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Preface

This course is part of the TEMPUS project Nr� S JEP�������
�
European Course in Modelling and Simulation as it is one of the mod�
ules o�ered to the students�

The course is planned for both undergraduate and postgraduate
students who have the proper background in basic calculus� matrix al�
gebra and who are interested in the numerical solution of initial value
problems of di�erential equations� This interest is usually aroused by
the fact that almost all dynamic models describing time�dependent phe�
nomena in economy and in the sciences can only be solved by numerical
methods�

We shall use the computer algebra package Maple V Release � to il�
lustrate the theory� It helps in understanding the material and provides
the means for experimenting with the di�erent methods�

Our aim was to construct the material in a self�contained way� For
this purpose in Chapter � we summarise very brie�y the basic con�
cepts and results from the theory of ordinary di�erential equations and
numerical methods�

In Chapter � we deal with the numerical solutions of initial value
problems using single step methods� Linear multistep methods are
analysed in Chapter �� Chapter � treats sti� and delay systems of
di�erential equations�
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project Nr� S JEP�������
�� The work of the third author has partly
been supported by the grant No� MKM �����

 of the Hungarian
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CHAPTER �

Introduction

���� Some concepts and results from the theory

of ordinary di�erential equations

Many problems of applied mathematics lead to di�erential equa�
tions� We begin our study by explaining what a di�erential equation
is� As the two words di�erential and equation suggest� a di�erential
equation�loosely speaking�is an equation containing derivatives of
an unknown function� For example

dy

dx
� ��y��x	 
 sinx	�

y��x	 �
p

� 
 y��x	�

d�y

dx�
� ey�x� 
 xy��x	�

xy���x	 � xy��x	� x� 
 �
����	

are di�erential equations with respect to the unknown function y�x	�
For the unknown two variable function u�x� y	 we can consider the
following di�erential equations�

��u

�x�



��u

�y�
� ��

�u

�x
�

��u

�y�
� ����	

If the unknown function depends only on one independent real vari�
able� then the equation is called an ordinary di�erential equation� The
equations in ����	 are of this kind�

If the unknown function is a function of two or more independent
real variables� then it is a partial di�erential equation� For instance�
����	�

The order of a di�erential equation is the highest order of the de�
rivative entering into the equation� For instance� the equations

x
dy

dx
� y��x	 
  sinxy�x	� y��x	 � x� cos y�x	

are di�erential equations of the �rst�order� and both the equations

x
d�y

dx�
� y��x	 
  sinxy�x	� y���x	 � x� cos y�x	

are di�erential equations of the second�order�
We shall study only ordinary di�erential equations�

�



� �� INTRODUCTION

� First�order di�erential equations
In the most general case an ordinary di�erential equation of the

�rst�order contains an independent variable� an unknown function and
its derivative and has the form F �x� y�x	� y��x		 � �� where F �x� y�� y�	
is a given real valued function�

The results given here apply to the case where F is such that the
equation F �x� y�� y�	 � � can be solved for y� in the form y� � f�x� y�	�
Thus we shall consider di�erential equations of the form

y��x	 � f�x� y�x		� ����	

Our goal is to �nd the unknown function y�x	 satisfying ����	� i�e�
we want to solve the following problem�

Problem ���� Let I be a �xed interval of the real line and consider
the following rectangle or strip on the plane

D �� f�u� v	 � R
� j u � I� v � �c� d���� � c � d � 
�g�

Suppose that f is a real valued function de�ned on D� Find a di�eren�
tiable function y�x	 de�ned on a real interval J � I such that

�i	 �x� y�x		 � D �x � J	�

�ii	 y��x	 � f�x� y�x		 �x � J	�

This problem is called an ordinary di�erential equation of the �rst�
order� and is usually written in the form ����	� If such an interval J and
a function y�x	 exist� then y�x	 is called a solution of the di�erential
equation ����	 on the interval J � The graph of a solution of a di�erential
equation is called an integral curve of the equation� If there are no such
J and y�x	� we say that ����	 has no solution�

In order to understand what is meant by a solution� we give both
the equation and its solution� and we verify that it is a solution�

Example ���� Verify that the given function is a solution to the
corresponding di�erential equation�

�a	 y�x	 �
sin x

x
�x � �	� y��x	 


y�x	

x
�

cos x

x
�

�b	 y�x	 � ce��x 

�

�
ex �x � R	� y��x	 
 �y�x	 � ex�

where c is a real parameter�

�c	 y�x	 � �x 

�x

��� x�
�x � ���� �		�

xy��x	� xy��x	� ��x� 
 �	y�x	� x� � ��
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Solution� �a	 Di�erentiating y�x	 we have

y��x	 �
x cos x� sinx

x�
� �sinx

x�



cos x

x
�

� �y�x	

x



cos x

x
�x � �	�

�b	 Let c be a �xed number� Di�erentiating y�x	 we obtain

y��x	 � ��ce��x 

�

�
ex � ��

�
ce��x 


�

�
ex
�


 ex �

� ��y�x	 
 ex �x � R	�

i�e� the function y�x	 is a solution of the given di�erential equation�
�c	 In this case� we illustrate how to use Maple� First we de�ne the

given function y�x	

� y �� x �� �x � ��x��	
�x���

y �� x� �x 
 �
x

��� x�

Then we use the Maple�s di� procedure to compute the derivative
y��x	� naming the resulting output d	

� d	 �� diff�y�x�� x�

d� �� �� 

�

��� x�

 

x�

���� x�	�

Finally� we compute the left hand side of the given equation

� x�d	 � x�y�x��� � ���x���	��y�x� � x��

x ��� 

�

��� x�

 

x�

���� x�	�
	� x ��x 
 �

x

��� x�
	��

�� x� 
 �	 ��x 
 �
x

��� x�
	� x�

In this case Maple does not simplify the result automatically� If we use
the command simplify we obtain

� simplify���

�
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To graph y�x	 we can use the plot procedure� For example� entering

