
Gregorics Tibor Artificial intelligence 1

IV. Problem decomposition

1. Backward search

2. Problem decomposition

3. AND/OR graphs

Gregorics Tibor Artificial intelligence 2

1. Backward search

 Sometimes the solution can be found easier if the

search starts from the goal node and goes toward

the start node.

 In this case the path, that has been found, must be

interpreted inversely. But it cannot be done

always.

start
goal

Gregorics Tibor Artificial intelligence 3

Block world problem

A

B

A

B

B

A

B

A

start

goal

A B

[3,3,3]

[3,2,1]

[1,3,3]

[1,2,3]

[2,2,3]

[2,2,1]

[3,1,1]

[1,1,1]

[2,3,3]

[2,1,3]

[1,1,3]

[3,1,3] [3,2,3]

[2,2,2]

[3,2,2]

[1,1,2]

[3,1,2]

[3,3,2] [3,3,1] [2,3,1] [2,1,1] [1,2,2] [1,3,2]

[2,3,2]

[2,1,2] [1,2,1]

[1,3,1]

Bidirectional search on Hanoi tower

problem start

goal Gregorics Tibor Artificial intelligence 4

Gregorics Tibor Artificial intelligence 5

Why does not the backward search solve

the jug’s problem?

5
0 0

?
?

1

5l 3l 2l

 Backward search finds the path [4,0,1][5,0,0]
but it is not interpreted inversely.

 It is hard to select the goal state which may be the
starting point of the backward search. For example
the [2,2,1] is not available from the start state.

5l 3l 2l

Gregorics Tibor Artificial intelligence 6

Conditions of backward search

 All arcs have got backward pairs (at least on the

path that is found from goal to start)

• In case of using state space representation it means that

all operators must have got inverse operators.

 We need a goal node from where the backward

search can start.

What can we do if these conditions do not hold?

7

goal

Reduction of jug’s problem

Gregorics Tibor Artificial intelligence

?
? 2

1

?
? 2

1

?
?

1
5l 3l 2l

5l 3l 2l 5l 3l 2l

?
?

5l 3l 2l
1

T23
T32

2 1

[x,y,1]

[4,1,0] [u,v,1] [1,2,2]

T25
T52

[4,0,2]
↯

[1,4,0]
↯

Reduction graph of jug’s problem

8 Gregorics Tibor Artificial intelligence

[x,y,1]

[4,1,0] [u,v,1] [1,2,2]

[4,0,1] [2,1,2] [3,2,0] [1,3,1]

T32 T23
T53 T35

[4,1,0] [2,3,0]

T25 T23

T32 T52

T32 T52

[3,0,2] [1,2,2]

T25 T23

[2,1,2] [5,0,0] [0,3,2] [3,2,0]

T53
T23 T32 T35

[2,3,0] [3,0,2]

T52 T53

T52
T25

[4,0,2] ↯ [1,4,0] ↯

T52 T25

State graph of jug’s problem

2 3 0 5 0 0

0 3 2 3 0 2 1 2 2

4 1 0 3 2 0

2 1 2

1 3 1 4 0 1 2 2 1 3 2 1

start

goal goal goal goal

9 Gregorics Tibor Artificial intelligence

Gregorics Tibor Mesterséges intelligencia 10

Representation with problem reduction

 The problem reduction is based on the operators M:A⟶A of

the state space representation:

the reduction operator RM  2A×2A can product the set of

states (Y) from that the original operator M leads to the states

of a given state-set (X): (X,Y)RM ⇔ ∀aY: M(a)X

• Y may be „inconsistent”.

 Our aim is to find a path from the set of the goal states to the

set of the start state. Reading this path backward we get the

solution as a sequence of the operators of the original state

space representation.

