificial intelligence 


