
1

STATE-SPACE

REPRESENTATION

Gregorics Tibor Artificial intelligence

2

Elements of state-space representation

 State-space: set of possible values of the object standing

in the focus of the problem

 These values often have got a complex structure and

must satisfy an invariant statement.

 Operators: step from a state to another

 They map from state-space to state-space so they

have got precondition and effect

 Initial state(s) or its description with an initial condition

 Goal state(s) or its description with a goal condition

Gregorics Tibor Artificial intelligence

Hanoi tower problem

State-space: SP = {1,2,3}n
Operator: Move(from, to): SP  SP (this: SP)

IF ‘from’ and ‘to’ are legal pegs

 and there is a disc on‘from’

 and ‘to’ is empty or the upper disc on ‘to’ is greater

 than the disc (upper disc on ‘from’) that is moved

THEN this[the upper disc on ‘from’]:= to

 1 2 3 1 2 3

C
B

A

C
B

A
[3,3,3] [1,1,1]

Goal state Initial state

all possible n length sequences (an array)

where the elements may be 1, 2 or 3.

3 Gregorics Tibor Artificial intelligence

4

Implementation

Gregorics Tibor Artificial intelligence

template <int n> class Hanoi {

 int a[n];

public :

 bool Move (int from, int to) {
 if (from<1 || from>3 || to<1 || to>3) return false;

 bool l1, l2; int i, j;

 l1,i=search i1..n (a[i]==from) // disc i is wanted to move

 l2,j=search j1..n (a[j]==to) // onto disc j is wanted to put disc i

 if (l1 && (l2 || i<j)){ t[i] = to; return true; }

 else return false;

}

bool Goal() const { return a== [1, … ,1] ; }

void Init() const { a = [3, … ,3] ; }

};

5

State graph

of the state-space representation

 state node

 effect of an operator directed arc

 cost of an operator cost of arc

 initial state start node

 goal states goal nodes

 sequence of operators directed path

Gregorics Tibor Artificial intelligence

[3,3,2] [3,3,1] [2,3,1] [2,1,1] [1,2,2] [1,3,2]

State graph
[3,3,3]

[3,2,1]

[1,3,3]

[1,2,3]

[2,2,3]

[2,2,1]

[3,1,1]

[1,1,1]

[2,3,3]

[2,1,3]

[1,1,3]

[3,1,3] [3,2,3]

[3,2,2]

[1,1,2]

[3,1,2]

[2,3,2]

[2,1,2] [1,2,1]

[1,3,1]

[2,2,2]

start

goal

Remarks

 Solution: a directed path (sequence of operators)

 Computational cost of the finding path algorithm is
determined by the complexity of the state graph

 number of nodes (Hanoi: 3n)

 number of outgoing arcs from one node (Hanoi: at most 3)

 number of paths going from the start (Hanoi: number of the k-
length paths without the 2-length circles is 2k)

 length of the circles (Hanoi: 2, 3, 6, 7, 9, …)

 The state-space is not identical to the problem space.

 In a path-finding problem the elements of the problem space are

the paths (sequences of operators) and not the nodes (states).

7 Gregorics Tibor Artificial intelligence

8

♛
♛

♛
♛

♛
♛

n-queens problem 1.

State-pace: SP = {♛, _ }n×n

 invariant: number of queens (♛) = n

Operator: Change(x,y,u,v): SP  SP (this: SP)

 IF 1≦ x,y,u,v ≦n and this[x,y]=♛ and this[u,v]=_

 THEN this[x,y]  this[u,v]

general state goal state

♛ ♛

Gregorics Tibor Artificial intelligence

two dimensional array (n×n matrix)

where the elements may be ♛ or _

♛
♛
♛

♛

♛
♛
♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

 State graph

♛ ♛
♛
♛

♛
♛

♛
♛

number of the nodes:

number of the outgoing arcs

from one node: n*(n2n)

number of the outgoing paths

with k length : (n*(n2n)) k















n
n2

9 Gregorics Tibor Artificial intelligence

Reduce the problem space

 A problem may have several models and the model with the
smallest problem space is looked for

o In the previous representation the size of the problem space (that is
the number of the possible paths) is huge

o If the state space were expanded with the states where the number of
queens was less than n, and a new operator were used (put a new
queen on the board), then the problem space (that contains the
n-length paths) would be smaller than the previous one.
Number of the n-length paths: ∙n!

o The problem space can be further reduced with limiting the
precondition of the operator:

- Put the queens row by row. In this case the number of the

n-length paths : nn

- Additionally, the size of the problem space will be decreased if a
new queen is never put on the board containing an attack.

