
3. Graph-search

 It is a search system

– global workspace: stores all paths going from the start in

part (this is a subgraph of the representation graph) and

separately records the nodes, they are called open nodes,

that have already been achieved but their successors have

not been discovered yet

• initial value: start node

• termination condition: goal node appears or

 the algorithm gets stuck

– searching rules: expand an open node

– control strategy: selects an open node to be expanded

1 Gregorics Tibor Artificial intelligence

3.1. General graph-search

– search graph (G) : the subgraph of the representation
graph that has been discovered

– set of open nodes (OPEN) : they are waiting for
their expansions because their descendents are not known
or not well-known

– closed nodes : the nodes of the search graph that has
already been expanded

– expansion () : generating all successors of a node
with its outgoing arcs

– f: OPEN ℝ evaluation function: helps to select the

appropriate open node to be expanded.

2 Gregorics Tibor Artificial intelligence

../Alkalmazások/Hanoi/HanoiDemo/HanoiDemo/bin/Debug/HanoiDemo.exe

[3,3,3]

[3,2,1]

[1,3,3]

[1,2,3]

[2,2,3]

[2,2,1]

[3,1,1]

[1,1,1]

[2,3,3]

[2,1,3]

[1,1,3]

[3,1,3] [3,2,3]

[2,2,2]

[3,2,2]

[1,1,2]

[3,1,2]

[3,3,2] [3,3,1] [2,3,1] [2,1,1] [1,2,2] [1,3,2]

[2,3,2]

[2,1,2] [1,2,1]

[1,3,1]

1.

2.

3.

4.

8.

5.

9.

6.

7.

Gregorics Tibor Artificial intelligence 3

Procedure GK0

 1. G := ({start}, ∅): OPEN := {start}

 2. loop

 3. if empty(OPEN) then return cannot find solution

 4. n := minf(OPEN)

 5. if goal(n) then return there is a solution

 6. OPEN := OPEN {n} (n)

 7. G := G {(n,m) A m(n)}

 8. endloop

end

First (wrong) version

4 Gregorics Tibor Artificial intelligence

DATA := initial value

while termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

Faults

 At termination the solution path cannot be got.

 The traces of the paths should be signed.

 The optimal solution is not guaranteed (neither solution)

 The costs of the discovered paths should be stored.

If several paths to the same node were found, the best path

cost needs to be stored.

 Circles cause fault

 Storing the costs of the paths can help to avoid the circle

because in -graph a path with a circle is always more

expensive than its acyclic version.

5 Gregorics Tibor Artificial intelligence

Functions of the graph-search

 : N N parent pointer function

– (n) = one parent of n in G,

(start) = nil

• If only the spanning tree preserved the optimal paths to any

node from start in G: spanning tree was optimal

 g: N ℝ cost function

– g(n) = c(start,n) – cost of a discovered path {startn}

• If only g(n) was the cost of the path startn denoted by for

each node n : and g were consistent

6 Gregorics Tibor Artificial intelligence

s

a b

c 2

2

2

1

3
2

1

0

correct nodes,

correct search graph

 records an unique path to each node from start in G.

It determines a directed spanning tree in G with start

as a root node.

start

Maintaining the correctness

of the search graph

 Initially: (start) := nil, g(start) := 0

 for all m(n) (after expansion of the node n) :

o 1. m is a new node

 if mG then (m) := n, g(m) := g(n)+c(n,m)

 OPEN := OPEN{m}

o 2. m is an old node to that a cheaper path has been found

 if mG and g(n)+c(n,m)<g(m) then

 (m) := n, g(m) := g(n)+c(n,m)

o 3. m is an old node to that a not cheaper path has been found

 if mG and g(n)+c(n,m)g(m) then SKIP

7 Gregorics Tibor Artificial intelligence

The search graph

does not even preserve its correctness

If mG and g(n)+c(n,m)<g(m) then
(m):=n, g(m):=g(n)+c(n,m)

s m k l

n

1

1 4
1

5

g(m)=4

g(k)=5 g(l)=5

g(n)=1

g(s)=0

1

2

? ?

 Possible answers:
1. The pointers and costs of all descendants of the node m should be

modified using some traversal method.

2. Such a case could be avoided with a good evaluation function.

3. Do not care of this just put the node m back into OPEN.

 8 Gregorics Tibor Artificial intelligence

incorrect nodes

Danger: how many times

will a node be expanded?

start

1. G := ({start}, ∅) : OPEN := {start} : (start) := nil : g(start) := 0

2. loop

3. if empty(OPEN) then return cannot find solution

4. n := minf(OPEN)

5. if goal(n) then return solution (n,)

6. OPEN := OPEN‒{n}

7. for m(n) loop

8. if mG or g(n)+c(n,m)<g(m) then

9. (m) := n, g(m) := g(n)+c(n,m), OPEN := OPEN {m}

10 endloop

11. G := G {(n,m) A m(n)}

12. endloop

Algorithm of

general graph-search

9 Gregorics Tibor Artificial intelligence

DATA := initial value

while termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

Summarization of

execution and outcomes

10 Gregorics Tibor Artificial intelligence

It can be proved:

 Any node is expanded only finite times in -graphs.

