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VI. Automatic Reasoning 
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1. Resolution 

A1:  If the sun shines, Peter goes to the beach. 

A2:  If Peter goes to the beach, he can swim. 

A3:  Peter cannot swim at home. 

Prove: 

B:   If the sun shines, then Peter does not stay at home. 

‒the sun shines :  p 

‒Peter goes to the beach : q 

‒Peter can swim:  r 

‒Peter stays at home: s 

A1: p → q 

A2: q → r 

A3: ¬(sr) 

B:  p → ¬s 

Task: 

Formalization: 
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Preparing the proof 

 Need:  p → q,   q → r,  ¬(sr)   p → ¬s 

• By definition, every interpretation (truth assignment) 

satisfying the antecedents also satisfies the consequence. 

• Or: none of interpretations (truth assignments) satisfying 

the antecedents can satisfy the negation of the 

consequence. 

• Or: { p → q,   q → r,  ¬(sr), ¬(p → ¬s) } is unsatisfiable 

• Or: { ¬pq,   ¬qr,  ¬s¬r,       p,     s   } is unsatisfiable 

 
 We must to prove that in all interpretations (for all truth 

assignments) at least one of the clauses is false.    

clause: literals connected by ‚or’ 

literal: variable or its negation  
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Indirect proof 

 Assume that there exists an interpretation so that it satisfies 

all clauses, i.e. all clauses are true. 

 For example the clause p and the clause ¬pq is also true.  

 If p is true, ¬p  is false. In order to ¬pq be true the q must 

be also true.   

 Thus the original clauses can be extended with the new 

clause q since it must be true like the original clauses in 

the given interpretation supposed in our assumption. 



Gregorics Tibor                                                                                          Artificial intelligence 5 

Resolution process 

Thus if the sun shines, then Peter does not stay at home. 

¬r 

s qr pq p sr 

¬q 

q 

Inference rule that is applied:  

LA, ¬LB  AB 
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Refutation-, resolution graph 

¬r 

s qr pq p sr 

pr qs 

r ps p s ¬q 

q 

 Refutation graph: shows one deduction of the empty clause 

 Resolution graph: shows the deductions of all possible clauses 

...     …                                s p 
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Representation graph 
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Irrevocable search system 

 global workspace:  set of clauses 

 initial value:       set of original clauses derived  

    from the task (axioms   target) 

 termination condition: 

–   success   empty clause 

–   fail   no newer resolvent clause 

 searching rule:  creates a new resolvent 

 control strategy:  selects one of the searching rules 

 heuristic:   no idea   

     

DATA := initial value 

while  termination condition(DATA) loop 

      SELECT R FROM rules that can be applied 

      DATA := R(DATA) 

endloop 
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Example: Are physicians quacks? 

A1: Some patients trust all physicians. 

A2: Patients don’t trust any quack. 

Prove that 

B  : Physicians are not quacks. 

 

P(x):  x is a patient 

D(y):  y is a physician 

Q(y):  y is a quack 

T(x,y):  x trusts y 

 

A1 : x{P(x)y[D(y) → T(x,y)]} 

A2 : x{P(x) → y[Q(y) → ¬T(x,y)]} 

B  : x[D(x) → ¬Q(x)] 

Formalization: 



A1 :     x{P(x)  y[D(y)→T(x,y)]}  

       =  x{P(x)  y[¬D(y)  T(x,y)]}  

               P(a)  y[¬D(y)  T(a,y)] 

             P(a) , ¬D(y)  T(a,y) 

Skolemized conjunctive normal form 

A2 :    x{   P(x) → y[Q(y) → ¬T(x,y)]}  

       = x{¬P(x)  y[¬Q(y)  ¬T(x,y)]}  

       = x{¬P(x)  u[¬Q(u)  ¬T(x,u)]} 

         ¬P(x)  ¬Q(u)  ¬T(x,u) 
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Skolemization 

(It holds the satisfiability.) 