Gregorics Tibor Artificial intelligence 11

2. Problem decomposition

problem

subprobl12

subprobl23

sub1 sub2 sub3 sub4

subprobl21 subprobl22

subprobl11

Gregorics Tibor Artificial intelligence 12

(5x2+xex)dx

5x2dx xexdx

exdx xex x2dx 5

⅓ x3 ex

-

+

* -

 ½ x2ex dx ½ x2ex

Symbolic integration

x2exdx ½

*

…

Instead of H(n, ij, k) we have

 H(n-1, ik, j) H(1, ij, k) H(n-1, kj, i)

H(3, 31, 2)

H(1,31,2)

H(1,31,2)

H(1,32,1) H(1,23,1) H(1,31,2) H(1,12,3) H(1,21,3)

H(2,32,1) H(2,21,3)

Hanoi tower problem

13 Gregorics Tibor Artificial intelligence

Gregorics Tibor Artificial intelligence 14

Concept of problem decomposition

 Representation of decomposition contains:

– general description of the subproblems,

– original problem,

– primitive (simple) problems that can be decided

if they can be solved and their solution can be

computed easy

– decomposing operators :

• D: problem  problem+ and

 D(p)=<p1, … , pn>

Gregorics Tibor Artificial intelligence 15

Graph representation

 The problem space of a problem can be described with

not an ordinary 𝛿-graph but a so-called AND/OR graph.

 The solution is not an ordinary path but a special

subgraph: solution graph

– A solution graph has no arc with „OR” relationship but it

contains all arcs connected by „AND” so the solution

graph gives an unequivocal direction from the node of the

original problem to the nodes of primitive problems.

Gregorics Tibor Artificial intelligence 16

3. AND/OR graph

 Az R=(N,A) is a arc-weighted directed hyper graph, where

– N is the set of nodes,

– A (n,M)  N2N  0 M< } is the set of hyper

arcs,M is the order of an hyper arc

– c(n,M) is the cost of

the hyper arc (n,M)

 Number of the outgoing

hyper arcs from

one node is finite

 0< c(n,M)

 d e i j

c b f

a

h g

Gregorics Tibor Artificial intelligence 17

Hyper path

form the node n to the set of nodes M

 It is a finite subgraph (nM) of an AND/OR graph, where

– every node can be achieved
from the node n,

– there are no outgoing hyper arc
from the nodes of M,

– the nodes, except in M,
have got exactly one
outgoing hyper arc.

 Length of hyper path:
the number of its hyper arcs

 Cost of hyper path: the sum of the cost of its hyper arcs

 d e i j

c b f

a
a{d,e}

h g

Gregorics Tibor Artificial intelligence 18

c b

 d e

a

 {a} {b,c}

 {a} {b,c}

traversals:

Difference between the traversal of

ordinary directed path and hyper path

 The traversal of an ordinary path is the sequence of the

nodes of this path in order by its arcs. It is always

deterministic.

 The traversal of an hyper path is the sequence of the sets

of its nodes but it is

non-deterministic.

 {c}  {d,e}

 {d,e}  {b,d,e}  {c,d,e}

Gregorics Tibor Artificial intelligence 19

Traversal of hyper path

 Traversal is the sequence of the sets of the nodes of the
hyper path where

 First set: {n}

 The set C is followed by the set C-{k}K if
there exists a hyper arc (k,K) in the hyper path where
kC but kM

 A traversal is treated as a sequence of all hyper arcs of

the hyper path where the same hyper arc can be

occurred several times.

1. The number of the occurrences of the hyper arc (k,K) of the

hyper path nM in the traversal of this hyper path is at

most the number of the ordinary paths driving from n to k

in this hyper path.

2. A hyper path including ordinary directed circle has no

finite traversal.

3. A hyper path nM without ordinary directed circle has

finite number different finite traversal where the last set is

M.

Remarks

Gregorics Tibor Artificial intelligence 20

Gregorics Tibor Artificial intelligence 21

Graph representation

of the problem decomposition

 The graph representation of a decomposition is the

triple (R,s,T) where

– R=(N,A,c) is an AND/OR graph where

– N denotes the subproblems,

– A denotes the operators,

– c gives the cost of the operators,

– s means the initial problem,

– T contains the simple problems.

