
Gregorics Tibor Artificial intelligence 1

V. Games

Gregorics Tibor Artificial intelligence 2

Two-player, turn-taking, perfect-informed,

finite and deterministic, zero-sum games

 Two players take turns according to given rules until the

game is over.

 The game is in a fully observable environment, i.e., the

players know completely what both players have done and

can do.

 The number of the rules and length of the plays of the game

are finite and the effect of each rule is determined uniquely.

Outcomes of the game do not depend on chance at all.

 The sum of the payoff values of the players at the end of the

game is always zero. (Its special case is when one player

wins, the other player necessarily loses. Draw is also

possible.)

3

State space representation

 state ‒ configuration + player next to move

 operator ‒ legal move

 initial state ‒ initial configuration + first player

 terminal state ‒ terminal configuration + next player

 payoff functions ‒ both players (A and B) have got:

 pA, pB : terminal states ⟶ ℝ

o In a zero-sum two-player game: pA(t) + pB(t) = 0

o In special zero-sum two-player game:

• pA(t) = +1 if A wins at the state t (goal state, winning state for A)

• pA(t) = ‒1 if A loses at the state t (losing state for A)

• pA(t) = 0 if the state t is a draw

Gregorics Tibor Artificial intelligence

Gregorics Tibor Artificial intelligence 4

Grundy mum’s game

5

Grundy mum’s game graph

Gregorics Tibor Artificial intelligence

7; A

6,1; B 5, 2 ; B 4, 3 ; B

5, 1, 1 ; A 4, 2, 1 ; A 3, 2, 2 ; A 3, 3, 1 ; A

4, 1, 1, 1 ; B 3, 2, 1, 1 ; B 2, 2, 2, 1 ; B

3, 1, 1, 1, 1 ; A 2, 2, 1, 1, 1 ; A

2, 1, 1, 1, 1, 1 ; B

B wins

A wins

A wins

6

Grundy mum’s game tree

Gregorics Tibor Artificial intelligence

A

B

A

B

A

B

7

6, 1 5, 2 4, 3

5, 1, 1 4, 2, 1 3, 2, 2 3, 3, 1

4, 1, 1, 1 2, 2, 2, 1

2,2,1,1,1

2,1,1,1,1,1

4, 2, 1 4, 2, 1

3, 2, 1, 1 3, 2, 1, 1 3, 2, 1, 1 3, 2, 1, 1 3, 2, 1, 1

2,2,1,1,1 2,2,1,1,1 2,2,1,1,1 2,2,1,1,1

B B B B B

A

A

3,1,1,1,1

7

Game tree

 node ‒ configuration

(the same configuration may occur in several nodes)

 level ‒ player (the levels of A and B alternate)

 arc ‒ step (level by level)

 root ‒ start configuration (first player)

 leaf ‒ terminal configuration

 branch ‒ play of the game

Gregorics Tibor Artificial intelligence

8

How can the player B win?

Gregorics Tibor Artificial intelligence

7

6, 1 5, 2 4, 3

5, 1, 1 4, 2, 1 3, 2, 2 3, 3, 1

4, 1, 1, 1 2, 2, 2, 1

2,2,1,1,1

2,1,1,1,1,1

4, 2, 1 4, 2, 1

3, 2, 1, 1 3, 2, 1, 1 3, 2, 1, 1 3, 2, 1, 1 3, 2, 1, 1

2,2,1,1,1 2,2,1,1,1 2,2,1,1,1 2,2,1,1,1

B B B B B

A

A

3,1,1,1,1 A

A

A

B

A

B

A

B

A

B

Gregorics Tibor Artificial intelligence 9

Winning strategy

 The winning strategy (or non-losing strategy) of a

player shows his moves that lead to win (or at least

draw) no matter what the opposite player does.

 The winning strategy is not one play of the game

but a collection of plays leading to win, and one of

these plays can be realized by the player who has

got winning strategy.

10

Remarks

 The winning (or non-losing) strategy of one player can

be described by a special sub-tree of the AND/OR tree

constructing from the point of view of that very player.

 This sub-tree (hyper-path) contains all successors of

the node on the opponent’s level (AND connection)

and only one successor of our level (OR connection)

and it leads from the root to winning (non-losing) leaf

nodes.

 Searching for a winning strategy is a special hyper-

path finding problem.

Gregorics Tibor Artificial intelligence

Gregorics Tibor Artificial intelligence 11

B B B B A A B A A A B B B

Searching for winning strategy

in the AND/OR tree of the player B

A

B

A

B

Gregorics Tibor Artificial intelligence 12

B B B B A A B A A A B B B

Searching for winning strategy

in the AND/OR tree of the player A

A

B

A

B

There is no winning strategy for A.

Only one player may have got winning strategy.

Gregorics Tibor Artificial intelligence 13

Theorem

 In each two-player, perfect-informed, finite and

deterministic, zero-sum games where there is no draw

one of the players must have got winning strategy.

 In case the draw is also possible: one player has got a

non-losing strategy.

B B A B B B B

A B

A B A A A A

A A

B
A

A
A

B

A

B

Gregorics Tibor Artificial intelligence 14

Sub-tree evaluation

 Finding the winning strategy is hopeless in the larger

game tree.

