
III. SEARCH

1 Gregorics Tibor Artificial intelligence

Levels of control

control strategy

primary secondary heuristics

quite independent

of the problem

and its model

independent of the

problem but based

on its model

special knowledge

that is derived from

the problem but that

is not included in

the model of the

problem

2 Gregorics Tibor Artificial intelligence

DATA := initial value

while termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

Primary control strategies

irrevocable tentative

primary strategies

• local search

• evolution

• resolution

3 Gregorics Tibor Artificial intelligence

• backtracking

• graph-searching

1. Local search

 The global workspace of this kind of search system contains

only one current node of the representation graph (initially this

is the start node) with a small environment of this node.

 In each step the current node is exchanged for a better node of

its environment (searching rule).

 To select (control strategy) this better node an evaluation

function (objective function, fitness function) will be used that

tries to estimate to what extent a node promises the

achievement of the goal. This function involves some

heuristics.

 It stops if a goal node is found.

4 Gregorics Tibor Artificial intelligence

Hill climbing algorithm

 It only stores the current node and its parent ((current))

 In each step the best child of the current node is selected
except for the parent of the current node.

1. current := start

2. while currentT loop

3. current := optf((current)−(current))

4. endloop

5 Gregorics Tibor Artificial intelligence

A modification of the original hill climbing method:

DATA := initial value

while termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

if (current) = ∅ then return solution no found

if (current)−(current) = ∅ then current := (current)

else current := optf((current)−(curr)ent)

../Alkalmazások/Hanoi/HanoiDemo/HanoiDemo/bin/Debug/HanoiDemo.exe

[3,3,3]

[3,2,1]

[1,3,3]

[1,2,3]

[2,2,3]

[2,2,1]

[3,1,1]

[1,1,1]

[2,3,3]

[2,1,3]

[1,1,3]

[3,1,3] [3,2,3]

[2,2,2]

[3,2,2]

[1,1,2]

[3,1,2]

[3,3,2] [3,3,1] [2,3,1] [2,1,1] [1,2,2] [1,3,2]

[2,3,2]

[2,1,2] [1,2,1]

[1,3,1]

Hanoi tower problem

Remarks

 Disadvantages:

1. Without a strong heuristics it can rarely find the goal, and

after a wrong decision it can stick in a dead end.

• several current nodes local beam search

• several attempts random-restart search

• give up the greedy strategy simulated annealing

 2. If there are circles (that cannot be recognized) this search

can lose track around a local optimum or on an equidistant

surface (where neighbor nodes have identical values) of the

evaluation function .

• recognize small circles tabu search

7 Gregorics Tibor Artificial intelligence

Tabu search

 Besides the current node it stores

– the best node (opt) that has ever been met

– the tabu set (Tabu) that contains the last few current nodes

 In each step

– the best child of the current node is selected except for the
nodes of the Tabu

– if the current node is better than opt node then opt is
exchanged for the current

– Tabu must be updated with the current node

 Termination conditions:

– if opt is a goal

– if the values of current or opt is not being changed
8 Gregorics Tibor Artificial intelligence

[3,3,3]

[3,2,1]

[1,3,3]

[1,2,3]

[2,2,3]

[2,2,1]

[3,1,1]

[1,1,1]

[2,3,3]

[2,1,3]

[1,1,3]

[3,1,3] [3,2,3]

[2,2,2]

[3,2,2]

[1,1,2]

[3,1,2]

[3,3,2] [3,3,1] [2,3,1] [2,1,1] [1,2,2] [1,3,2]

[2,3,2]

[2,1,2] [1,2,1]

[1,3,1]

Hanoi tower problem

[2,2,2] [2,2,2]
[1,2,2] [1,2,2]

[1,1,2] [1,1,2]

[1,1,1]

Algorithm of tabu search

1. current, opt, Tabu := start, start, ∅

2. while not (optT or

 opt has not been changing for a long time) loop

3. current := optf((current)−Tabu))

