
Gregorics Tibor Artificial intelligence 1

VI. Automatic Reasoning

Gregorics Tibor Artificial intelligence 2

1. Resolution

A1: If the sun shines, Peter goes to the beach.

A2: If Peter goes to the beach, he can swim.

A3: Peter cannot swim at home.

Prove:

B: If the sun shines, then Peter does not stay at home.

‒the sun shines : p

‒Peter goes to the beach : q

‒Peter can swim: r

‒Peter stays at home: s

A1: p → q

A2: q → r

A3: ¬(sr)

B: p → ¬s

Task:

Formalization:

Gregorics Tibor Artificial intelligence 3

Preparing the proof

 Need: p → q, q → r, ¬(sr) p → ¬s

• By definition, every interpretation (truth assignment)

satisfying the antecedents also satisfies the consequence.

• Or: none of interpretations (truth assignments) satisfying

the antecedents can satisfy the negation of the

consequence.

• Or: { p → q, q → r, ¬(sr), ¬(p → ¬s) } is unsatisfiable

• Or: { ¬pq, ¬qr, ¬s¬r, p, s } is unsatisfiable

 We must to prove that in all interpretations (for all truth

assignments) at least one of the clauses is false.

clause: literals connected by ‚or’

literal: variable or its negation

Gregorics Tibor Artificial intelligence 4

Indirect proof

 Assume that there exists an interpretation so that it satisfies

all clauses, i.e. all clauses are true.

 For example the clause p and the clause ¬pq is also true.

 If p is true, ¬p is false. In order to ¬pq be true the q must

be also true.

 Thus the original clauses can be extended with the new

clause q since it must be true like the original clauses in

the given interpretation supposed in our assumption.

Gregorics Tibor Artificial intelligence 5

Resolution process

Thus if the sun shines, then Peter does not stay at home.

¬r

s qr pq p sr

¬q

q

Inference rule that is applied:

LA, ¬LB AB

Gregorics Tibor Artificial intelligence 6

Refutation-, resolution graph

¬r

s qr pq p sr

pr qs

r ps p s ¬q

q

 Refutation graph: shows one deduction of the empty clause

 Resolution graph: shows the deductions of all possible clauses

... … s p

Gregorics Tibor Artificial intelligence 7

Representation graph

q

¬q

¬pq

¬qr

¬s¬r

p
s

q
¬r

initial clauses

No wrong decision

just unnecessary

¬pq

¬qr

¬s¬r

p
s

¬q¬s

¬pq

¬qr

¬s¬r

p
s ¬r

¬pq

¬qr

¬s¬r

p
s

¬pq

¬qr

¬s¬r

p
s

q
¬r

¬pq

¬qr

¬s¬r

p
s

¬q

q
¬r

¬qr

¬s¬r

p
s

¬pq goal

¬pq

¬qr

¬s¬r

p
s
¬q¬s

¬pq

¬qr

¬s¬r

p
s
¬q¬s

¬pq

¬qr

¬s¬r

p
s
¬q¬s

q q
¬r

q
¬r

goal ¬pq

¬qr

¬s¬r

p
s

¬q¬s
¬r

¬q

¬pq

¬qr

¬s¬r

p
s

¬q¬s

q
¬r

¬q

Gregorics Tibor Artificial intelligence 8

Irrevocable search system

 global workspace: set of clauses

 initial value: set of original clauses derived

 from the task (axioms target)

 termination condition:

– success empty clause

– fail no newer resolvent clause

 searching rule: creates a new resolvent

 control strategy: selects one of the searching rules

 heuristic: no idea

DATA := initial value

while termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

Gregorics Tibor Artificial intelligence 9

Example: Are physicians quacks?

A1: Some patients trust all physicians.

A2: Patients don’t trust any quack.

Prove that

B : Physicians are not quacks.