10 Gregorics Tibor Artificial intelligence

11

♛
♛

n-queens problem 2.

initial state goal state

Gregorics Tibor Artificial intelligence

State-space: SP = {♛, _ }n×n

 invariant: number of queens (♛)  n and

 only in the first few rows can be found one-one queen

Operator: Put(col): SP  SP (this: SP)

 IF 1≦ col ≦n and number of queens < n and no attacking

 and „row” denotes the next empty row

 THEN this[row,col] := ♛

♛

♛

♛
♛

general state

♛ ♛

♛
♛

♛
♛

♛
♛

♛

♛
♛

♛
♛

♛
♛

♛

♛
♛
♛

♛

♛

♛
♛

♛
♛

♛
♛

♛
♛

♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛

♛
♛

♛

♛
♛

♛

♛
♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

♛
♛

 State graph

12 Gregorics Tibor Artificial intelligence

start

goal

13

Computational cost of the operator

 The computational cost of the precondition of an operator can
be reduced if

o the state space (including its invariant) is narrowed down and

o according to this the effects of the operators are modified

 For example

o The position of the next empty row can be stored in the states
instead of computing it.

o The empty squares that are under attack can be annotated after
placing a new queen.

o Applying the previous idea it will be very simple to avoid all
attacks on the board

Gregorics Tibor Artificial intelligence

14

♛


  

♛  

  ♛ 
♛   





  ♛
 ♛ 

  

   

n-queens problem 3.

initial state:

 row = 1

goal state:

 row = 5

Gregorics Tibor Artificial intelligence

State-space: SP = rec(t: {♛,  , _ }n×n , row: ℕ)

invariant: only row1 queens are on the board in the first row1 rows,

 row ≦ n+1,

 no attacking,

  denotes the empty square under attack

 _ denotes the free square

general state:

 row= 3

15

n-queens problem 3.

Operator:

 Put(col): SP  SP (this: SP)

IF 1≦ col ≦n and this.row ≦ n and this.t[this.row,col]= _

THEN this.t[this.row, col] := ♛

 foreach corresponding i,j : this.t[i,j] := 

 this.row:= this.row+1

Initial: this.t is empty, this.row:=1

Goal: this.row=n+1

Gregorics Tibor Artificial intelligence

State graph

 ♛  
  
 


  ♛ 
  

 


   ♛
 

 
 

♛   
  ♛ 
   
  

♛   
   ♛
  
  

 ♛  
   ♛
  
 

  ♛ 
♛   
  
 

   ♛
♛   
  
  

   ♛
 ♛  
   
  

♛   
   ♛
 ♛  
   

 ♛  
   ♛
♛   
  

  ♛ 
♛   
   ♛
  

   ♛
♛   
  ♛ 
   

 ♛  
   ♛
♛   
  ♛ 

  ♛ 
♛   
   ♛
 ♛  

16 Gregorics Tibor Artificial intelligence

♛   
 
 
 

start

goal

17

2

8-puzzle

State-space: SP =rec(t:{0..8}3×3, e:{1..3}×{1..3})

 invariant: the elements of the matrix is a permutation of 0 .. 8

 0 denotes the empty cell

 e contains the coordinates of the empty cell

Operator: Move(dir): SP  SP (this: SP)

IF dir∊{(1,0),(0,1),(-1,0),(0,-1)} and 1≦this.e+dir≦3

THEN this this.t[this.e]  this.t[this.e+dir]