a is a Skolem constant 

logical law 

(equivalent transforming) 

B:     ¬x[   D(x) → ¬Q(x)]   

      =¬x[¬D(x)  ¬Q(x)] = x[D(x)  Q(x)]  D(b)  Q(b)  

         D(b) , Q(b) 

 

renaming distinguishes the 

variable from the variables 

of the other clauses 

logical law 

logical law b is a Skolem constant 
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Conversion to set of clauses 

1. Eliminate implication (→) and equivalence symbols (↔).  

2. Reduce the scope of negation symbols.  

3. Standardize (rename) variables so that each quantifier must have 

its own unique variable 

4. Eliminate existential quantifiers.  
Instead of  xP(x): P(a) can be written where a is a Skolem-constant. 

Instead of xyP(y): xP(g(x)) where g is a Skolem-function. 

5. Move all universal quantifiers to the front of the formula. 

6. Put formula in conjunctive normal form. 

7. Rename the variables so that no variable symbol appears in more 

than one clause. 

8. Form the set of clauses. 
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Resolution process 

P(a)     ¬D(y)T(a,y)     ¬P(x)¬Q(u)¬T(x,u)     D(b)     Q(b) 

¬Q(u)  ¬T(a,u) T(a,b) 

¬Q(b) 

{x|a} {y|b} 

{u|b} 

this substitution transforms 

the literals P(a) and P(x) 

into the same form  

¬Q(v)  ¬T(a,v) 

Variable y must be renamed to u 

because the variables of the new 

clause must differ to the variables 

of the other clauses. 
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Resolvable clauses and their resolvent 

 The clauses C1 and C2 are resolvable  

o if they contain a complementary literal pair (C1 contains 

some positive instances of a predicate symbol, C2 contains 

some negative instances of the same predicate symbol),  

o so that few of its positive instances of C1 and few of its 

negative instances of C2 can be unified.  
C1 =    P(t11,...,t1n)   ... P(tr1,...,trn)  C1'  

C2 = ¬P(u11,...,u1n)  ...  ¬P(us1,...,usn)  C2'  

 Let   be the most general unifier of  the instances 

P(t11,...,t1n), ... , P(tr1,...,trn), P(u11,...,u1n), ... ,  P(us1,...,usn). 

The resolvent of C1 and C2 :  R(C1 , C2 ) = C1'  C2'. 

 The empty clause () is an unsatisfiable clause by definition. 

 

 

C1' and C2’ may be 

empty but they can 

contain P() or ¬P(). 



Resolution 
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1.  CLAUSES := clauses of A1, A2, ..., An, ¬B 

2.  loop 

3.       if   CLAUSES then return unsatisfiable 

4.       if there are no resolvable C1,C2  CLAUSES  so that  

    R(C1,C2 )  is unknown (not included in CLAUSES)   

    then return satisfiable 

5.      select C1,C2  CLAUSES where R(C1,C2 ) is unknown 

6.      CLAUSES := CLAUSES  R(C1,C2 )   

7. endloop 

In order to prove A1, A2, ..., An  B it is enough to show that the 

clause form of formulas A1, A2, ..., An,¬B are unsatisfiable.  

DATA := initial value 

while  termination condition(DATA) loop 

      SELECT R FROM rules that can be applied 

      DATA := R(DATA) 

endloop 
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Problem: Professors teach all people who cannot learn alone. 

There is no professor who teaches a man who can learn alone. 

Thus there are no professors. 

Example: There are no professors 

  x [P(x) → y(T(y,y) → T(x,y))] 

x [P(x)   y( T(y,y)  T(x,y))]  

x P(x) 

T(x,y) ~ x teaches y  

P(x)   ~ x is a professor 

P(x1)T(y1,y1)T(x1,y1)     P(x2)T(y2,y2)T(x2,y2)     P(a) 

P(y2) 

{x1| y2, x2| y2, y1| y2} 

{y2| a} 

Formalization: 
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Features of resolution  

 The resolution refutation is sound: if it finds the empty 

clause, then the original clauses must be unsatisfiable.  

