
2. Backtracking algorithm

1 Gregorics Tibor Artificial intelligence

Backtracking search system

The backtracking is the search system where

– global workspace:

• contains one path from the start node to the current
node and all untested outgoing arcs from its nodes

• initially this path contains only the start node

• it terminates: either the current node is the goal or it is the
start node with fully tested outgoing arcs

– rules:

• expand the path with a new arc that is an untested
outgoing arc from the current node

• delete the last arc out form the path (backtracking step)

– control strategy: applying the backtracking step at the last
case only

2 Gregorics Tibor Artificial intelligence

Condition of the backtracking step

 dead end: the current node has not got outgoing arc

 checked crossroads: the current node has not got

untested outgoing arcs

 circle: the current node is repeated in the current

path

 depth bound: the length of the current path is equal

to a given limit

3 Gregorics Tibor Artificial intelligence

Heuristics

 ordering heuristics:

– gives an order on the outgoing arcs of the

current node

 cutting heuristics :

– cuts the untested outgoing arcs without

checking them

4 Gregorics Tibor Artificial intelligence

First version

 The first version of backtracking (BT1) implements

the first two conditions of the backtracking step:

“dead end” and “checked crossroads”.

 In a finite acyclic directed graphs (not -graph)

the BT1 always terminates, and if there exists a

solution path, then it finds one.

 It can be implemented with a recursive algorithm

– Starting: solution := BT1(start)

5 Gregorics Tibor Artificial intelligence

Recursive procedure BT1(current) return solution

1. if goal(current) then return(nil) endif

2. for new  (current) −(current) loop

3. solution := BT1(new)

4. if solution  fail then

5. return(concat((current, new), solution) endif

6. endloop

7. return(fail)

end

BT1

6 Gregorics Tibor Artificial intelligence

DATA := initial value

while  termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

2.

9.

10.

11.

12.

5.

4.

6.

1.

3.

7.

0.

8.
Static debugging

7 Gregorics Tibor Artificial intelligence

 ♛  
  
 


  ♛ 
  

 


   ♛
 

 
 

♛   
  ♛ 
   
  

♛   
   ♛
  
  

 ♛  
   ♛
  
 

  ♛ 
♛   
  
 

   ♛
♛   
  
  

   ♛
 ♛  
   
  

♛   
   ♛
 ♛  
   

 ♛  
   ♛
♛   
  

  ♛ 
♛   
   ♛
  

   ♛
♛   
  ♛ 
   

 ♛  
   ♛
♛   
  ♛ 

  ♛ 
♛   
   ♛
 ♛  

♛   
 
 
 

n-queens problem

3. representation

12 steps

 4 steps back

n-queens problem

3. representation

♛   
 
 
 

♛   
  ♛ 
   
  

♛   
 
 
 

♛   
 
 
 

♛   
 
 
 

♛   
   ♛
  
  

♛   
 
 
 

♛   
 
 
 

♛   
 

 

♛   
   ♛
  
  

12 steps

 4 steps back

…

0. step 1. step 2. step 3. step 4. step 5. step 6. step 7. step

Dynamic debugging

8 Gregorics Tibor Artificial intelligence

♛   
   ♛
  
  

♛   
   ♛
 ♛  
   

♛ ♛

♛
♛

♛
♛

♛
♛

♛

48 steps

22 steps back

♛
♛

♛
♛

♛
♛

♛

♛
♛
♛

♛

♛

♛
♛

♛
♛

♛
♛

♛
♛

♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛

♛
♛

♛

♛
♛

♛

♛
♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

 Static debugging

9 Gregorics Tibor Artificial intelligence

0.

1.

2.

3.

4.

5.

6.

7. 11.

8.

9.

10. 12.

13.

14. 16.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.
37.

36. 38.

39.
41.

42. 40.

43.

44.

45.

46.

47.

48.

n-queens problem

2. representation

♛

♛
♛

♛ ♛ ♛

♛
♛

♛ ♛ ♛

♛
♛

♛
♛

♛
♛

♛

…

0. step 1. step 2. step 3. step 4. step 5. step 6. step 7. step

Dynamic debugging

10 Gregorics Tibor Artificial intelligence

n-queens problem

2. representation

48 steps

22 steps back

In this special problem it would be

enough to look at the current node

because it contains all information

about the current path.

 Diagonal: the length of the longest diagonal

passing through a square.

 Diagonal + odd-even: Odd-even is a secondary principle that

orders the squares with the same primary value: in the odd rows

from left to right, in the even rows from right to left.

 Number of free squares (that are not attacked) that remains after

placing a new queen.

 Difference of the number of free squares of the state before placing

a new queen and the state after that.

Ordering heuristics

for n-queens problem

11 Gregorics Tibor Artificial intelligence

4 3 3 4

3 4 4 3

3 4 4 3

4 3 3 4

These heuristics assign a value to each square.

In each step the search selects the square that has the best value

among the untested squares of the current row.