 The general graph search always terminates in finite

-graphs.

 The general graph search finds a solution in finite

-graphs if there exists a solution

Execution diagram

 The expanded nodes with their evaluation function values

are enumerated in order of their expansions (the same node

can occur several times).

11 Gregorics Tibor Artificial intelligence

f

𝛤

start n m n … … … …

3.2. Famous graph-search algorithm

 How can we define the evaluation function?

 Depth graph-search

 Breadth graph-search

 Uniform-cost graph-search

 Look forward (best-first)

 A, A*, Ac

 B

Heuristic Non-informed

12 Gregorics Tibor Artificial intelligence

Decreasing evaluation function

 An evaluation function is decreasing if its value on a

node never increases but it always decreases when a

cheaper path to this node has been found.

 It can be proved that the graph-search with a decreasing

evaluation function re-establishes automatically the

correctness of the search graph over and over again.

13 Gregorics Tibor Artificial intelligence

About the correctness of the search graph

with decreasing evaluation function

 A monotone increasing subsequence Fi (i=1,2,…) is constructed

from the values of the diagram so that it starts with the first value

and then always the closest non smaller one must be selected.

 It can be shown that the graph-search with a decreasing evaluation

function has correct search graph at expansion of a threshold node,

and never expands incorrect nodes.

14 Gregorics Tibor Artificial intelligence

f

𝛤

start n2 ni ni+1 … … … …

Fi F2
F1

Fi+1

… …

ith threshold value

ith threshold node

ith ditch

Non-informed graph-search

depth first

graph-search
f = -g, c(n,m) = 1 in infinite 𝛿-graphs a depth

bound is needed

breadth first

graph-search

f = g, c(n,m) = 1 • finds optimal (the shortest)

 solution if there exists one

 even in infinite 𝛿-graph

• any node is expanded at most

 once

uniform-cost

graph-search
f = g • finds optimal (the cheapest)

 solution if there exists one

 even in infinite 𝛿-graph

• any node is expanded at most

 once

not identical to the backtracking

similar to Dijkstra’s shortest path algorithm

15 Gregorics Tibor Artificial intelligence

Heuristics in graph-search

 The heuristic function h:N ℝ estimates the cost of

the cheapest path from n to the goal.

 h(n) min tT c*(n,t) = c*(n,T) = h*(n) h*:N ℝ

 Examples:

• 8-puzzle : W, P

• 0 (zero function) ~ fake heuristic function

 16 Gregorics Tibor Artificial intelligence

remaining optimal cost

Properties of heuristic function

 Famous properties:

– Non-negative: h(n) ≧ 0 nN

– Admissible: h(n) ≦ h*(n) nN

– Monotone (consistent): h(n)‒ h(m) ≦ c(n,m) (n,m)A

 Remarks

• 8-puzzle : W, P is non-negative, admissible and

monotone.

• Zero function is non-negative, admissible and monotone.

17 Gregorics Tibor Artificial intelligence

Outcomes

of the heuristics graph-search

look forward

graph-search

f = h

algorithm A f=g+h , 0≦h • finds solution if there exists one

 (even in infinite 𝛿-graph)

algorithm A* f=g+h, 0≦h, h≦h*
(admissible)

• finds optimal solution if there

 exists one (even in infinite 𝛿-
 graph)

algorithm Ac f=g+h, 0≦h, h≦h*

h(n)-h(m) ≦ c(n,m)

(monotone)

• finds optimal solution if there

 exists one (even in infinite 𝛿-
 graph)

• expands a node at most once

• if h is monotone and gives zero

 on goal, then it is admissible

18 Gregorics Tibor Artificial intelligence

3.3. Efficiency of algorithm A*

Efficiency

Memory requirement Running time

Number of the closed

nodes can estimate

the size of search

graph at termination

Number of expansions

with respect to the

number of the closed

nodes at termination

Those problems are focused on that have got a solution and have got

an admissible heuristic function because only these conditions can

guarantee that algorithm A* terminates with an optimal solution.

19 Gregorics Tibor Artificial intelligence

Gregorics Tibor Artificial intelligence 20

f Graph-search solution G 𝛤

-g Depth first 5 8 5

g Breadth first 4 10 8

I Look forward 5 8 5

g+I algorithm A 4 9 7

g+2*I algorithm A 4 8 6

g+2*I‒1(if…) algorithm A 4 7 5

Black&White problem

 CLOSEDS ~ the set of the nodes closed (expanded) by the
path-finding algorithms S until its termination

 Fix a problem. Let X and Y be two path-finding algorithms.
X is not worse than Y if CLOSEDX ⊆CLOSEDY
X is better than Y if CLOSEDX ⊂CLOSEDY

 Using these definitions we can compare

1. two algorithms A* using different admissible heuristics on
the same problem.

2. algorithm A* and another path-finding algorithm using the
same admissible heuristics on a given subset of problems.

3.3.1. Analysis of memory requirement

21 Gregorics Tibor Artificial intelligence

Comparing two algorithms A*

using different heuristics

 Let A1 (with heuristics h1) and A2 (with heuristics

h2) be algorithms A
*.