 The resolution refutation is complete: the empty clause can 

be derived from an unsatisfiable set of clauses. 

 But in first order logic it is not guaranteed that the refutation 

terminates, so the unsatisfiablity problem is only a partial 

decidable:  {¬P(x), P(y)¬P(f(y)), P(a) } 

 The resolution is nondeterministic. In one step, there may be 

– several resolvable clause pairs 

– several complementary predicate symbols in the selected clause pair 

– several occurrences of the selected predicate symbol  

 {P(x,f(a))P(x,f(y))Q(y), ¬P(z,f(a))¬Q(z), P(u,f(a))¬Q(a)} 
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 The resolution strategies can 

– restrict the set of derivable resolvents 

– give an order of the construction of resolvents. 

 These strategies are secondary control strategies because they 

can be applied to only a clause based representation.  

 The completeness of the resolution may be lost under a 

restricting strategy: 

– The empty clause cannot be deduced always. 

Resolution strategies 
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Ordering strategies 

 In the breadth-first strategy, the resolvents are produced 

level by level according to the resolution graph. 

• The deepest parent of an ith level resolvent is on (i‒1)th  level.  

•  Since each level contains only finite clauses the resolution must find the 

empty clause in finite steps if the empty clause is derivable. 

¬r 

s qr pq p sr 

pr qs 

r ps p s ¬q 

q 

S = L0 

L1 

L2 

L3 ...     …                                s p 
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Ordering strategies 

 The length of clauses strategy (length=number of literals), 

prefers the resolvent that has got the shortest parents. 

• The pair of clauses C1,C2  is shorter than the pair of 

clauses D1, D2 if the shortest clause of the pair C1,C2  is 

shorter than the shortest clause of the pair D1, D2. If these 

lengths are identical, then the lengths of the other two 

clauses must be compared.  
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Restricting strategies 

 The resolution graph can be restricted: 

o Unit-preference strategy   

one parent is always a unit clause (including one literal) 

o Linear-input strategy  

one parent belongs to the base set, the other parent is the 

previous resolvent (except in the first step) 

o Ancestry-filtered form strategy 

one parent either is in the base set or that is an ancestor of 

the other parent, the other parent is the previous resolvent 

o Set-of-support strategy  

one parent belongs to the clauses derived from the given 

subset T of the original clauses S 

COMPLETE with only Horn clauses 

COMPLETE with only Horn clauses 

COMPLETE 

COMPLETE if  S‒T satisfiable 
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Simplification strategies 

 Elimination of  tautologies  
A clause that is always true (ex. P(x)¬P(x)) is useless in the derivation 

of  the empty clause (that is always false). 

 

 Elimination by  subsumption  
The clause C subsumes the clause D if there exits a substitution α so that 

Cα is a part of D (ex. P(x) subsumes P(a)Q(z)). In this case the clause D 

can be removed. 

 

 Elimination of  clauses with extraneous literal 
A literal is extraneous if its predicate symbol does not occur in other 

clauses with opposite sign.  
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Procedural attachment 

 Procedures can be attached to certain symbols in order to 

compute their values with respect to a given model.  

For example: 

o A ground instance of a function symbol can be substituted with the 

constant symbol that represents the value of the very instance in 

the given model. 

• Example: If the function symbol sub is the subtraction on integers, 

then sub(4,1) can be written as 3.  

o The truth of a ground instance of a predicate symbol can be 

evaluated based on its meaning. 

• Example: If in the formula EQ(3,2) the predicate symbol EQ is the 

equality, then EQ(3,2) is false. 
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 “If Fido goes wherever John goes and  

   John is at school, 

     where is Fido?” 