P(x): x is a patient

D(y): y is a physician

Q(y): y is a quack

T(x,y): x trusts y

A1 : x{P(x)y[D(y) → T(x,y)]}

A2 : x{P(x) → y[Q(y) → ¬T(x,y)]}

B : x[D(x) → ¬Q(x)]

Formalization:

A1 : x{P(x) y[D(y)→T(x,y)]}

 = x{P(x) y[¬D(y) T(x,y)]}

 P(a) y[¬D(y) T(a,y)]

 P(a) , ¬D(y) T(a,y)

Skolemized conjunctive normal form

A2 : x{ P(x) → y[Q(y) → ¬T(x,y)]}

 = x{¬P(x) y[¬Q(y) ¬T(x,y)]}

 = x{¬P(x) u[¬Q(u) ¬T(x,u)]}

 ¬P(x) ¬Q(u) ¬T(x,u)

Gregorics Tibor Artificial intelligence 10

Skolemization

(It holds the satisfiability.)

a is a Skolem constant

logical law

(equivalent transforming)

B: ¬x[D(x) → ¬Q(x)]

 =¬x[¬D(x) ¬Q(x)] = x[D(x) Q(x)] D(b) Q(b)

 D(b) , Q(b)

renaming distinguishes the

variable from the variables

of the other clauses

logical law

logical law b is a Skolem constant

Gregorics Tibor Artificial intelligence 11

Conversion to set of clauses

1. Eliminate implication (→) and equivalence symbols (↔).

2. Reduce the scope of negation symbols.

3. Standardize (rename) variables so that each quantifier must have

its own unique variable

4. Eliminate existential quantifiers.
Instead of xP(x): P(a) can be written where a is a Skolem-constant.

Instead of xyP(y): xP(g(x)) where g is a Skolem-function.

5. Move all universal quantifiers to the front of the formula.

6. Put formula in conjunctive normal form.

7. Rename the variables so that no variable symbol appears in more

than one clause.

8. Form the set of clauses.

Gregorics Tibor Artificial intelligence 12

Resolution process

P(a) ¬D(y)T(a,y) ¬P(x)¬Q(u)¬T(x,u) D(b) Q(b)

¬Q(u) ¬T(a,u) T(a,b)

¬Q(b)

{x|a} {y|b}

{u|b}

this substitution transforms

the literals P(a) and P(x)

into the same form

¬Q(v) ¬T(a,v)

Variable y must be renamed to u

because the variables of the new

clause must differ to the variables

of the other clauses.

Gregorics Tibor Artificial intelligence 13

Resolvable clauses and their resolvent

 The clauses C1 and C2 are resolvable

o if they contain a complementary literal pair (C1 contains

some positive instances of a predicate symbol, C2 contains

some negative instances of the same predicate symbol),

o so that few of its positive instances of C1 and few of its

negative instances of C2 can be unified.
C1 = P(t11,...,t1n) ... P(tr1,...,trn) C1'

C2 = ¬P(u11,...,u1n) ... ¬P(us1,...,usn) C2'

 Let be the most general unifier of the instances

P(t11,...,t1n), ... , P(tr1,...,trn), P(u11,...,u1n), ... , P(us1,...,usn).

The resolvent of C1 and C2 : R(C1 , C2) = C1' C2'.

 The empty clause () is an unsatisfiable clause by definition.

C1' and C2’ may be

empty but they can

contain P() or ¬P().

Resolution

14 Gregorics Tibor Artificial intelligence

1. CLAUSES := clauses of A1, A2, ..., An, ¬B

2. loop

3. if CLAUSES then return unsatisfiable

4. if there are no resolvable C1,C2 CLAUSES so that

 R(C1,C2) is unknown (not included in CLAUSES)

 then return satisfiable

5. select C1,C2 CLAUSES where R(C1,C2) is unknown

6. CLAUSES := CLAUSES R(C1,C2)

7. endloop

In order to prove A1, A2, ..., An B it is enough to show that the

clause form of formulas A1, A2, ..., An,¬B are unsatisfiable.

DATA := initial value

while termination condition(DATA) loop

 SELECT R FROM rules that can be applied

 DATA := R(DATA)

endloop

Gregorics Tibor Artificial intelligence 15

Problem: Professors teach all people who cannot learn alone.

There is no professor who teaches a man who can learn alone.

Thus there are no professors.

