
2. Backtracking algorithm 

1 Gregorics Tibor                                                                                     Artificial intelligence 



Backtracking search system 

The backtracking is the search system where 

– global workspace: 

• contains one path from the start node to the current 
node and all untested outgoing arcs from its nodes 

• initially this path contains only the start node 

• it terminates: either the current node is the goal or it is the 
start node with fully tested outgoing arcs 

– rules: 

• expand the path with a new arc that is an untested 
outgoing arc from the current node 

• delete the last arc out form the path (backtracking step) 

– control strategy: applying the backtracking step at the last 
case only 
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Condition of the backtracking step 

 dead end: the current node has not got outgoing arc  

 checked crossroads: the current node has not got 

untested outgoing arcs 

 circle: the current node is repeated in the current 

path 

 depth bound: the length of the current path is equal 

to a given limit 
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Heuristics 

 ordering heuristics:  

– gives an order on the outgoing arcs of the 

current node 

 cutting heuristics :  

– cuts the untested outgoing arcs without 

checking them 
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First version 

 The first version of backtracking (BT1) implements 

the first two conditions of the backtracking step: 

“dead end” and “checked crossroads”. 

 In a finite acyclic directed graphs (not -graph) 

the BT1 always terminates, and if there exists a 

solution path, then it finds one. 

 It can be implemented with a recursive algorithm 

– Starting: solution := BT1(start) 
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Recursive procedure BT1(current) return solution 

1. if goal(current) then  return(nil)  endif 

2. for new  (current) −(current) loop 

3.       solution := BT1(new) 

4.       if solution  fail then  

5.  return(concat((current, new), solution) endif 

6. endloop 

7. return(fail) 

end 

BT1 
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DATA := initial value 

while  termination condition(DATA) loop 

      SELECT R FROM rules that can be applied 

      DATA := R(DATA) 

endloop 
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Dynamic debugging 
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n-queens problem 

2. representation 

48 steps 

22 steps back 

In this special problem it would be 

enough to look at the current node 

because it contains all information 

about the current path.  



 Diagonal: the length of the longest diagonal  

passing through a square. 

 Diagonal  + odd-even: Odd-even is a secondary principle that 

orders the squares with the same primary value: in the odd rows 

from left to right, in the even rows from right to left.  

 Number of free squares (that are not attacked) that remains after 

placing a new queen. 

 Difference of the number of free squares of the state before placing 

a new queen and the state after that. 

Ordering heuristics  

for n-queens problem 
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These heuristics assign a value to each square.  

In each step the search selects the square that has the best value 

among the untested squares of the current row. 



3 

Ordering heuristics  

for n-queens problem 

Diagonal + odd-even Diagonal: 

n = 4 None Diag Diag+odd-even 

2. repr. 22/48 2/8 0/4 

3. repr. 4/12 0/4 0/4 
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2. repr. None Diag 

n = 4 22/48 2/8 

n = 5 0/5 2/9 

n = 6 25/56 3/12 

n = 10 92/194 103/216 

n-queens problem 

2. representation 

8 steps 

2 steps back 

4 steps 

0 steps back 



Finding cutting strategies  

for n-queens problem 

k=6 

Square6 ∅ 

♛ 

♛ 

♛ 

♛ 

♛ 

13 Gregorics Tibor                                                                                     Artificial intelligence 

In each step after placing the kth 

queen, free squares of the 

remaining rows may be reduced 

 for i=k+1 .. n loop  

    Mark(i,k) 

If Squarek = ∅  then step back. 

Squarei = { free squares in the ith row } 

n-queens problem 

3. representation 

This is the standard 

backtracking method 

Mark(i,j) : deletes the free squares 

from the ith row if they are attacked 

by the kth queen 



Forward Checking 

FC algorithm:  

BT1 + 

if there is no free square  

in some of the remaining rows 

then the algorithm steps back. 
k=4 

Square6∅ 

♛ 

♛ 

♛ 

♛ 
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Partial Look Forward 

PLF algorithm: 

FC  +  

        for i=k+1 .. n loop  

           for j=i+1 .. n loop  

    Filter(i,j) 
k=3 

i = 4, j = 6 Square4 ∅ 

♛ 

♛ 

♛ 

6 
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Filter(i,j) : deletes the free square 

from the ith row if it is attacked by 

every free square in the jth row 



Look Forward 

LF algorithm: 

FC + 

for i=k+1 .. n loop  

         for j=k+1 .. n és ij loop  

 Filter(i,j) 

k=2 

Square6 ∅ i = 4,  j = 3 

i = 5,  j = 4 

i = 6,  j = 4 

i = 6,  j = 5 

♛ 

♛ 

3 

4 

4 4 5 
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LF once more 

k=3 

Square6 ∅ i = 6,  j = 4 

i = 6,  j = 5 

♛ 

♛ 

4 4 5 

♛ 

17 

LF algorithm: 

