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1. Backward search 

 Sometimes the solution can be found easier if the 

search starts from the goal node and goes toward 

the start node.  

 

 

 

 

 In this case the path, that has been found, must be 

interpreted inversely.  But it cannot be done 

always. 

start 
goal 
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Bidirectional search  on Hanoi tower 

problem start 

goal Gregorics Tibor                                                                               Artificial intelligence 4 



Gregorics Tibor                                                                               Artificial intelligence 5 

Why does not the backward search solve 

the jug’s problem? 

5 
0 0 

? 
? 

1 

5l 3l 2l 

 Backward search finds the path  [4,0,1][5,0,0]  
but it is not interpreted inversely.  

 It is hard to select the goal state which may be the 
starting point of the backward search. For example 
the [2,2,1] is not available from the start state. 

 

5l 3l 2l 
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Conditions of backward search  

 All arcs have got backward pairs (at least on the 

path that is found from goal to start) 

• In case of using state space representation it means that 

all operators must have got inverse operators.  

 We need a goal node from where the backward 

search can start. 

 

What can we do if these conditions do not hold? 
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Reduction of jug’s problem 
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Reduction graph of jug’s problem 
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State graph of jug’s problem 

2 3 0 5 0 0 

0 3 2 3 0 2 1 2 2 

4 1 0 3 2 0 

2 1 2 

1 3 1 4 0 1 2 2 1 3 2 1 

start 

goal goal goal goal 
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Representation with problem reduction 

 The problem reduction is based on the operators M:A⟶A of 

the state space representation:  

the reduction operator RM   2A×2A can product the set of 

states (Y) from that the original operator M leads to the states 

of a given state-set (X): (X,Y)RM  ⇔ ∀aY: M(a)X 

• Y may be „inconsistent”. 

 Our aim is to find a path from the set of the goal states to the 

set of the start state. Reading this path backward we get the 

solution as a sequence of the operators of the original state 

space representation. 
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2. Problem decomposition 

problem 

subprobl12 

subprobl23 

sub1 sub2 sub3 sub4 

subprobl21 subprobl22 

subprobl11 
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(5x2+xex)dx 

5x2dx xexdx 

exdx xex x2dx 5 

⅓ x3 ex 

- 

+ 

* - 

 ½ x2ex dx ½ x2ex 

Symbolic integration 

x2exdx ½ 

* 

… 



Instead of   H(n, ij, k)     we have    

  H(n-1, ik, j) H(1, ij, k) H(n-1, kj, i) 

H(3, 31, 2) 

H(1,31,2) 

H(1,31,2) 

H(1,32,1) H(1,23,1) H(1,31,2) H(1,12,3) H(1,21,3) 

H(2,32,1) H(2,21,3) 

Hanoi tower problem 
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Concept of problem decomposition 

 Representation of decomposition contains: 

– general description of the subproblems, 

– original problem, 

– primitive (simple) problems that can be decided 

if they can be solved and their solution can be 

computed easy 

– decomposing operators : 

• D: problem  problem+  and   

 D(p)=<p1, … , pn> 
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Graph representation 

 The problem space of a problem can be described with 

not an ordinary 𝛿-graph but a so-called AND/OR graph. 

 The solution is not an ordinary path but a special 

subgraph: solution graph 

– A solution graph has no arc with „OR” relationship but it 

contains all arcs connected by „AND” so the solution 

graph gives an unequivocal direction from the node of the 

original problem to the nodes of primitive problems. 
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3. AND/OR graph 

 Az R=(N,A) is a arc-weighted directed hyper graph, where 

– N is the set of nodes,  

– A (n,M)  N2N  0 M< } is the set of hyper 

arcs,M is the order of an hyper arc 

– c(n,M) is the cost of  

the hyper arc (n,M)  

 Number of the outgoing  

hyper arcs from  

one node is finite 

 0< c(n,M) 

 

 

      d          e                  i     j 

c b f 

a 

h g 
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Hyper path  

form the node n to the set of nodes M 

 It is a finite subgraph (nM) of an AND/OR graph, where 

– every node can be achieved 
from the node n, 

– there are no outgoing hyper arc  
from the nodes of M,  

– the nodes, except in M,  
have got exactly one 
outgoing hyper arc.  

 

 

 Length of hyper path: 
the number of its hyper arcs  

 Cost of hyper path: the sum of the cost of its hyper arcs 

        d  e                          i      j 

c b f 

a 
a{d,e} 

h g 
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c b 

  d            e 

a 

  {a} {b,c}  

  {a} {b,c} 

traversals: 

Difference between the traversal of 

ordinary directed path and hyper path 

 The traversal of an ordinary path is the sequence of the 

nodes of this path in order by its arcs. It is always 

deterministic. 

 The traversal of an hyper path is the sequence of the sets 

of its nodes but it is  

non-deterministic. 