� plot�y�x�� x�������

-3

-2

-1

0

1

2

3

-3 -2 -1 1 2 3
x

graphs y�x	 on the interval ���� ���

In geometrical language� ����	 prescribes a slope f�u� v	 at each
point �u� v	 � D� A solution y�x	 on J is a function whose graph has
the slope f�x� y�x		 for each x � J �see Figure ���	�

x

y

D
tan� � f�x� y�x		

�
y�x	

x
J

I

Figure ���� Geometrical interpretation of ����	
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A set of short line segments representing the tangent lines can be
constructed for a large number of points� This collection of line seg�
ments �or vectors	 is known as the direction �eld of the di�erential
equation and provides a great deal of information concerning the be�
havior of the family of solutions� The direction �eld associated with
an equation can easily be studied using Maple�s DEplot procedure�
which is contained in the DEtools package�

Example ���� Draw the direction �eld of the di�erential equation

y��x	 � x 
 y�x	� ���	

Solution� First we load the DEtools package�

� with�DEtools��

The next command draws the direction �eld

� DEplot�fdiff�y�x�� x� � x � y�x�g� fy�x�g�
x�������	��� y������� arrows�SMALL�

-2

-1

0

1

2

y(x)

-2 -1 1x

As we see the magnitude of the arrow at a point �u� v	 is proportional
to the magnitude of f�u� v	 �� u 
 v�

Fortunately the dsolve function of Maple is able to �nd the solu�
tions to many di�erential equations� The next examples illustrate how
Maple can be used to solve �rst�order di�erential equations�

Example ���� Use Maple�s dsolve procedure to �nd all solutions
of the di�erential equation ���	� Draw the graphs of some solutions�
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Solution� The di�erential equation ���	 can be de�ned as follows

� ex	 �� diff�y�x�� x� � x � y�x�

ex� ��
�

�x
y�x	 � x 
 y�x	

Now� we invoke the dsolve function

� sol	 �� dsolve�ex	� y�x��

sol� �� y�x	 � �x� � 
 ex C�

Our di�erential equation has a family of possible solutions� parameter�
ized by the �constant of integration�� The dsolve function labels this
constant C��

We would like to check if the answer is correct� �The reader should
do this in every case�	 Substituting the obtained functions in the equa�
tion itself we have

� subs��� ex	�

�

�x
��x� � 
 ex C� 	 � �� 
 ex C�

Evaluating the di�erence of the two sides of this equation we see
that

� expand�lhs��� � rhs����

�

Therefore� for any �xed real number c the function

yc�x	 � �x� � 
 cex �x � R	 ����	

and its restrictions to all the intervals J � R are solutions of ����	� It
can be shown that this di�erential equation has no other solution� We
express this fact so that the general solution of ����	 is ����	�

Let us observe that Maple returns an equation for the unknown
function� In order to draw the graph of a solution we have to select the
expression for the function�

� rhs�sol	�

�x� � 
 ex C�



���� SOME CONCEPTS AND RESULTS �

We use seq and subs to de�ne the set of seven functions yc�x	 �c �
���������� � � � � ���� ���	� These functions can be plotted for example
on the interval ��� 	 in the following way

� plot�fseq�subs��C	�
���i� rhs�sol	��� i�������g�
x������� ������

-4

-2

2

4

-4 -2 2 4
x

Example ��� Find the general solution of the di�erential equation

y��x	 � �y��x	 ����	

on the upper half plane using Maple and check the result�

Solution� Similarly to the previous example we obtain

� ex� �� diff�y�x�� x� � �y�x���

ex� ��
�

�x
y�x	 � �y�x	�

� sol� �� dsolve�ex�� y�x�� explicit�true�

sol� �� y�x	 �
�

x 
 C�

The explicit�true optional equation forces the solution to be re�
turned explicitly in terms of the dependent variable� The default value
is explicit�false� In this case Maple is content with giving the so�
lution in an implicit form�
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Now we check the result in the following way�

� subs��� ex���

expand�lhs��� � rhs����

�

Thus� the general solution of our di�erential equation on the upper
half plane is

y�x	 �
�

x 
 c
�

where c is an arbitrary real number� This means that for any �xed real
number c the functions

yc�x	 �
�

x 
 c
�x � ��c�
�		�

yc�x	 �
�

x 
 c
�x � �����c		�

and their restrictions to an appropriate interval J � R and only these
are solutions of ����	�

The above examples show that the problem ����	 may have many
solutions� However� in many cases there exists only one solution passing
through a point and existing on a maximal interval� as illustrated in
the following examples�

Example ���� Find the solution y�x	 of ���	 passing through the
point ��� �	� i�e� satisfying the condition y��	 � ��

Solution� From Example ��� we know that the general solution
of ���	 is

y�x	 � cex � x� � �x � R	�

where� c is an arbitrary real parameter� We have to �nd a real number
c for which

� � y��	 � ce� � �� ��

This number c can be obtained in the following way

� c �� solve�subs�x�	� y�	���� sol	�� �C	�

c ��


e
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thus the asked solution is

� simplify�subs��C	�c� sol	��

y�x	 � �x� � 
  e�x���

which is de�ned on the whole real line� It is easy to prove that this is
the unique solution of ���	 on R satisfying the condition y��	 � ��

Example ���� Find the solution y�x	 of ����	 passing through the
point ��� �	� i�e� satisfying the condition y��	 � ��

Solution� We can solve this problem similarly to the previous
example� but fortunately in the dsolve procedure we can immediately
specify an initial condition�

The di�erential equation ����	 is de�ned in our Maple�s variable
ex�� Now we give the initial condition

� in�cond �� y�	� � �

in cond �� y��	 � �

For the solution the dsolve function have to use in the following form�

� dsolve�ex�� in�cond� y�x��

y�x	 �
�

x� �

�

It is clear that the maximal interval on which this solution may be
de�ned is the interval �����
�	 and there isn�t any other solution of
our problem on this interval�

Therefore� in order to be able to talk about uniqueness of solutions
of ����	� one is led to the problem of �nding a solution passing through
a given point of the strip D�

Suppose that ��� �	 is a given point in D� Then an initial value
problem associated with ����	 and this point is de�ned in the following
way�

Problem ���� Find a solution y�x	 of ����	 satisfying the condi�
tion y��	 � ��

This problem is denoted by

y��x	 � f�x� y�x		� y��	 � �� ����	
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� Basic questions for initial value problems

�� The �rst question to be answered is under what conditions on
f can we say that the problem ����	 has at least one solution� �The
problem of existence of solution�	