Example: There are no professors

 x [P(x) → y(T(y,y) → T(x,y))]

x [P(x) y(T(y,y) T(x,y))]

x P(x)

T(x,y) ~ x teaches y

P(x) ~ x is a professor

P(x1)T(y1,y1)T(x1,y1) P(x2)T(y2,y2)T(x2,y2) P(a)

P(y2)

{x1| y2, x2| y2, y1| y2}

{y2| a}

Formalization:

Gregorics Tibor Artificial intelligence 16

Features of resolution

 The resolution refutation is sound: if it finds the empty

clause, then the original clauses must be unsatisfiable.

 The resolution refutation is complete: the empty clause can

be derived from an unsatisfiable set of clauses.

 But in first order logic it is not guaranteed that the refutation

terminates, so the unsatisfiablity problem is only a partial

decidable: {¬P(x), P(y)¬P(f(y)), P(a) }

 The resolution is nondeterministic. In one step, there may be

– several resolvable clause pairs

– several complementary predicate symbols in the selected clause pair

– several occurrences of the selected predicate symbol

 {P(x,f(a))P(x,f(y))Q(y), ¬P(z,f(a))¬Q(z), P(u,f(a))¬Q(a)}

Gregorics Tibor Artificial intelligence 17

 The resolution strategies can

– restrict the set of derivable resolvents

– give an order of the construction of resolvents.

 These strategies are secondary control strategies because they

can be applied to only a clause based representation.

 The completeness of the resolution may be lost under a

restricting strategy:

– The empty clause cannot be deduced always.

Resolution strategies

Gregorics Tibor Artificial intelligence 18

Ordering strategies

 In the breadth-first strategy, the resolvents are produced

level by level according to the resolution graph.

• The deepest parent of an ith level resolvent is on (i‒1)th level.

• Since each level contains only finite clauses the resolution must find the

empty clause in finite steps if the empty clause is derivable.

¬r

s qr pq p sr

pr qs

r ps p s ¬q

q

S = L0

L1

L2

L3 ... … s p

Gregorics Tibor Artificial intelligence 19

Ordering strategies

 The length of clauses strategy (length=number of literals),

prefers the resolvent that has got the shortest parents.

• The pair of clauses C1,C2 is shorter than the pair of

clauses D1, D2 if the shortest clause of the pair C1,C2 is

shorter than the shortest clause of the pair D1, D2. If these

lengths are identical, then the lengths of the other two

clauses must be compared.

Gregorics Tibor Artificial intelligence 20

Restricting strategies

 The resolution graph can be restricted:

o Unit-preference strategy

one parent is always a unit clause (including one literal)

o Linear-input strategy

one parent belongs to the base set, the other parent is the

previous resolvent (except in the first step)

o Ancestry-filtered form strategy

one parent either is in the base set or that is an ancestor of

the other parent, the other parent is the previous resolvent

o Set-of-support strategy

one parent belongs to the clauses derived from the given

subset T of the original clauses S

COMPLETE with only Horn clauses

COMPLETE with only Horn clauses

COMPLETE

COMPLETE if S‒T satisfiable

Gregorics Tibor Artificial intelligence 21

Simplification strategies

 Elimination of tautologies
A clause that is always true (ex. P(x)¬P(x)) is useless in the derivation

of the empty clause (that is always false).

 Elimination by subsumption
The clause C subsumes the clause D if there exits a substitution α so that

Cα is a part of D (ex. P(x) subsumes P(a)Q(z)). In this case the clause D

can be removed.

 Elimination of clauses with extraneous literal
A literal is extraneous if its predicate symbol does not occur in other

clauses with opposite sign.

Gregorics Tibor Artificial intelligence 22

Procedural attachment

 Procedures can be attached to certain symbols in order to

compute their values with respect to a given model.

For example:

o A ground instance of a function symbol can be substituted with the

constant symbol that represents the value of the very instance in

the given model.

• Example: If the function symbol sub is the subtraction on integers,

then sub(4,1) can be written as 3.

o The truth of a ground instance of a predicate symbol can be

evaluated based on its meaning.

• Example: If in the formula EQ(3,2) the predicate symbol EQ is the

equality, then EQ(3,2) is false.