 Instead of searching for a winning strategy the

algorithms are investigated that can suggest a good

next step for us.

 These algorithms build up a sub tree of the game tree

starting from the current state and try to estimate the

beneficial of the leaf nodes of this sub-tree and

thereafter calculates our next step based on these

values.

Gregorics Tibor Artificial intelligence 15

Evaluation function

 This is a heuristic function that can measure the

beneficial of the states from our point of view against

our opponent.

 f : States  [-1000 .. 1000]

16

The minimax algorithm

1. Starting from the current state, some levels of the game tree

are built up (depending on the time or the storage-space limit).

‒ Let the player representing us be MAX and our opponent be MIN.

2. The leaves of this sub-tree must be evaluated based on the

evaluation function.

3. Values of the inner nodes are computed from their successors

upwards level by level. These backed-up values are

• the maximum of the children on our (MAX) levels

• the minimum of the children on the opponent’s (MIN) levels

4. Our next step will be towards the successor of the current state

(this is the root of the sub-tree) which gives up the largest

backed-up value.

Gregorics Tibor Artificial intelligence

17

 MAX

 MIN

 MAX

 MIN -2 7 2 -4 8 -1 -2 6 5 6 12 23 10

7 8 6 23

6 7

Example

Gregorics Tibor Artificial intelligence

7

18

Remark

 We must repeat this algorithm whenever it is our turn to

play since our opponent may not move what we expect.

– He/she can use other depth bound

– He/she can use other evaluation function

– He/she can use other algorithm

– He/she can miss

Gregorics Tibor Artificial intelligence

Gregorics Tibor Artificial intelligence 19

(m,n) average evaluation

MAX

MIN

MAX

 MIN 8 0 5 6 7 4 8 8 4 -1 9 -1 -2

 This method can rectify the miscalculations of the

evaluation function. The backed-up values are

 the average of the m largest child values on MAX levels

 the average of the n smallest child values on MIN levels

8 8 7 7.5 4 9

8 6.5 9 4

m=2,n=2

8 6

6.5 9

Gregorics Tibor Artificial intelligence 20

Various depth bound evaluation

 The aim of this method is that the values of the leaf

nodes on all branches of the sub-tree show reliable

values.

 The evaluation value of a node is unreliable

(uncertain) if its child’s value significantly differs, i.e.,

(stationary test)

 f(current) ‒ f(child)> K

 In these cases the building of the sub-tree under the

given depth must be continued from the unreliable

nodes until the stationary test is false.

Gregorics Tibor Artificial intelligence 21

 MAX

 MIN

 MAX

 MIN -2 7 2 -4 12 23 10

 -5 6 3 7 12 8

7 8
6

23

6 7

Example

7

8 3 -5

Gregorics Tibor Artificial intelligence 22

Selecting evaluation

 If the essential moves and the marginal moves can be

separated, then it is enough to build up the sub-tree of

the game using only the essential moves.

 This idea reduces the memory space of the evaluation.

 This selection needs some heuristics.

23

Negamax algorithm

 Its implementation is easier than minimax.

– Initially take the negation of the leaf values on

the opposite (MIN) levels.

– Back up the values upwards level by level:

 backed-up value = max(‒child1 ,..., ‒childn)

Gregorics Tibor Artificial intelligence

Gregorics Tibor Artificial intelligence 24

Example

 MAX

 MIN

 MAX

 MIN -2 7 2 -4 12 23 10

 -5 6 3 7 12 8

7 8 23

-6 -7

7

6

-8 -3 5

2 -7 -2 4 -12 -23 -10

25

Alpha-beta algorithm

 It traverses the sub-tree according to the backtracking

algorithm.

 The nodes of the current path have got temporary values:

– on MAX’s levels:  value (lower limit),

– on MIN’s levels:  value (higher limit)

 Fore step: =‒ and =+.

 Back step: =max(, child) or =min(, child)

 Cutting condition: if there are an  and  value on the

current path so that .

Gregorics Tibor Artificial intelligence

Example

2

+

-

+

+

-

-

+ +

-

+

+

=

=

=

=

 2

 2 2

4
2

8 2
-2 7 -1

-1

2

8 2 -2 7 8 4 -1

 4

2

26 Gregorics Tibor Artificial intelligence

-2
 2

 2

 4

4

-1

2

2

 2

 2

Gregorics Tibor Artificial intelligence 27

Discussion

 The result of the alpha-beta pruning is equal to the result of

minimax method. (If several equal values run up to the

root, the „left most” direction must be chosen.)

 Memory space: only one path.

 Running time: better than minimax because of cutting.

– Average case: expected value of the number of

branches that must be investigated before cutting is 2

– Optimal case: in a sub-tree with branching factor b with

depth d, the number of the leaves evaluated:

db

28

Two player game software

 Negamax algorithm based on selecting, various depth

bound and average evaluation with alpha-beta pruning

 A frame program is needed that accepts the moves of the

user and generates the moves of the computer.

 Special features must be built in (initial settings, helps,

hints, saving and reloading games etc.)

 Graphical user interface is very important.

 It is not worth anything without good heuristics (in the

evaluation function and the selection)

Gregorics Tibor Artificial intelligence