The following theorem �see� e�g� �CL�� Theorem ���	 lays down a
su�cient condition for a solution to exist�

Theorem ��� �Cauchy�Peano existence theorem	� If f is a con�
tinuous function on the strip D then there exists a solution of the initial
value problem ����	�

�� The second question is the problem of uniqueness of solutions�
For example we know that the initial value problem

y��x	 � x 
 y�x	� y��	 � �

has a unique solution on the whole real line� Example ��� shows that
the initial value problem

y��x	 � �y��x	� y��	 � �

has a unique solution on the interval �����
�	 and this is the maximal
interval in which a solution exists�

Not all problems possess a unique solution� The following example
shows that something more than the continuity of f in ����	 is required
in order to guarantee that a solution passing through a given point be
a unique solution on a maximal interval�

Example ���� Let ��� �	 be a �xed point of the plane� Find all
solutions of the initial value problem

y��x	 � �
p
jy�x	j� y��	 � �� ����	

Solution� Assume that � � � and consider the di�erential equa�
tion

� ex���diff�y�x�� x����sqrt�abs�y�x���

ex	 ��
�

�x
y�x	 � �

p
jy�x	j

The dsolve function gives the general solution of the above equa�
tion in implicit form

� sol� �� dsolve�ex�� y�x��

sol	 �� � y�x	p
jy�x	j 
 x � C�
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We can solve this equation on the upper half�plane �S� �� R � R
�	 in

the following way�

� assume�y�x��
�

� sol�u �� factor�dsolve�ex�� y�x�� explicit�true��

sol	u �� y�x�	 � ��x� 
 C� 	�

The appended tilde � indicates that the variable x carries assumption�
Therefore on S� we obtain the following solutions

yc��x	 �� �x� c�	
� �x � �c��
�		�

where c� is an arbitrary real number� The integral curve passes through
the point ��� �	 if

� c	 �� solve�subs�x�tau� y�tau��xi� sol�u�� �C	����

c� �� � �
p
�

On the lower half�plane �S� �� R � R
�	 we have

� assume�y�x��
�

� sol�l �� factor�dsolve�ex�� y�x�� explicit�true��

sol	l �� y�x�	 � ��x�� C� 	�

Thus the general solution on S� can be written in the following form

yc��x	 �� ��x� c�	
� �x � ���� c�		�

where c� is an arbitrary real constant�
It is clear that the zero function is also a solution of the di�erential

equation y��x	 � �
pjy�x	j�

These results mean that the initial value problem ����	 has in�nitely
many solutions� for example if � � � then for every �xed number
c � � �p

� the function

yc�x	 ��

���
��

�x� � 

p
�	� if x � � �p

��

� if c � x � � �p
��

��x� c	� if x � c

is a solution on the whole real line �see Figure ���	�
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x

y

�

c � �p
� �

Figure ���� Di�erent solutions of ����	

We can solve the problem for � � � in a similar way�

A simple condition which permits one to imply uniqueness is the
Lipschitz condition�

Definition ���� Suppose f is de�ned on a strip D of the plane� If
there exists a constant L � � such that for every �u� v�	 and �u� v�	 in
D

jf�u� v�	 � f�u� v�	j � Ljv� � v�j
then f is said to satisfy a Lipschitz condition 
with respect to the
second variable of f� in D� The constant L is called the Lipschitz

constant�

The following fundamental existence and uniqueness theorem for
the initial value problem given in ����	 states that the problem ����	
has exactly one solution� provided f satis�es a Lipschitz condition �see�
e�g� �He�� Theorem ���	�

Theorem ��� �Picard�Lindel�of theorem	� Let f be a continuous
function de�ned on the strip D �� f�u� v	 j a � u � b� v � Rg�
where a� b are �nite real numbers� Suppose that f satis�es a Lipschitz
condition on D� Then for every � � �a� b� and every � � R there exists
exactly one function y�x	 such that

�i	 y�x	 is di�erentiable for x � �a� b��

�ii	 y��x	 � f�x� y�x		 for x � �a� b��


iii� y��	 � ��
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From the mean value theorem it easily follows that the Lipschitz
condition is satis�ed if the partial derivative �f��y exists on the strip
D and it is continuous and bounded there�

�� Explicit representation of solutions� It turnes out that given an
arbitrary di�erential equation� constructing a closed�form solution is
nearly always impossible� For example� the simple di�erential equation

y��x	 � x 
 x� 
 y��x	

does not possess a closed�form solution in terms of elementary func�
tions� although its solutions can be expressed in a complicated way in
terms of Bessel functions of fractional order� We remark that Kamke�s
book �Ka� contains those special types of di�erential equations that
may be solved in terms of elementary functions using a �nite num�
ber of arithmetic operations� Consequently� although mathematicians
were �rst concerned with �nding closed�form solutions to di�erential
equations� after realizing that these type of solutions were usually im�
possible to construct� mathematicians have since �frequently	 turned
their attention to addressing properties of the solution without actu�
ally �nding them and seeking algorithms to approximate the solution�

� Systems of ordinary di�erential equations

Many problems in practice are modelled with more than one equa�
tion and involve more than one unknown functions� For example� if
we want to determine the population of two interacting populations
such as foxes and rabbits� we would have two functions to represent
the quantities of two populations where these populations depend on
one independent variable that represents time�

More precisely� one can formulate the following problem�

Problem ���� Suppose n is a positive integer and f�� f�� � � � � fn are
n real valued continuous functions de�ned on some strip D of the real
�n 
 �	�dimensional Euclidean space� Find n di�erentiable functions
y��x	� y��x	� � � � � yn�x	 de�ned on a real interval J such that

�i	 �x� y��x	� � � � � yn�x		 � D �x � J	�

�ii	 y�i�x	 � fi�x� y��x	� � � � � yn�x		 �x � J	�

This problem is called a system of n ordinary di�erential equations
of the �rst�order � and is denoted by

y�i�x	 � fi�x� y��x	 � � � � yn�x		 �i � �� �� � � � � n	� ����	

Correspondingly� if such an interval J and functions y��x	� � � � � yn�x	
exist� then the set of functions �y��x	� � � � � yn�x		 is called a solution of
the system ����	 on the interval J �
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Let ��� ��� � � � � �n	 � D� The initial value problem consists of �nding
a solution �y��x	� � � � � yn�x		 of ����	 on an interval J containing � such
that yi��	 � �i �i � �� �� � � � � n	�

Such initial value problems can be written analogously to ����	 in
vector form

y��x	 � f�x�y�x		� y��	 � �� �����	

where

y�x	 ��

�
���
y��x	
y��x	

���
yn�x	

	


� � f ��

�
���
f�
f�
���
fn

	


� � � ��

�
���
��
��
���
�n

	


�

and ��� �	 � D is a given point�
A system of n di�erentiable functions

yi�x� c�� c�� � � � � cn	� �i � �� �� � � � � n	 �����	

of the independent variable x� and n arbitrary constants c�� c�� � � � � cn
is said to be the general solution of the system ����	 if

�i	 for any values of c�� c�� � � � � cn the system of functions �����	 are
solutions of ����	�

�ii	 the solution of any initial value problem related to ����	 can be
obtained from �����	 by appropriately choosing c�� c�� � � � � cn�

It turns out that the basic questions and results for the case n � �
can be carried over successfully to the system �����	� In terms of the
de�nitions introduced above� the theorems ��� and ��� are valid for the
vector equation �����	 if� in their statements y� f are replaced by the
vectors y� f and the magnitude is understood for vectors as�

kyk ��

� nX
i��

jyij�
���

�y � R
n	�

A particularly interesting system is the linear system

y���x	 � a���x	y��x	 
 � � �
 a�n�x	yn�x	 
 h��x	�

y���x	 � a���x	y��x	 
 � � �
 a�n�x	yn�x	 
 h��x	�

���

y�n�x	 � an��x	y��x	 
 � � �
 ann�x	yn�x	 
 hn�x	�

�����	

where the functions aij and hi are real valued continuous functions on
some bounded interval I � R�
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Using the notations

y�x	 ��

�
���
y��x	
y��x	

���
yn�x	

	


� �A�x	 ��

�
���
a���x	 � � � a�n�x	
a���x	 � � � a�n�x	

���
an��x	 � � � ann�x	

	


� �h�x	 ��

�
���
h��x	
h��x	

���
hn�x	

	


�

the system �����	 can be written in vector form�

y��x	 � A�x	y�x	 
 h�x	� �����	

From the above mentioned results it follows that for every initial
value ��� �	 � I �R

n the equation �����	 has exactly one solution y�x	
on the whole interval I satisfying the condition y��	 � ��

Let A�x	 be independent of x� i�e� we have a linear system with con�
stant coe�cients� In this case there is a general method �see� e�g� �CL�	
to compute the solution of the corresponding initial value problem�

Fortunately many systems of linear di�erential equations with con�
stant coe�cient can also be solved with the Maple�s dsolve procedure�
We illustrate this in the following examples�

Example ���� Use Maple�s dsolve procedure to �nd the general
solution of the system

y���x	 � y��x	� y��x	�

y���x	 � y��x	� y��x	�
����	

Solution� First we de�ne the system in Maple

� sys	 �� diff�y	�x�� x� � y	�x� � y��x��

diff�y��x�� x� � y��x� � ��y	�x�

sys� ��
�

�x
y��x	 � y��x	� y��x	�

�

�x
y��x	 � y��x	�  y��x	

For systems we have to use the dsolve function in this form�

� dsolve�fsys	g� fy	�x�� y��x�g�

fy��x	 �
�

�
C� e��x� 


�

�
C� e��x� � �


C� e��x� 


�


C� e��x��

y��x	 � � C� e�� x� 
 C� e��x� 

�

�
C� e��x� 


�

�
C� e�� x�g
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By using the collect procedure we can collect together those
terms containing e�x and e�x�

� collect��� fexp��x�� exp���x�g�

fy��x	 � �
�

�
C� � �


C� 	 e��x� 
 �

�

�
C� 


�


C� 	 e��x��

y��x	 � �� C� 

�

�
C� 	 e��x� 
 � C� 


�

�
C� 	 e��x�g

We leave it to the reader to verify that this is the general solution
of ����	� indeed�

Example ���� Use Maple�s dsolve procedure to �nd the solution
of the initial value problem

y���x	 � ��y��x	 
 �y��x	 
 e��x� y���	 � ��

y���x	 � �y��x	� ��y��x	 
 �� y���	 � ��
�����	

Solution� Similarly to the previous example we have

� sys� �� diff�y	�x��x� � ���y	�x����y��x��exp����x��

diff�y��x��x� � ��y	�x��	
�y��x��	

sys� ��
�

�x
y��x	 � �� y��x	 
 � y��x	 
 e��� x��

�

�x
y��x	 � � y��x	� �� y��x	 
 �

� init�cond �� y	�
��	� y��
���

init cond �� y���	 � �� y���	 � �

� funcs �� fy	�x�� y��x�g

funcs �� fy��x	� y��x	g

� dsolve�fsys�� init�condg� funcs�

fy��x	 �
����

���
e����x� 


��

��
e��� x� 


�





�

�
e��� x��

y��x	 �
�

��
e��� x� � ���

���
e����x� 


�







�
e���x�g
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It is easy to verify that the obtained function is the unique solution of
the initial value problem �����	�

� Higher�order di�erential equations
Many physical situations exist that need to be modeled by higher�

order di�erential equations�
More precisely� one can formulate the following problem�

Problem ��� Suppose f is a real valued continuous function de�
�ned on some strip D of the real �n
 �	�dimensional Euclidean space�
Find a function y�x	 de�ned on a real interval J possessing n deriva�
tives there such that

�i	 �x� y�x	� y��x	� � � � � y�n����x		 � D �x � J	�

�ii	 y�n��x	 � f�x� y�x	� y��x	� � � � � y�n����x		 �x � J	�

This problem is called the nth�order di�erential equation associated
with f � and is denoted by

y�n��x	 � f�x� y�x	� y��x	� � � � � y�n����x		� �����	

If such an interval J and a function y�x	 exist� then y�x	 is said to be
a solution of �����	 on the interval J �

Let ��� ��� � � � � �n	 � D� The initial value problem consists of �nding
a solution y�x	 of �����	 on an interval J containing � such that

y��	 � ��� y
���	 � ��� � � � � y

�n�����	 � �n� �����	

The equation �����	 can always be transformed into an equivalent
system of �rst�order di�erential equations� For this purpose one usually
sets

z��x	 �� y�x	�

z��x	 �� y��x	�

���

zn�x	 �� y�n����x	�

so that equation �����	 becomes

z��x	 �

�
�����

z���x	
z���x	

���
z�n���x	
z�n�x	

	




� �

�
�����

z��x	
z��x	

���
zn�x	

f�x� z��x	� � � � � zn�x		

	




� �����	

This system is called the system associated with the nth�order equation
�����	�
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From the above mentioned fact it follows that the theory of equa�
tion �����	 can be reduced to the theory of a system of n �rst�order
di�erential equations� It is thus clear that all statements about the sys�
tem �����	 carry over directly to the statements about the nth�order
equation �����	�

The general solution of the nth�order di�erential equation �����	 is
the set of all of its solutions de�ned by a formula y�x� c�� c�� � � � � cn	
containing n arbitrary constants c�� c�� � � � � cn such that� if the initial
conditions �����	 are given� values �c�� �c�� � � � � �cn can be found such that
y�x� �c�� �c�� � � � � �cn	 is a solution of equation �����	 satisfying these initial
conditions�

A particularly interesting higher�order di�erential equation is the
nth�order linear di�erential equation�

y�n��x	 
 an���x	y�n����x	 
 � � �
 a��x	y��x	 
 a��x	y�x	 � h�x	�

where the functions ai �i � �� �� � � � � n � �	 and h are real valued con�
tinuous functions on some interval I � R�

From the above mentioned results it follows that if the functions
a�� a�� � � � � an��� h are continuous on an interval I � R then for every
initial value � � I and �i � R �i � �� �� � � � � n	 the initial value problem

y�n��x	 
 an���x	y�n����x	 
 � � �
 a��x	y��x	 
 a��x	y�x	 � h�x	�

y��	 � ��� y
���	 � ��� � � � � y

�n�����	 � �n���

has a unique solution on the interval I�
We can use the Maple�s dsolve procedure to compute solutions of

many higher�order di�erential equations� We illustrate the possibilities
on the following examples�

Example ����� Find the general solution of the equation

xy�	��x	� y����x	 � �� �����	

Solution� We use the di� function with � to represent the higher�
order derivatives of y�x	�

� dsolve�x�diff�y�x�� x����diff�y�x�� x��� � 
� y�x��

y�x	 � C� 
 C� x 
 C	 x� 
 C x� 
 C� x	

Let us observe that the general solution of this �fth�order equation
contains �ve independent parameters C�� � � � � C��

Example ����� Solve the following initial value problem

�y���x	 �
y��x	

x



x�

y��x	
y��	 �

p
�

�
� y���	 �

p
�

�
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Solution� In Maple we can de�ne a di�erential equation with the
procedure D� too�

� eq �� ���D�����y��x� � D�y��x��x� x���D�y��x�

eq �� � �D���	�y	�x	 �
D�y	�x	

x



x�

D�y	�x	

� init�cond �� y�	� � sqrt������ D�y��	��sqrt�����

init cond �� y��	 �
�

�

p
�� D�y	��	 �

�

�

p
�

� simplify�dsolve�feq� init�condg� y�x���

y�x	 �
�

�

p
�x�p
x�

It is easy to show that this function is the unique solution on the
interval ���
�	�

Besides initial value problems� boundary value problems also fre�
quently occur in practice� Here� the desired solution y�x	 of the dif�
ferential equation �����	 has to satisfy a boundary condition of the
form

r�y�a	� y�b		 � ��

where a 	� b are two di�erent point of the interval I and r is a given
two variable function�

We will discuss methods for the solution of initial value problems
only� since the class of the methods for boundary value problems is
di�erent�

We only give a single example to illustrate that Maple�s dsolve
procedure can be used to solve boundary value problems� too�

Example ����� Find the solution of the boundary value problem

y���x	� �y�x	 � e�x� y��	 � �� y��	 � ��

Solution� As in the previous examples we have

� eq	 �� �D�����y��x� � ��y�x��exp���x�

eq� �� �D���	�y	�x	� � y�x	 � e�� x�
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� bound�cond �� y�
��	� y�	���

bound cond �� y��	 � �� y��	 � �

� dsolve�feq	�bound�condg� y�x��

y�x	 � ��

�
e�� x� 


�

�

�� e���� � e� � ��	 e��x�

�e� 
 e����
�

��

�

��e� 
 � e� � ��	 e���x�

�e� 
 e����

We leave it to the reader to verify that this function is the unique
solution on the whole real line�

���� Necessity and a classi�cation of the approximate

solutions of initial value problems

As we have already mentioned� explicit solutions of initial value
problems can only be found in relatively few cases� In Section ��� we
have seen some of these problems�

Even with quite simple di�erential equations it may happen that
their solutions cannot be expressed in closed form� For example� the
di�erential equation

y��x	 � x� 
 y��x	 �����	

does not possess a closed form solution in terms of elementary functions�
In Maple the usual elementary functions like the exponential func�

tion� the natural logarithm� the trigonometric functions are present and
the program can solve many ordinary di�erential equations exactly in
explicit or in implicit form� Maple also includes all the commonly used
special functions of applied mathematics� for example orthogonal poly�
nomials� Bessel functions� Gamma function� etc� The complete list of
the available built�in mathematical functions can be obtained by the
command �inifcns �help about initially known functions	�

Maple�s dsolve procedure tries to �nd the solutions of a di�erential
equation in terms of built�in mathematical functions� For example� the
general solution of the di�erential equation �����	 can be expressed in
terms of Bessel functions and Maple can �nd it�

� dsolve�diff�y�x�� x� � x�� � y�x���� y�x��

y�x	 � �
x � C� BesselY�

��


�

�

�
x�	 
 BesselJ�

��


�

�

�
x�		

C� BesselY�
�


�

�

�
x�	 
 BesselJ�

�


�

�

�
x�	
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If we cannot construct an expression in a closed form for the solution
of an initial value problem� then we can give an approximation of the
exact solution� The methods providing approximations can be divided
into two groups according to the form of the representation of the
solution�

� Analytic methods which give an approximate solution of a dif�
ferential equation in the form of an analytic expression� like a
polynomial�

� Discrete methods or numerical methods which give an approxi�
mation of the exact solution only at discrete points of its domain�

We shall investigate numerical methods in later chapters� For the
�rst group of methods we mention the power series method �see� e�g�
�AB�� Chapter �	 and the method of successive approximations or Pi�
card�s method� This method was �rst used to prove the existence and
uniqueness of the solution of initial value problems �see Theorem ���	�

Consider the initial value problem ����	 and assume that the con�
dition of the Theorem ��� are satis�ed� The method of successive ap�
proximations consists in that the solution of ����	 is obtained as the
limit of a sequence of functions yn�x	� which are found by the recursive
formula

y��x	 � ��

yn���x	 � � 


Z x

�

f�s� yn���s	ds �n � �� �� �� � � � 	�
�����	

It is proved �see� e�g� �CL�	 that in a certain interval� which contains
the point � the sequence �����	 converges uniformly to the unique so�
lution of the initial value problem ����	� This method gives a global
approximation� i�e� gives an approximation on a suitable interval �

The next example illustrates how Maple can be used to calculate
the sequence of the successive approximations�

Example ����� Use Picard�s method to �nd the �rst few terms of
�����	 for the initial value problem

y��x	 � x� 
 y��x	� y��	 � ��

Solution� First we de�ne the right�hand side of the di�erential
equation

� f �� �x� y� �� x�� � y��

f �� �x� y	 � x� 
 y�
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The initial condition is

� tau �� 


� �� �

� xi �� 


� �� �

A simple program which shall compute the recursive sequence �����	 is
this

� y �� proc�n�

local ww

option remember

ww �� unapply�y�n�	�� x�

xi � int�f�s� ww�s��� s�tau��x�

end�
y�
� �� xi�

Note that in de�ning the recursively de�ned function y� we take advan�
tage of the option remember� This instructs Maple to remember the
values of y computed� and thus� when computing y�n�� Maple need
not recompute y�n�	��

We obtain � for example � the �rst four terms of �����	 in the
following way�

� for i from 
 to � do y�i� od

�

�

�
x�

�

�
x� 


�

��
x


�

�
x� 


�

�����
x�	 


�

����
x�� 


�

��
x


The question how close these functions are to the exact solution will
not be treated here �cf� �CL�	�
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���� Basic problems of approximate methods

As we mentioned in the previous sections it is often impossible to
�nd the exact solution of an initial value problem using standard tech�
niques� In fact� there are very few problems for which an exact solution
can be determined with elementary functions using a �nite number of
arithmetic operations� Therefore� we need numerical methods to ap�
proximate the solutions�

Similar problems arise in other topics of mathematics� too� For
example� there are formulas for solving quadratic� cubic and quartic
polynomial equations but no such formula exists for polynomial equa�
tions of degree greater than four or even for a single equation such
as

x � tan x�

Let us consider another example from calculus� Suppose we want
to compute the de�nite integralZ b

a

f�x	dx�

The Fundamental Theorem of Calculus states that if F �x	 is any anti�
derivative of f�x	� thenZ b

a

f�x	dx � F �b	� F �a	�

Therefore� to evaluate a de�nite integral by means of this theorem
it is necessary to �nd an antiderivative of the function f�x	� If an
antiderivative cannot be found� then numerical methods may be used
to approximate the integral to any degree of accuracy�

Even if an exact solution of a given problem can be found it may be
of more theoretical than practical use� For example� it is well known
that there exists a complicated explicit formula for the roots of a third
degree polynomial equation which is not used in practice�

The objective of numerical analysis is to construct and analyze nu�
merical methods and algorithms for the solution of problems in science
and technology�

The goal of the rest of this section is to present some general prob�
lems which arise in the process of a numerical solution� For further
reading on general principles and problems of numerical analysis we
suggest the Chapters � and � of the book of G� Dahlquist and �A� Bj�ork
�DB��
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� Numerical algorithm

A numerical algorithm consists of a sequence of arithmetic and log�
ical operations which produces an approximate solution to within any
prescribed accuracy� An algorithm can be described loosely or in great
detail� A comprehensive description is obtained when an algorithm is
formulated using a programming language�

For a given problem one can consider di�erent algorithms� These
may give approximate answers which have widely varying accuracy�

� Sources of error
Numerical results are in�uenced by many types of errors� Some

sources of error are di�cult to in�uence others can be reduced or even
eliminated� Errors propagate from their source to quantities computed
later� sometimes with a considerable ampli�cation or damping�

We distinguish the following types of errors�

A� Errors in given input data� The input data can be the result
of measurements� Rounding errors occur� for example whenever an
irrational number is rounded to a �xed number of decimals�

B� Round�o� errors during the computations� The limited word�
length in a calculating device leads to a loss of information�

C� Truncation errors� Such errors result from replacing a desired
mathematical operation by a realizable computation� These errors are
committed when a limiting process is truncated� For example� if an
in�nite series is broken o� after a �nite number of terms�

D� Simpli�cation in the mathematical model � In most of the appli�
cations of mathematics� one makes idealizations� For a calculation in
economics� for example� one might assume that the rate of interest is
constant over a given period of time�

E� �Human� errors and machine errors� When one uses computers�
one can expect errors in the program itself� typing errors in entering
data� operator errors and �more seldom	 machine errors�

The e�ects of the errors are usually di�cult to estimate� If we do
not proceed carefully it may well happen that the computed approxi�
mations have very little to do with the desired solution� or may even
be meaningless�

Errors of type A� and D� are usually to be considered uncontrollable
in the numerical treatment� Errors of type B� and C� are controllable�

Whereas round�o� error and its properties are somewhat indepen�
dent of application area� truncation error can only be analyzed in the
context in which it occurs�
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We illustrate the e�ect of these errors by the next simple example�
Recall from calculus that the derivative of a function f�x	 at a point
x� is de�ned by the formula

lim
h��

f�x� 
 h	� f�x�	

h
�� f ��x�	�

We can approximate the derivative f ��x�	 by

Df�h	 ��
f�x� 
 h	� f�x�	

h

 f ��x�	

for a given h� The truncation error associated with using the �real�
izable� arithmetic formula Df�h	 for approximating an unrealizable
limiting operation� of the derivative is

f ��x�	�Df�h	�

Such an error would occur even if f�x	 and Df�h	 could be evaluated
exactly� This error� then� is of mathematical origin� It is clear that
if the magnitude of h is �large�� Df�h	 is inaccurate because h is not
su�ciently close to the limit� For reasons to be discussed later� as h
becomes small� inaccuracies due to round�o� error dominate� The error
in computing the di�erence f�x� 
 h	 � f�x�	 is large relative to the
actual value of this di�erence�

We can demonstrate errors in numerical approximation of the de�
rivative of the function f�x	 � exp x at the point x� � � using Maple�
First we calculate the exact value f ��x�	

� exact�value �� D�exp��	�

exact value �� e

Now we de�ne an approximation d	
f of Df�h	 as a function of h

� d	
f �� h �� �evalf�exp�	�h�� � evalf�exp�	����h

d��f �� h� evalf�e���h�	� evalf�e	

h

Therefore d	
f�h� gives Df�h	 calculated with ���digits precision �see
below	�

The errors for h � ��� � ���i �i � �� �� � � � � ��	 can be calculated in
the following way

� error �� h �� exact�value � d	
f�h�

error �� h� exact value � d��f�h	
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� for i from 
 to 	
 do evalf�error�
���	
���i��� od

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
������������
�����������

The obtained results suggest that there is an optimal value of h with
which the derivative of exp�x	 at x� � � can be approximated by the
�nite di�erence formula Df�h	�

� Round�o� errors

Round�o� errors have their origins in computer operations regard�
less of problem area� Here we describe these origins and examine some
frequently encountered settings�

Regardless of its source� error is usually quanti�ed in two di�erent
but related ways� Let x denote an exact value and x� its computer
approximation� Then the value jx�x�j is known as the absolute error�
In many cases� the absolute error does not properly re�ect its in�uence�
For instance� an error of ���� m in measuring the distance to the moon
would seem negligible� but it might be disastrous in designing a piston
to �t into cylinder of a car motor� In view of the e�ect of scale� the
concept of relative error� that is jx � x�j�jxj� is helpful� Any number
	�x�	 satisfying the inequality

jx� x�j � 	�x�	

is called an absolute error bound for the error of x� as an approximation
of x� Similarly� any number Rel �x�	 satisfying

jx� x�j
jxj � Rel �x�	

is called a relative error bound� If 	�x�	 is a small number compared to
jx�j� then 	�x�	�jx�j is a good approximation for Rel �x�	� i�e�

Rel �x�	 
 	�x�	

jx�j �
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Toward understanding the source and magnitude of round�o� error
we recall that computers store numbers in �oating�point representation�
i�e� in the form

x � f � ��E�

where x 	� � is any real number�

�

��
� jf j � �

and E is an integer� For example�

������ � ������� � ����

��������� � �������� � �����

In �oating�point arithmetic� it is correct to suppose that given any
two �oating point numbers� the arithmetical operation is performed
perfectly� and then the result is rounded� as necessary� so that the
result �ts into a �oating point computer word� Roughly speaking�
signi�cant �gures are preserved in addition� multiplication and division�
But subtraction can induce a special phenomenon known as subtractive
cancellation� This arises when two nearly equal �oating point numbers
are subtracted from one another� We illustrate this phenomenon by
the help of Maple�

Let us consider the positive number

� A �� ��sqrt����	�����	



A �� �
�

�

p
�� �

�
	���

Expanding we have

� A �� expand�A�

A �� �������������������

�

p
� 


��������������������

�

First we show that the number A is the di�erence of two nearly
equal numbers� Extracting components of A with the procedure op

and then evaluating these terms � for example � in ���digits �oating�
point arithmetic we get

� op�A��	�

�������������������

�

p
�
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� evalf����
�

������������������������������������������������ ����

� op�A����

��������������������

�

� evalf��� �
�

������������������������������������������������� ����

The true value of A lies in the interval ��� ������ which follows from

� � A �

�p
�� �

�

����

�

�
��p�� �

�

�	
	
�
��

�

�

�
�
p

�� ��

�

���

�

�
�

��

��

� ������

Now let us investigate what happens if we perform the operations
in �oating�point arithmetic� The precision of �oating�point arithmetic
can be de�ned by setting di�erent values to the Maple variable Digits�
whose default value is equal to ten� There are several functions that
make Maple compute in �oating�point arithmetic� the most important
being evalf �evaluate using floating�point arithmetic	� This procedure
approximates its �rst argument� the number of digits used is equal to
the value of its second argument� If there is no second argument to
evalf� then Maple takes the value of Digits as the number of digits to
be used in �oating�point arithmetic�

An approximate value of A in ���digits �oating�point arithmetic is

� evalf�A�

��� ����

which is very inaccurate because the true value of A lies in the interval
��� �������

We can obtain better result if we increase the precision of the
�oating�point arithmetic�
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� for n from 	 to � do evalf�A� 	
�n� od

��� ����

����

�

��� �����

��������� �����

������������������ �����

In numerical methods subtractive cancellation is to be avoided if
at all possible� Such loss of accuracy can often be avoided by a refor�
mulation of the expression into a mathematically equivalent form� for
example

p
� 
 x�p

�� x �
�xp

� 
 x 

p

�� x
�x � ��� �		�

ln b� ln a � ln
a

b
�a� b � �	�

If it is di�cult to �nd a suitable reformulation of an expression of the
form f�x 
 
	� f�x	� then subtractive cancellation can be avoided by
using the Taylor expansion�

� Problem of stability

In most situations the e�ect of errors of a numerical method does
not signi�cantly a�ect the �nal results� However� in certain cases it
can lead to a serious loss of accuracy so that computed results are very
di�erent from those obtained� The term of instability is used to describe
this phenomenon� There are two fundamental types of instability in
numerical analysis � inherent and induced� The �rst of these is a fault
of the problem� the second one is that of the method of solution�

A problem is said to be inherently unstable �or ill�conditioned	 if
small changes in the input data of the problem cause large changes in
its solution�

We illustrate this phenomenon in the following example�

Example ���� Show that the initial value problem

y���x	� ��y��x	� ��y�x	 � �� y��	 � �� y���	 � ��

is ill�conditioned�
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Solution� We can solve this problem with Maple