Gregorics Tibor Artificial intelligence 23

 “If Fido goes wherever John goes and

 John is at school,

 where is Fido?”

Formalization:

 AT(y,x) ~ y is at place x

Are there any place for Fido?

x[AT(John,x) → AT(Fido,x)]

 AT(John, school)

 xAT(Fido,x)

Extracting answers

from resolution refutations

Refutation graph

Answering graph

AT(John, x1) AT(Fido, x1) AT(Fido, x2)

AT(John, school) AT(John, x1)

{x2 |x1}

{x1 |school}

AT(John, x1) AT(Fido, x1) AT(Fido, x2)

AT(John, school) AT(Fido, x1) AT(John, x1)

{x2 |x1}

{x1 |school}
AT(Fido, school)

AT(Fido, x2)

Gregorics Tibor Artificial intelligence 25

The answer extraction process

1. The original question (who, which, where, when, how

much) must be substituted with a goal statement „there

exists the answer”.

2. The refutation graph must be found.

3. The clauses resulting from the negation of the goal formula

are converted into tautologies by appending to them their

own negations.

4. Following the structure of the refutation graph, perform the

same resolutions as before until some clause is obtained at

the root.

5. Use the clause at the root as an answer statement.

26

A logical representation

of Hanoi tower problem

 Fact

– H(1,i,j,k,t(i,j).nil)

 Rule

– H(n‒1,i,k,j,y) H(1,i,j,k,t(i,j).nil) H(n‒1,k,j,i,z) →

 H(n,i,j,k, conc(y,t(i,j).nil,z))

 Goal

– x H(2,3,1,2,x)

t(i,j) function symbol denotes the move
of a disc from the peg i to the peg j

nil is the empty sequence

Gregorics Tibor Artificial intelligence

‘.’ is a two-arguments function symbol
in infix form that can create a sequence
from one move and a sequence.

H(n,i,j,k,x) predicate symbol is true if the
moves of the sequence x can put n pieces
discs from the peg i to the peg j

conc(x, y, z) function symbol denotes the
concatenation of the sequences x, y és z

Variables are bound by universal
quantifiers, except the goal

27

 H(1,i,j,k,t(i,j).nil)

 H(n‒1,i,k,j,y) H(1,i,j,k,t(i,j).nil) H(n‒1,k,j,i,z)

 H(n,i,j,k, conc(y,t(i,j).nil,z))

 H(2,3,1,2,x)

Clauses of Hanoi tower problem

Gregorics Tibor Artificial intelligence

H(2,3,1,2,x) H(n,i,j,k, conc(y,t(i,j).nil,z))

 H(n-1,i,k,j,y)

 H(1,i,j,k,t(i,j).nil)

 H(n-1,k,j,i,z) H(1,3,2,1,y)

 H(1,3,1,2,t(3,1).nil)

 H(1,2,1,3,z) H(1,i,j,k,t(i,j).nil)

{n2, i3, …, xconc(y,t(3,1).nil,z)}

{i3, j2, k1, yt(3,2).nil}

{i3, j1, k2}

{i2, j1, k3, zt(2,1).nil}

 H(1,3,1,2,t(3,1).nil)

 H(1,2,1,3,z)

H(1,2,1,3,z)

Refutation graph

H(2,3,1,2,x)

 H(1,3,2,1,y)

 H(1,3,1,2,t(3,1))

 H(1,2,1,3,z)

{n2, i3, …, xconc(y,t(3,1).nil,z)}

{i3, j2, k1, yt(3,2).nil}

{i3, j1, k2}

{i2, j1, k3, zt(2,1).nil}

 H(1,3,1,2,t(3,1))

 H(1,2,1,3,z)

H(1,2,1,3,z)

Answering graph

H(2,3,1,2,x)

H(2,3,1,2, conc(y,t(3,1).nil,z))

H(2,3,1,2, conc(t(3,2).nil,t(3,1).nil,z))

H(2,3,1,2, conc(t(3,2).nil,t(3,1).nil,z))

H(2,3,1,2, conc(t(3,2).nil,t(3,1).nil,t(2,1).nil))