FC + 

for i=k+1 .. n loop  

         for j=k+1 .. n és ij loop  

 Filter(i,j) 
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AC1 

AC1 algorithm: 

FC + 

     repeat 

        for i=k+1 .. n loop  

         for j=k+1 .. n és ij loop 

     Filter(i,j) 

     until there was deleting 

i = 6,  j = 4 1. turn 

♛ 

♛ 

4 4 
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AC1 

i = 5,  j = 6 2. turn 

♛ 

♛ 

6 

19 

AC1 algorithm: 

FC + 

     repeat 

        for i=k+1 .. n loop  

         for j=k+1 .. n és ij loop 

     Filter(i,j) 

     until there was deleting 
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i = 3,  j = 5 

i = 4,  j = 5 

i = 6,  j = 3 

AC1 

♛ 

♛ 

3. turn 

5 

5 

3 

♛ 

♛ 

♛ 

♛ 
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AC1 algorithm: 

FC + 

     repeat 

        for i=k+1 .. n loop  

         for j=k+1 .. n és ij loop 

     Filter(i,j) 

     until there was deleting 
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A new representation model: 

constraint satisfaction 

 The n-queens problem can be represented in an other form: 

 Find the positions of queens (x1 ,…, xn) D1  … Dn  

(the ith queen is on the xi  position and Di  = Squarei ) where 

there is no attack between the ith and jth queens for all i,j[1..n].  

o Possible squares of the ith queen: Di  = Squarei ⊆ {1, … , n} 

o Constraints “no attack ” are binary relations: Cij ⊆ Di  Dj 

Cij(xi,xj)   ~   attack((i,xi),(j,xj))  ( xixj  and  xi‒xj i‒ j )  

 The graph coloring problem (n vertices, m colors) with a 

similar representation:  

o Possible colors of the ith vertex: Di ⊆ {1, … , m} ( i=1..n ) 

o Constraints on the adjacent (i,j) vertices: Cij(xi,xj)   ~   xi  xj 
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Secondary control strategy 

 The earlier presented cuttings can be described with the next 

formalization:  

 Mark(i,k): Di := Di {eDi  Cik (e,xk)} 

 Filter(i,j)  : Di := Di {eDi  fDj :Cij (e,f)} 

 These methods are independent of the meaning of the relation 

Cij  so they can apply not only in the solution of the n-queens 

problem but also in all problems that are modeled by 

constraint satisfaction representation. 

 Thus these cuttings are not heuristics since they do not 

contain knowledge about the problem domains. They are 

based on the speciality of the constraint satisfaction model 

hence they are a sort of secondary control strategies. 
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 The second version of backtracking (BT2) 

implements all conditions of the backtracking step. 

 In -graphs the BT2 always terminates, and if 

there exists a solution path shorter than the depth 

bound, then it finds a solution path. 

 It can be implemented with a recursive algorithm 

Starting: solution := BT2(<start>) 

Second version 
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Recursive procedure BT2(path) return solution 

1. current := last_node(path) 

2. if goal(current) then  return(nil) 

3. if length(path)  limit then  return(fail) 

4. if current  remain(path) then  return(fail) 

5. for new  (current) −(current) loop 

6.       solution := BT1(concat(path, new)) 

7.       if solution  fail then  

8.  return(concat((curent, new), solution) endif 

9. endloop 

10.      return(fail) 

end 

BT2 
DATA := initial value 

while  termination condition(DATA) loop 

      SELECT R FROM rules that can be applied 

      DATA := R(DATA) 

endloop 
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Remarks 

 If the length of the shortest solution path is greater than 

the depth bound, then BT2  terminates without solution 

path. 

 The observing circles can be ignored because the 

implementation of the depth bound alone ensures the 

outcome of BT2.  

• This simplification can mend the efficiency if there are no short 

circles in the representation graph (ecxept of the 2-length 

circles that can be avoided by the storing parent.) 

• In this case it is enough to give the recursive procedure only the 

length of the current path instead of the whole current path 

besides the current node and its parent. 
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cutting condition: 

length +W > DB 
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Depth bound: 5 

Heuristics: 



Conclusions 

 Advantages 

– always terminates, 

finds solution 

– implementation is 

simple 

– small memory 

 Disadvantages 

– no optimal solution 

– wrong choice at the first 

stage of the search can 

be undone only after 

many steps  

– the same part of the 

graph can be traversed 

many times 
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