5. Tabu := Update(current,Tabu)

6. if f(current) < f(opt) then opt := current

7. endloop

10 Gregorics Tibor Artificial intelligence

DATA := initial value

while  termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

A modification of the original tabu search:

if (current) = ∅ then return solution no found

if (current)−(current) = ∅ then current := optf(Tabu)

else current := optf((current)−(current))

../Alkalmazások/Hanoi/HanoiDemo/HanoiDemo/bin/Debug/HanoiDemo.exe

Remarks

 Advantages:

– It can recognize the smaller circles if their lengths are

less than the size of the tabu set so it can dominate the

local optimums and the equidistant surfaces.

 Disadvantages:

– The size of the tabu set can be set only a posteriori.

– The original tabu search can stick on the node if all its

children are in the tabu set.

11 Gregorics Tibor Artificial intelligence

Simulated annealing

 It can select a worse neighbor node instead of the best one.

 The new node (new) is selected randomly among the children

of the current node.

 If the value of the new node is not worse than the value of the

current node (f(new) ≤ f(current)) then the new node is

accepted as the newer current one.

 Otherwise, the probability of the acceptance of the new node

is inversely proportional to the difference of the values of the

new and the current node (f(current)  f(new)).

],[10randome
f(new) f(current)





T

12 Gregorics Tibor Artificial intelligence

Annealing schedule

 The schedule (Tk , Lk) k=1,2,… rules that at first the value

of the coefficient T be T1 during L1 steps, then be T2 at the

next L2 steps, etc.:

T exp(-13/T)

1010 0.9999…

50 0.77

20 0.52

10 0.2725

5 0.0743

1 0.000002

f(new)=120, f(current)=107

13 Gregorics Tibor Artificial intelligence

],[10rande kT

f(new)f(current)





 If T1 , T2 , … is given in a

decreasing order then the

probability of the acceptance of

the same „bad” node is greater at

the start than later.

1. current := start; k := 1

2. while not(currentT or f(current) has not been changing) loop

3. for i = 1 .. Lk loop

4. if (current) = ∅ then return solution no found

5. if (current)−(current) = ∅ then new := (current)
 else new := select((current)−(current))

6. if f(new)≤ f(current) or

 f(new)>f(current) and

 then current := new

7. endloop

8. k := k+1

9. endloop

Algorithm

of simulated annealing

],[10rande kT

f(new)f(current)





14

DATA := initial value

while  termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

../Alkalmazások/Hanoi/HanoiDemo/HanoiDemo/bin/Debug/HanoiDemo.exe

When is local search worth using?

 There is no chance for the local searches to find

solution if they have not good, strong heuristics.

 The only expectance is when the representation graph

is strongly connected.

‒ But it is not a necessary condition of the solution.

‒ If the graph is a directed tree then only the perfect

(never miss) evaluation function can find solution.

15 Gregorics Tibor Artificial intelligence

memory space running time

outcome efficiency

Heuristics in search systems

16 Gregorics Tibor Artificial intelligence

The heuristics is an idea (special extra information) derived

from the problem. It must be built directly into the algorithm

(not into the model) in order to get better solution or any

solution and to improve the efficiency of the algorithm, but

there is no guarantee to achieve these aims.

heuristics

heuristics and

the computational cost

information

cost

complete

rule selection cost
number of iterations

overall computational cost

17 Gregorics Tibor Artificial intelligence

DATA  initial value (start node)

 while  termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA  R(DATA)

 endloop

Nilsson: Princ. of AI, pp. 54.