 The solution of the problem is a hyper path sM T

(named as solution graph) that does not contain circle.

Gregorics Tibor Artificial intelligence 22

Search in AND/OR graph

 Every AND/OR graph can be corresponded to an
ordinary -graph where the solution paths are the
traversals of the solution graphs of the AND/OR
graph.

 That because the different search algorithms of the
ordinary -graphs can be adapted onto the AND/OR
graphs and they are able to find solution graph.

Gregorics Tibor Artificial intelligence 23

Transformation of hyper paths

b c

a {a}

{b,c}

Case of one hyper arc

in a hyper path:

Case of several hyper arcs

in a hyper path
c

a

f

b

1

d e

{a}

{c,b}

{c,d}

{f,e,d}

{a}

{c,b}

{f,e,b}

{f,e,d}

Transformation of AND/OR graph

b
c

a

e d

a = start

d,eT
{a}

{b,c}

{c} {b,d,e}

{d,e}

{c,d,e}

{d}

{b,d}

{c,d}

The traversals of the hyper paths outgoing

from the start node are drawn up as

ordinary paths.

No need all traversals of a hyper path!

Fake traversals (where the same node is

substituted several times in different way)

must be avoided!

24 Gregorics Tibor Artificial intelligence

{a}

{b,c}

{c}

{d,e}

b
c

e d

1

a = start

d,eT

a

{d}

{a}

{b,c}

{b,d,e} {b,d}

{d}

{c,d,e}

{d,e}

{c,d}

3. To avoid the fake traversals an ordinary tree is built and when a node is selected from

the set C that node has been selected before (on the path driving from the start to C)

then this node is substituted based on the same hyper arc that is used erlier.

1. Only one traversal of a hyper path is enough

so in one step of the transformation it is

enough to substitute only one node.

2. Only the hyper paths sM T are interested

never step away from the goal nodes.
Fake traversals!

{d,e} {d}

25 Gregorics Tibor Artificial intelligence

Gregorics Tibor Mesterséges intelligencia 26

Algorithm of transformation

1. Put the set {start} into a QUEUE as a start node of the ordinary graph.

2. If QUEUE is empty, then EXIT, otherwise a set C is pulled out from it

and the successors of C are generated in the ordinary graph.

3. If C contains only goal nodes, then the set C is a goal in the ordinary

graph without outgoing arcs.

4. Otherwise a non goal node k is selected from C.

• If there exists an arc generated based on the hyper arc (k ,K) on the

path driving from {start} to C, then there will be only one successor

of C, this is C-{k}K .

• Otherwise all outgoing hyper arc (k ,Ki) generate successor C-{k}K i.

5. The successors of C are put into the QUEUE.

6. GOTO 2.

Gregorics Tibor Artificial intelligence 27

Theorem

1. After transformation every solution path of the

ordinary graph represents one of the traversals of a

solution graph of the AND/OR graph.

2. The transformation creates an ordinary solution path

from one of the traversals of every solution graph of

an AND/OR graph in finite steps.

 Remarks:

– The transformed graph is a -graph

– The transformation is built into the search

algorithms.

Backtracking on AND/OR graph

28 Gregorics Tibor Artificial intelligence

Recursive procedure VL2(traversal) return solution

1. C := tail(traversal)

2. if allgoal(C) then return(nil) endif

3. if length(traversal)  limit then return(fail) endif

4. if C  remain(traversal) then return(fail) endif

5. k := get-non-goalC)

6. for  (k,K) outgoing-hyper-arcs (k) loop

7. solution := VL2(concat(traversal, C-{k}K))

8. if solution  fail then

9. return(concat((C, C-{k}K), solution)) endif

10. endloop

11. return(fail)

end