 

 {c}  {d,e}  

 {d,e}   {b,d,e}  {c,d,e} 



Gregorics Tibor                                                                               Artificial intelligence 19 

Traversal of hyper path 

 Traversal is the sequence of the sets of the nodes of the 
hyper path where 

 First set: {n}  

 The set C is followed by the set C-{k}K if 
there exists a hyper arc (k,K) in the hyper path where  
kC but kM 



 A traversal is treated as a sequence of all hyper arcs of 

the hyper path where the same hyper arc can be 

occurred several times.  

1. The number of the occurrences of the hyper arc (k,K) of the 

hyper path nM in the traversal of this hyper path is at 

most the number of the ordinary paths driving from n to k 

in this hyper path. 

2. A hyper path including ordinary directed circle has no 

finite traversal. 

3. A hyper path nM without ordinary directed circle has 

finite number different finite traversal where the last set is 

M. 

Remarks 
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Graph representation  

of the problem decomposition 

 The graph representation of a decomposition is the 

triple (R,s,T) where 

– R=(N,A,c) is an AND/OR graph where 

– N denotes the subproblems,  

– A denotes the operators, 

– c gives the cost of the operators, 

– s means the initial problem,  

– T contains the simple problems. 

 The solution of the problem is a hyper path sM T 

(named as solution graph) that does not contain circle. 
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Search in AND/OR graph 

 Every AND/OR graph can be corresponded to an 
ordinary -graph where the solution paths are the 
traversals of the solution graphs of the AND/OR 
graph.  

 That because the different search algorithms of the 
ordinary -graphs can be adapted onto the AND/OR 
graphs and they are able to find solution graph.  
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Transformation of hyper paths 

b c 

a {a} 

{b,c} 

Case of one hyper arc 

in a hyper path:  

Case of several hyper arcs 

in a hyper path 
c 

a 

f 

b 

1 

d e 

{a} 

{c,b} 

{c,d} 

{f,e,d} 

{a} 

{c,b} 

{f,e,b} 

{f,e,d} 



Transformation of AND/OR graph 

 

b 
c 

a 

e d 

a  =  start 

d,eT 
{a} 

{b,c} 

{c} {b,d,e} 

{d,e} 

{c,d,e} 

{d} 

{b,d} 

{c,d} 

The traversals of the hyper paths outgoing 

from the start node are drawn up as 

ordinary paths. 

No need all traversals of a hyper path! 

Fake traversals (where the same node is 

substituted several times in different way) 

must be avoided! 
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{a} 

{b,c} 

{c} 

{d,e} 

b 
c 

e d 

1 

a  =  start 

d,eT 

a 

{d} 

{a} 

{b,c} 

{b,d,e} {b,d} 

{d} 

{c,d,e} 

{d,e} 

{c,d} 

3. To avoid the fake traversals an ordinary tree is built and when a node is selected from 

the set C that node has been selected before (on the path driving from the start to C) 

then this node is substituted based on the same hyper arc that is used erlier. 

1. Only one traversal of a hyper path is enough 

so in one step of the transformation it is 

enough to substitute only one node. 

2. Only the hyper paths sM T are interested 

never step away from the goal nodes. 
Fake traversals! 

{d,e} {d} 
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Algorithm of transformation 

1. Put the set {start} into a QUEUE as a start node of the ordinary graph.  

2. If QUEUE is empty, then EXIT, otherwise a set C is pulled out from it 

and the successors of C are generated in the ordinary graph. 

3. If C contains only goal nodes, then the set C is a goal in the ordinary 

graph without outgoing arcs.  

4. Otherwise a non goal node k is selected from C.  

• If there exists an arc generated based on the hyper arc (k ,K) on the 

path driving from {start} to C, then there will be only one successor 

of C, this is C-{k}K . 

• Otherwise all outgoing hyper arc (k ,Ki) generate successor C-{k}K i. 

5. The successors of C are put into the QUEUE. 

6. GOTO 2. 
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Theorem 

1.    After transformation every solution path of the 

ordinary graph represents one of the traversals of a 

solution graph of the AND/OR graph. 

2.    The transformation creates an ordinary solution path  

from one of the traversals of every solution graph of 

an AND/OR graph in finite steps.  

 Remarks:  

– The transformed graph is a -graph 

– The transformation is built into the search 

algorithms. 



Backtracking on AND/OR graph 
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Recursive procedure VL2(traversal) return solution 

1. C := tail(traversal) 

2. if  allgoal(C) then  return(nil) endif 

3. if length(traversal)  limit then  return(fail) endif 

4. if C  remain(traversal) then  return(fail) endif 

5. k := get-non-goalC)  

6. for   (k,K) outgoing-hyper-arcs (k)  loop 

7.       solution := VL2(concat(traversal, C-{k}K) ) 

8.       if solution  fail then  

9.  return(concat((C, C-{k}K), solution))  endif 

10. endloop 

11. return(fail) 

end 