Heuristics

for the 8-puzzle

 Misplaced: the number of the misplaced tiles

 W(this) =  ij 1

 thisij  0, thisij  goalij

 Manhattan: the sum of the Hamilton distances for

all tiles (a tile can be moved only horizontally and vertically)

between their current position and goal position

 P(this) =  ij |(i,j)  goal_position(thisij)|

 Edge (penalty score): It allots

 1 score for each tile on the edge that is not followed by its

corresponding successor

 1 score for each tile on the edge that should be in the center

 2 scores for each corner that does not contain the corresponding tile

18 Gregorics Tibor Artificial intelligence

2 8 3

1

7

4

5

6

4

2

8

3 1

7

4

5 6

5 6

2 8 3

1

7

4

5

2 8 3

1

7 6

4

5

6

2 8 3

1

7

4

5 6

2

8 3

1

7

4

5 6

2

8 3

1

7

4

5 6

2

8 3 1

7

4

5 6

2

8 3 1

7

4

5 6

2 8

3 1

7

4

5 6

2 8

3 1

7

4

5 6

2

8

3 1

7

4

5 6

3 3

3 3 3

0 3 2 1

5,3,5,- 3,3,4,4 -,3,3,4

3,3,4,4 3,-,4,3

-,2,3,4 2,-,2,0

-,-,3,3

-,-,1,3

W
4

order of the successors:

<left, up, right, down>

19 Gregorics Tibor Artificial intelligence

2 8 3

1

7

4

5

2 8 3

1

7 6

4

5

6

2

8

3

1

7 6

4

5

2

8

3

1

7 6

4

5

2

8

3 1

7 6

4

5

2

8

3 1

7 6

4

5

4 3

0 1 2

6,4,6,- 5,3,5,5 2,-,4,4

-,2,0,2 -,-,3,1

P

5

20 Gregorics Tibor Artificial intelligence

order of the successors:

<left, up, right, down>

Heuristics

for Black&White puzzle

 Inversion number of the permutation: I(this)

 how many swaps must be taken to achieve the goal permutation

(where all white tiles precede all black ones)

 Modified inversion number:

M(this)= 2*I(this)  (1 if this has or part)

21 Gregorics Tibor Artificial intelligence

22 Gregorics Tibor Artificial intelligence

start

goal

2

2 2

2 1

1 1

1

0

4

3 4

2 3

1 2

1

0

Inv 2*Inv - ?1

0

0

0

0

0 0

goal

goal

goal

Heuristics

for Hanoi tower problem

 Count: C(this) = i=1..n 1

 this[i]1

 Weighted count: WC(this) = i=1..n i

 this[i]1

 Sum: S(this) = i=1..n this[i]

 Weighted sum : WS(this) = i=1..n i*this[i]

 Modified sum: MWS(a) = WS(this)  i=2..n 1

 this[i1]>this[i]

 + i=2..n‒1 2

 this[i 1]=this[i+1]  this[i] this[i 1]

23 Gregorics Tibor Artificial intelligence

../Alkalmazások/Hanoi/HanoiDemo/HanoiDemo/bin/Debug/HanoiDemo.exe

Heuristics

for Hanoi tower problem

 Perfect: P(this) = f(1)1 f:[1..n+1]ℕ×ℕ

f(i)1 : number of the steps to achieve the goal if the discs only between ith

and nth count, as if the smaller discs did not exist

f(i)2 : the peg that is unnecessary when the solution of the problem of

the discs between ith and nth is started.

f(n+1) = (0, 1)

 (2*f(i)1 , f(i)2) ha this[i –1]=f(i)2

 (2*f(i)1+1, 6 – f(i)2 – this[i]) ha this[i –1]f(i)2

f(i –1)=

24 Gregorics Tibor Artificial intelligence

When the i–1th disc is also counted then it always gets in the way

(and it always must be set aside) before moving bigger discs,

except for the first step if it is on the peg f(i)2. Consequently the

number of the steps calculated earlier should be doubled and at last

it is placed onto the good peg.

Homework

 Find a heuristics evaluation function for the Knight problem

that can guide the knight to find the goal and present its

solution path (the trace of the knight) generated by the hill

climbing method!

25 Gregorics Tibor Artificial intelligence

goal

start

http://www.thechessstore.com/category/rulesofchess