 this.e := this.e+dir

Gregorics Tibor Artificial intelligence

goal state: initial state: 8 3
1
7

6 4
5

1 2 3
4

7 5 6

8

this.e+dir is computed

coordinate by coordinate

2 8 3

1 6 4

7 5

2 8 3

1

6

4

7 5

2 8 3

1 6 4

7 5

2 8 3

1 6 4

7 5

2

8

3

1

6

4

7 5

2 8 3

1

6

4

7 5

2 8 3

1

6

4

7 5

2 8 3

1 6

4 7 5

2 8 3

1

6 4

7 5

2

8 3

1

6 4

7 5

2 8 3

1

6 4

7 5

2

8 3

1

6

4

7 5

2 8 3

1

6

4 7

5

2

8

3

1

6

4

7 5

2

8

3

1

6

4

7 5

2 8

3 1

6

4

7 5

2 8 3

1

6

4

7

5

2 8 3

1 6

4 7 5

2 8

3 1 6

4 7 5

2

8

3 1

6

4

7 5

2

8

3

1

6

4

7 5

2

8

3 1

6

4

7 5

2

8

3 1

6

4 7

5

2

8 3

1

6

4

7 5

2

8 3

1

6

4

7 5

2

8 3 1

6

4

7 5

2 8 3

1

6

4 7

5

2 8 3

1

6

4

7

5

2 8 3

1

6

4

7

5

2 8 3

1

6 4 7

5

Search graph

2 8 3

1

6 4 7

5

2 8 3

1

4 7

6 5

2 8 3

1

4 7

6 5

8 3 1

6

4

7 5

2 8

1 3

7

2 4

6 5

1

2

3

8

6

4

7 5

start

goal

19

Remarks

 A path finding algorithm can never see (or store) the total

state graph. Moreover the part discovered can be viewed

deformable. The causes of this is that when a successor of a

state is generated

• it may not be checked whether it is among the states

generated earlier and a new node will be created for this.

advantage: no circles; disadvantage: number of nodes

becomes infinite

• it may be useful to ignore the arc to the successor that is

also the parent of the current state.

Gregorics Tibor Artificial intelligence

20

Black&White puzzle

There are n black and m white stones and one empty place in a linear

frame with n+m+1 length. A stone can be slided to the neighboring

empty place or it can be jumped over one stone onto an empty place.

Initially all black stones are on the left of the white stones and the

empty is the last. Let’s reverse the order of black and white stones!

State-space: SP =rec(s : {B, W,_}n+m+1, pos : [1.. n+m+1])

 invariant: one empty, pos is its index, n and m are the number of B and W

Operators: MoveLeft, MoveRight, JumpLeft, JumpRight

e.g.: MoveLeft : SP  SP (empty space is moved)

 IF this.pos1 (this : Frame)

 THEN this.s[this.pos-1]  this.s[this.pos] ; this.pos := this.pos-1

Initial: [B, … , B, W, … , W, _]

Goal: i,j [1.. n+m+1], i<j : (this.s[i]=B  this.s[j]=W)

 Gregorics Tibor Artificial intelligence

C:/Users/Greti/Documents/Oktatás/MI/Alkalmazások/állapottér/Békák.xls

Gregorics Tibor Artificial intelligence 21

goal

start

State graph of Black&White puzzle

goal

goal

goal

22

Block world problem

There are some blocks (A,B,C,…). A robot arm can move the blocks:

pickup, putdown, stack, unstack. Let’s build a given formation!

State-space: SP = set(ground literals)

 ground literals={ontable(A), on(C,B), clear(C), … } where the following

predicates occure : ontable(x), on(x,y), clear(x), handempty, holding(x)

 invariant: all states are consistent (e.g.: on(C,B) and clear(B) is impossible)

Initial: ontable(A), clear(A), ontable(B), on(C,B), clear(C), handempty

Goal: on(A,B), on(B,C)

Gregorics Tibor Artificial intelligence

A B

C

23

Operators of block world problem

Pickup(x): SP  SP (this : SP)

 IF ontable(x),clear(x),handempty  this

 THEN this := this {ontable(x),clear(x),handempty }{holding(x)}

Putdown(x): SP  SP (this : SP)

 IF holding(x) this

 THEN this := this {holding(x)}{ontable(x),clear(x),handempty}

Stack(x,y): SP  SP (this : SP)

 IF holding(x), clear(y) this

 THEN this := this {holding(x), clear(y)}{on(x,y),clear(x),handempty}

Unstack(x,y): SP  SP (this : SP)

 IF on(x,y),clear(x),handempty  this

 THEN this := this {on(x,y),clear(x),handempty}{holding(x), clear(y)}

Gregorics Tibor Artificial intelligence

A B

C

Gregorics Tibor Artificial intelligence 24

State graph

start

goal

A B

C

C

B
A

A

B

C

A B

C

A B C A

B

C

A C

B A

C

B

A
B

C

A

B C

 Jug’s problem: Given a 5-liter jug filled with wine and empty 3-

liter and 2-liter jugs. Let’s obtain precisely 1 liter wine in the 2-

liter jug.

 Missioner - cannibal problem: n missionaries and n cannibals

want to cross a river in a boat that can hold h people in such a

way that cannibals never outnumber missionaries on either side

of the river and in the boat.