 

Formalization: 

 AT(y,x) ~ y is at place x   

 

Are there any place for Fido? 

x[AT(John,x) → AT(Fido,x)] 

 AT(John, school)     

       xAT(Fido,x) 

Extracting answers  

from resolution refutations 



Refutation graph 

Answering graph 

AT(John, x1)  AT(Fido, x1) AT(Fido, x2) 

AT(John, school) AT(John, x1) 

{x2 |x1} 

{x1 |school} 

AT(John, x1)  AT(Fido, x1) AT(Fido, x2) 

AT(John, school) AT(Fido, x1)  AT(John, x1) 

{x2 |x1} 

{x1 |school} 
AT(Fido, school) 

AT(Fido, x2)  
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The answer extraction process 

1. The original question (who, which, where, when, how 

much) must be substituted with a goal statement „there 

exists the answer”. 

2. The refutation graph must be found. 

3. The clauses resulting from the negation of the goal formula 

are converted into tautologies by appending to them their 

own negations. 

4. Following the structure of the refutation graph, perform the 

same resolutions as before until some clause is obtained at 

the root. 

5. Use the clause at the root as an answer statement. 
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A logical representation 

of Hanoi tower problem 

 Fact 

– H(1,i,j,k,t(i,j).nil) 

 

 Rule 

– H(n‒1,i,k,j,y)  H(1,i,j,k,t(i,j).nil)  H(n‒1,k,j,i,z) →    

            H(n,i,j,k, conc(y,t(i,j).nil,z)) 

 Goal  

– x H(2,3,1,2,x) 

t(i,j) function symbol denotes the move 
of a disc from the peg i to the peg j 

nil is the empty sequence 
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‘.’ is a two-arguments function symbol 
in infix form that can create a sequence 
from one move and a sequence. 

H(n,i,j,k,x) predicate symbol is true if the 
moves of the sequence x can put n pieces 
discs from the peg i to the peg j 

conc(x, y, z) function symbol denotes the 
concatenation of the sequences  x, y és z 

Variables are bound by universal 
quantifiers, except the goal 



27 

 H(1,i,j,k,t(i,j).nil) 

 H(n‒1,i,k,j,y)  H(1,i,j,k,t(i,j).nil)  H(n‒1,k,j,i,z)    

   H(n,i,j,k, conc(y,t(i,j).nil,z)) 

  H(2,3,1,2,x) 

Clauses of Hanoi tower problem  
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H(2,3,1,2,x)  H(n,i,j,k, conc(y,t(i,j).nil,z)) 

 H(n-1,i,k,j,y)   

 H(1,i,j,k,t(i,j).nil)  

 H(n-1,k,j,i,z)    H(1,3,2,1,y)   

 H(1,3,1,2,t(3,1).nil)  

 H(1,2,1,3,z) H(1,i,j,k,t(i,j).nil) 

{n2, i3, …, xconc(y,t(3,1).nil,z)} 

{i3, j2, k1, yt(3,2).nil} 

{i3, j1, k2} 

{i2, j1, k3, zt(2,1).nil} 

   H(1,3,1,2,t(3,1).nil)  

 H(1,2,1,3,z) 

H(1,2,1,3,z) 

Refutation graph 



H(2,3,1,2,x) 

   H(1,3,2,1,y)   

 H(1,3,1,2,t(3,1))  

 H(1,2,1,3,z) 

{n2, i3, …, xconc(y,t(3,1).nil,z)} 

{i3, j2, k1, yt(3,2).nil} 

{i3, j1, k2} 

{i2, j1, k3, zt(2,1).nil} 

   H(1,3,1,2,t(3,1))  

 H(1,2,1,3,z) 

H(1,2,1,3,z) 

Answering graph 

H(2,3,1,2,x)  

H(2,3,1,2, conc(y,t(3,1).nil,z))  

H(2,3,1,2, conc(t(3,2).nil,t(3,1).nil,z))  

H(2,3,1,2, conc(t(3,2).nil,t(3,1).nil,z))  

H(2,3,1,2, conc(t(3,2).nil,t(3,1).nil,t(2,1).nil))  