3

Ordering heuristics

for n-queens problem

Diagonal + odd-even Diagonal:

n = 4 None Diag Diag+odd-even

2. repr. 22/48 2/8 0/4

3. repr. 4/12 0/4 0/4

4 ♛ 3 4

3 4 4 3

3 4 4 3

4 3 3 4

♛ ♛

♛

♛

4 3 3 4

3 4 4 3

3 4 4 3

4 3 3 4 ♛

♛

♛

♛

♛

12 Gregorics Tibor Artificial intelligence

2. repr. None Diag

n = 4 22/48 2/8

n = 5 0/5 2/9

n = 6 25/56 3/12

n = 10 92/194 103/216

n-queens problem

2. representation

8 steps

2 steps back

4 steps

0 steps back

Finding cutting strategies

for n-queens problem

k=6

Square6 ∅

♛

♛

♛

♛

♛

13 Gregorics Tibor Artificial intelligence

In each step after placing the kth

queen, free squares of the

remaining rows may be reduced

 for i=k+1 .. n loop

 Mark(i,k)

If Squarek = ∅ then step back.

Squarei = { free squares in the ith row }

n-queens problem

3. representation

This is the standard

backtracking method

Mark(i,j) : deletes the free squares

from the ith row if they are attacked

by the kth queen

Forward Checking

FC algorithm:

BT1 +

if there is no free square

in some of the remaining rows

then the algorithm steps back.
k=4

Square6∅

♛

♛

♛

♛

14 Gregorics Tibor Artificial intelligence

Partial Look Forward

PLF algorithm:

FC +

 for i=k+1 .. n loop

 for j=i+1 .. n loop

 Filter(i,j)
k=3

i = 4, j = 6 Square4 ∅

♛

♛

♛

6

15 Gregorics Tibor Artificial intelligence

Filter(i,j) : deletes the free square

from the ith row if it is attacked by

every free square in the jth row

Look Forward

LF algorithm:

FC +

for i=k+1 .. n loop

 for j=k+1 .. n és ij loop

 Filter(i,j)

k=2

Square6 ∅ i = 4, j = 3

i = 5, j = 4

i = 6, j = 4

i = 6, j = 5

♛

♛

3

4

4 4 5

16 Gregorics Tibor Artificial intelligence

LF once more

k=3

Square6 ∅ i = 6, j = 4

i = 6, j = 5

♛

♛

4 4 5

♛

17

LF algorithm:

FC +

for i=k+1 .. n loop

 for j=k+1 .. n és ij loop

 Filter(i,j)

Gregorics Tibor Artificial intelligence

AC1

AC1 algorithm:

FC +

 repeat

 for i=k+1 .. n loop

 for j=k+1 .. n és ij loop

 Filter(i,j)

 until there was deleting

i = 6, j = 4 1. turn

♛

♛

4 4

18 Gregorics Tibor Artificial intelligence

AC1

i = 5, j = 6 2. turn

♛

♛

6

19

AC1 algorithm:

FC +

 repeat

 for i=k+1 .. n loop

 for j=k+1 .. n és ij loop

 Filter(i,j)

 until there was deleting

Gregorics Tibor Artificial intelligence

i = 3, j = 5

i = 4, j = 5

i = 6, j = 3

AC1

♛

♛

3. turn

5

5

3

♛

♛

♛

♛

20

AC1 algorithm:

FC +

 repeat

 for i=k+1 .. n loop

 for j=k+1 .. n és ij loop

 Filter(i,j)

 until there was deleting

Gregorics Tibor Artificial intelligence

A new representation model:

constraint satisfaction

 The n-queens problem can be represented in an other form:

 Find the positions of queens (x1 ,…, xn) D1  … Dn

(the ith queen is on the xi position and Di = Squarei) where

there is no attack between the ith and jth queens for all i,j[1..n].

o Possible squares of the ith queen: Di = Squarei ⊆ {1, … , n}

o Constraints “no attack ” are binary relations: Cij ⊆ Di  Dj

Cij(xi,xj) ~ attack((i,xi),(j,xj))  (xixj and xi‒xj i‒ j)

 The graph coloring problem (n vertices, m colors) with a

similar representation:

o Possible colors of the ith vertex: Di ⊆ {1, … , m} (i=1..n)

o Constraints on the adjacent (i,j) vertices: Cij(xi,xj) ~ xi  xj

21 Gregorics Tibor Mesterséges intelligencia

Secondary control strategy

 The earlier presented cuttings can be described with the next

formalization:

 Mark(i,k): Di := Di {eDi  Cik (e,xk)}

 Filter(i,j) : Di := Di {eDi  fDj :Cij (e,f)}

 These methods are independent of the meaning of the relation

Cij so they can apply not only in the solution of the n-queens

problem but also in all problems that are modeled by

constraint satisfaction representation.