 Satisfiability problem: There is given a Boolean statement in

CNF with n variables. Find a vector of truth assignments for all

n variables so that the formula be true. E.g.: F(x1, …, x5) =

(x1x2 x5)  (x1x3)  (x1 x4)  (x2 x5) possible

solution: x1=true, x2=any, x3=any, x4=true, x5=true

 Travelling salesman problem: Covering the shortest distance,

the traveling salesman must visit every city in his territory

exactly once and then return home. (the n cities and all distances

between them are known)

Gregorics Tibor Artificial intelligence 25

26

Jug’s problem

Given a 5-liter jug filled with wine and empty 3-liter and 2-liter jugs.

Let’s obtain precisely 1 liter wine in the 2-liter jug.

State-space: SP = map(ℕ : ℕ)

 invariant: this.Keys = { 5, 3, 2 } (this[5], this[3], this[2])

 i [5,3,2] this[i] = 5

 i[5,3,2]: this[i]i

Operator: Fill(i,j): SP  SP (this : SP)

 IF i,j[5,3,2]  ij  min(this[i], j‒ this[j])>0

 THEN this[i],this[j] := this[i] ‒ min(this[i], j‒ this[j]),

 this[j] + min(this[i], j‒ this[j])

Initial: [5, 0, 0] (this[5]=5, this[3]=0, this[2]=0)

Goal: [x, y, 1] (this[2]=1)

 Gregorics Tibor Artificial intelligence

State graph of jug’s problem

2 3 0 5 0 0

0 3 2 3 0 2 1 2 2

4 1 0 3 2 0

2 1 2

1 3 1 4 0 1 2 2 1 3 1 1

start

goal

27 Gregorics Tibor Artificial intelligence

goal goal goal

28

Missionaries - cannibals problem

n missionaries and n cannibals want to cross a river in a boat that can

hold h people in such a way that cannibals never outnumber

missionaries on either side of the river or in the boat.

State-space: SP = rec(m : [0..n], c : [0..n], b : 𝕃)

 invariant: no cannibalism, e.g. I(m,c)  m=c  m=0  m=n

Initial state: (n,n,true) Goal state: (0,0,false)

Operators: There(x,y): SP  SP Back(x,y): SP  SP (this: SP)

 IF this.b and 0≦ x ≦this.m and IF this.b and 0≦ x ≦n–this.m and

 0≦ y ≦this.c and 0< x+y ≦h 0 ≦ y ≦ n–this.c and 0< x+y ≦h

 and I(this.m–x, this.c–y) and I(this.m+x, this.c+y)

 THEN this.b:=false THEN this.b:=true

 this.m:=this.m–x this.m:=this.m+x

 this.c:=this.c–y this.c:=this.c+y

Gregorics Tibor Mesterséges intelligencia

29

SAT – satisfiability problem

There is given a Boolean statement in CNF with n variables. Find a

vector of truth assignments for all n variables so that the formula be

true.

E.g.: F(x1, …, x5) = (x1x2 x5)  (x1x3)  (x1 x4)  (x2 x5)

possible solution: x1 = true, x2 = any, x3 = any, x4 = true, x5 = true

State-space: SP = 𝕃n

Operator: Change(i): SP  SP (this : SP)

 this[i] := this[i]

Initial state: arbitrary

Goal state: F(this) is true

Gregorics Tibor Artificial intelligence

30

SAT – satisfiability problem 2.

There is given a Boolean statement in CNF with n variables. The

number of the clauses of this formula is C. Find a vector of truth

assignments for all n variables so that the formula be true.

State-space: SP = rec(t : {true, false, ∅}
n
, i : ℕ , count : ℕ)

 invariáns: 0  i  n, j{1…i}: t[j] ≠∅
 count ( C) = the number of the clauses having true value

Operator:

 True: SP  SP False: SP  SP (this : SP)

 i := i+1: this.t[i] := true i := i+1: this.t[i] := false

 update(this.count) update(this.count)

Initial state: ([∅, … , ∅] , 0, 0)

Goal state: this.count=C

 Gregorics Tibor Mesterséges intelligencia

31

Travelling salesman problem

Covering the shortest distance, the traveling salesman must

visit every city in his territory exactly once and then return

home. (the n cities and all distances between them are known)

State-space: SP = {cities}
*

Operator: Goto(city): SP  SP

 IF  this.contains(city) (this: SP)

 THEN this.append(city)

Initial state: empty

Goal state: length of this is n

Gregorics Tibor Artificial intelligence