 A2 is more informed than A1 if for all nodes nN \T:

h1(n)<h2(n).

 It can be proved that a more informed A2 is not

worse than a less informed A1, i.e.,

CLOSEDA2
 ⊆ CLOSEDA1

 In practice, CLOSEDA2
 ⊂ CLOSEDA1

 even if h1(n)≦h2(n).

22 Gregorics Tibor Artificial intelligence

h1(n)<h2(n) ≦h*(n)

Gregorics Tibor Artificial intelligence 23

f = g+0 g+W g+P

6 steps solution 117 7 6

13 steps solution not enough

memory

119 13

21 steps solution not enough

memory

3343 145

30 steps solution not enough

memory

not enough

memory

1137

34 steps solution not enough

memory

not enough

memory

3971

15-puzzle

Comparing algorithm A*

with other graph-searches

24 Gregorics Tibor Artificial intelligence

 Our aim is to show that algorithm A* does not require much
more memory than the other graph-searches on the same
problems.

 An admissible problem is the path-finding problem that has
got a solution and has got an admissible heuristic function.

• In this investigation the heuristic function will be embedded in
the problem rather than in the control strategy.

• From this perspective there is no difference between algorithm
A, A* and Ac since the heuristics of the problem determines that
an algorithm A could be A* or Ac.

X dominates Y

25 Gregorics Tibor Artificial intelligence

 Let X and Y be two sets of path-finding algorithms.

 X dominates Y relative to a given subset of admissible
problems if for all problems and for each member y of Y
there exists a member x of X so that
CLOSEDx ⊆CLOSEDy

 X strictly dominates Y relative to a given subset of admissible
problems if X dominates Y but Y does not dominate X.

A non-deterministic algorithm can be treated as a set of its deterministic

versions. In a graph-search, a secondary (tie-breaking) rule can choose

from the open nodes that have got the same evaluation function value.

Thus an algorithm A* can be mapped to many deterministic graph-

searches that are defined by their tie-breaking rules.

 A path-finding algorithm is admissible if it can find
an optimal solution on each admissible problem.

 Examples:

– Uniform-cost graph-search

– Algorithm A*

– Algorithm A** : f(n)=maxmstartn(g(m)+h(m))
 tie-breaking rule: prefers the goal node

– Algorithm IDA* (it is backtracking algorithm using a
 special cutting process, embedded in a
 loop that calls it with an increasing depth
 bound repeatedly)

Admissible path-finding algorithms

26 Gregorics Tibor Artificial intelligence

Provable results

 Algorithm A* dominates all admissible path-finding

algorithms on the problems that have got monotone

admissible heuristics.

 No admissible path-finding algorithm dominates all

other admissible path-finding algorithms on all

admissible problems.

 Algorithm A** strictly dominates algorithm A* on all

admissible problems.

27 Gregorics Tibor Artificial intelligence

3.3.2. Analysis of running time

28 Gregorics Tibor Artificial intelligence

 Denote the number of the closed nodes as k

 Lower limit on the number of the iterations: k

– If algorithm A* uses a monotone heuristics, (so it is an

algorithm Ac) it expands a node at least once thus the

number of the closed nodes is equal to the number of

expansions.

 Upper limit on the number of the iterations: 2k-1

‒ See Martelli’s problem

Martelli’s example

s

t n n nn 1234

11 9 6 1

3 4

6

1 1 110 137300

0

k=5

29 Gregorics Tibor Artificial intelligence

Discussion

 One node – even in the same ditch – can be expanded several times.

 A secondary evaluation function is introduced in the ditches. It can

be proved that the set of the nodes expanded in a ditch does not

depend on this inner function, it influences only the order and the

number of expansions of the nodes in the ditch. (Thus neither the

threshold nodes nor threshold values nor their order change.)

 Martelli suggested using the cost function g as an inner evaluation

function.

30 Gregorics Tibor Artificial intelligence

f

𝛤

start n2 ni ni+1

ith ditch

… … … …

Fi
F2

F1

Fi+1

Algorithm B

 Algorithm B is derived from algorithm A.

 Introduce the variable F to store the current threshold

value. Change the step 1 and step 4 of the algorithm:

– Step 1. + F := f(s)

– Step 4. if minf(OPEN)<F

– then n := ming(mOPEN f(m)<F)

– else n := minf (OPEN); F f(n)

– endif

31 Gregorics Tibor Artificial intelligence

Running time of algorithm B

 Algorithm B works in the same way as algorithm A* except

that it expands a node in a ditch only once.

• In the worst case all closed nodes are threshold nodes and

their first expansions are the thresholds because of the

decreasing evaluation function.

• The first ditch consists of only the start node, in the

second ditch only the second threshold node can be found,

the ith ditch contains at most the previous i‒1 threshold

nodes (that is, all nodes except for the start node), thus the

last kth ditch has got at most k‒1 nodes.

• It follows that the number of expansions is at most ½⋅k2.

32 Gregorics Tibor Artificial intelligence