 Thus these cuttings are not heuristics since they do not

contain knowledge about the problem domains. They are

based on the speciality of the constraint satisfaction model

hence they are a sort of secondary control strategies.

 22 Gregorics Tibor Mesterséges intelligencia

 The second version of backtracking (BT2)

implements all conditions of the backtracking step.

 In -graphs the BT2 always terminates, and if

there exists a solution path shorter than the depth

bound, then it finds a solution path.

 It can be implemented with a recursive algorithm

Starting: solution := BT2(<start>)

Second version

23 Gregorics Tibor Artificial intelligence

Recursive procedure BT2(path) return solution

1. current := last_node(path)

2. if goal(current) then return(nil)

3. if length(path)  limit then return(fail)

4. if current  remain(path) then return(fail)

5. for new  (current) −(current) loop

6. solution := BT1(concat(path, new))

7. if solution  fail then

8. return(concat((curent, new), solution) endif

9. endloop

10. return(fail)

end

BT2
DATA := initial value

while  termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

24 Gregorics Tibor Artificial intelligence

Remarks

 If the length of the shortest solution path is greater than

the depth bound, then BT2 terminates without solution

path.

 The observing circles can be ignored because the

implementation of the depth bound alone ensures the

outcome of BT2.

• This simplification can mend the efficiency if there are no short

circles in the representation graph (ecxept of the 2-length

circles that can be avoided by the storing parent.)

• In this case it is enough to give the recursive procedure only the

length of the current path instead of the whole current path

besides the current node and its parent.

25 Gregorics Tibor Artificial intelligence

[3,3,3]

[3,2,1]

[1,3,3]

[1,2,3]

[2,2,3]

[2,2,1]

[3,1,1]

[1,1,1]

[2,3,3]

[2,1,3]

[1,1,3]

[3,1,3] [3,2,3]

[2,2,2]

[3,2,2]

[1,1,2]

[3,1,2]

[3,3,2] [3,3,1] [2,3,1] [2,1,1] [1,2,2] [1,3,2]

[2,3,2]

[2,1,2] [1,2,1]

[1,3,1]

Hanoi tower problem
0.

1.

2.

3.

4.

5.

6.

7. 8. 9.

12.

10. 11. 13. 16. 15.

18.

19. 20.

21.

22.

23.

24.

Depth bound: 8

Heuristics: Sum

17. 14.

2

7
1

8
6

3

5
4

2
1

8

7
6

3

5
4

2

7
1

8

6

3

5
4

2

7
1

8
6

3

5
4

2

1

8

7
6

3

5
4

2

7
1

6
8

3

5
4

2

7
1

8

4
6

3

5

2

7
1

8

6
4

3

5

2

7

8

6
1

3

5
4

7
1

2

6
8

3

5
4

2

7
1

8

6
4

5
3

2
7

8

6
1

3

5
4

2

7
1

8

6
4

3
5

7
2

8

6
1

3

5
4

2

7
1

3

6
8

5
4

1

7

2

6
8

3

5
4

2

7
1

6
4

8

5
3

2

6
7

8
1

3

5
4

2

7
1

8
4

3

6
5

8

7
2

6
1

3

5
4

2

7
1

3

6
8

4

5

1
7

2

6
8

3

5
4

4

5 5 3

3 3 4

3 4 2 4

1

0 2 1

7
8

2

6

3

5
4

0.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

8-puzzle W

Depth bound: 5

Heuristics:

27 Gregorics Tibor Artificial intelligence

cutting condition:

length +W > DB

2

7
1

8
6

3

5
4

2
1

8

7
6

3

5
4

2

7
1

8

6

3

5
4

2

7
1

8
6

3

5
4

2

1

8

7
6

3

5
4

2

7
1

6
8

3

5
4

2

7
1

8

4
6

3

5

2

7
1

8

6
4

3

5

2

7

8

6
1

3

5
4

7
1

2

6
8

3

5
4

2

7
1

8

6
4

5
3

2
7

8

6
1

3

5
4

2

7
1

8

6
4

3
5

7
2

8

6
1

3

5
4

2

7
1

3

6
8

5
4

1

7

2

6
8

3

5
4

2

7
1

6
4

8

5
3

2

6
7

8
1

3

5
4

2

7
1

8
4

3

6
5

8

7
2

6
1

3

5
4

2

7
1

3

6
8

4

5

1
7

2

6
8

3

5
4

5

6 6 4

5 3 5

2

1

2 0

4

1

7
8

2

6

3

5
4

P
0.

1.

2.

3.

4.

5.

8-puzzle

28 Gregorics Tibor Artificial intelligence

Depth bound: 5

Heuristics:

Conclusions

 Advantages

– always terminates,

finds solution

– implementation is

simple

– small memory

 Disadvantages

– no optimal solution

– wrong choice at the first

stage of the search can

be undone only after

many steps

– the same part of the

graph can be traversed

many times

29 Gregorics Tibor Artificial intelligence