� eq	 �� �D�����y��x��	
��D��y��x��		�y�x��


eq� �� �D���	�y	�x	� �� D�y	�x	� �� y�x	 � �

� in�val	 �� y�
��	� �D��y��
���	

in val� �� y��	 � �� D�y	��	 � ��

� sol	 �� dsolve�feq	� in�val	g� y�x��

sol� �� y�x	 �
�

ex

Now suppose that the initial conditions are replaced by

y��	 � � 
 	� y���	 � �� 
 


for some small numbers 	 and 
� The particular solution satisfying
these conditions is

� in�val� �� y�
��	�delta� �D��y��
���	�epsilon

in val� �� y��	 � � 
 	� D�y	��	 � �� 
 


� sol� �� dsolve�feq	� in�val�g� y�x��

sol� �� y�x	 �

��

��
	 � �

��

 
 � 
 �

�

��
	 


�

��

	 e��� x� ex

ex

and therefore the change in the solution is

� collect�rhs�sol	� � rhs�sol��� exp�x��

��
�

��
	 


�

��

	 e���x� 


���

��
	 


�

��



ex

The term �	

	e��x��� is large compared with e�x for x � �� indicating
that this problem is ill�conditioned�

If the problem is ill�conditioned then any numerical results� irre�
spective of the method used to obtain them� will be highly inaccurate
and may be worthless� Nevertheless� it may happen that the original
ill�conditioned problem can be transformed into a well�conditioned one
with the same �or approximately same	 solution�
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We now consider a di�erent type of instability which is the conse�
quence of the method of solution rather than the problem itself�

A method is said to su�er from induced instability �or numerical
instability	 if small errors present at one stage of the method adversely
a�ect the calculations in subsequent stages to such an extent that the
�nal results are totally inaccurate�

This is illustrated by the following example�

Example ����� Let us consider the de�nite integrals

En ��

Z �

�

xn

x 
 �
dx �n � �� �� �� � � � 	�

�a	 Show that the sequence En �n � N	 satis�es the recursion for�
mula

E� � ln �� ln �

En �
�

n
� �En�� �n � �� �� �� � � � 	�

�����	

and monotone decreasingly tends to zero�
�b	 Compute some terms of these sequence with �����	 using�for

example����digits �oating�point arithmetic� Let us observe the e�ect
produced by round�o� errors�

Solution� �a	 It is clear that

E� �

Z �

�

�

x 
 �
dx � �ln�x 
 �	��� � ln �� ln ��

The recursion formula follows from

En 
 �En�� �

Z �

�

xn 
 �xn��

x 
 �
dx �

Z �

�

xn��dx �
�

n
�

Since xn�� � xn on the interval ��� �	 thus

En�� �

Z �

�

xn��

x 
 �
dx �

Z �

�

xn

x 
 �
dx � En�

i�e� the sequence En �n � N	 is monotone decreasing� Finally from the
inequalities

� � En �

Z �

�

xn

x 
 �
dx �

Z �

�

xndx �
�

n
�n � N	

we obtain that

lim
n��

En � ��

�b	 Below we use the formula �����	 to compute En� using �� dec�
imals throughout� The precision of �oating�point arithmetic can be
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de�ned by setting a value to the Maple variable Digits� whose default
value is equal to ten�

� Digits �� 	��

We can de�ne the recursion formula �����	 in the following way

� a �� evalf�ln���� � evalf�ln����

a �� ����������������

� E �� proc�n�

option remember

if n�
 then a
else 	�n���E�n�	�

fi
end�

Using this simple program we get

� for n from 
 to 		 do
sprintf��E��f���f�� ��n�	� E���n�	��od

E��	 � �������

E��	 � ������

E��	 � ������

E��	 � �������

E��	 � �������

E���	 � ������

E���	 � �������

E���	 � �������

E���	 � �������

E���	 � �������

E���	 � ��������

E���	 � �������

It is absurd that E��� E�� � �! The reason for the absurd result is that
the round�o� error 
 in E�� whose magnitude can be as high as � ������

is multiplied by �� in the calculation of E�� which then has an error
of ��
� That error produces an error in E� of ��
� etc� Therefore the
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error in the calculated value of E��� caused by the inaccuracy in E�� is
��� � � � ����� 
 �����

If we use more decimal places of accuracy� the absurd result will
show up at a later stage�

We propose the reader to redo the calculations with other values of
Digits and observe the changes� In practical problems this possibility
of changing accuracy may be enough to get rid of this problem�

The induced instability can be avoided either by modifying the
existing method or by using a more suitable algorithm�

���� Exercises

�� Verify that the given function is a solution to the corresponding
di�erential equation�

�a	 y�x	 � sin�� 
 log�� 
 x�	� �x � R	�

�x
p

�� y��x	 � y��x	�� 
 x�	�

�b	 y�x	 � �x� 	ex�� 
 ��

xy���x	 � y��x	 log
y��x	

x
�

�� Show that the system of functions

y��x	 � � �

x�
�x � �	� y��x	 � �x log x �x � �	

is a solution of the system of di�erential equations

y���x	 � �xy���x	� y���x	 �
y��x	

x
� ��

�� Show that y�x	 � � 
 c
p

�� x� �x � ���� �		� where c an ar�
bitrary real parameter� is the general solution of the di�erential
equation ��� x�	y��x	 
 xy�x	 � �x�

� Show that y�x	 � c�x
c� �x � R	� where c� and c� arbitrary real
parameters� is the general solution of the di�erential equation
y���x	 � ��

�� Find the coinciding solutions of the two equations�

y��x	 � y��x	 
 �x� x��

y��x	 � �y��x	� y�x	 
 �x 
 x� 
 x��

�� Determine domains in which the given equations have unique
solutions�

�a	 y��x	 �
p

�� y��x	�

�b	 y��x	 �
y�x	 
 �

x� y�x	
�
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�c	 y��x	 �
p
x� � y�x	� x�

�� Sketch the direction �eld associated with the equations

�a	 y��x	 � e�x � �y�x	�

�b	 y��x	 � sin�x 
 y�x		�

�c	 y��x	 � y�x	� x� 
 �x� �

using the Maple�s DEplot procedure� �It is contained in the
DEtools package� which can be loaded by entering the command
with�DEtools��	

�� Solve the following di�erential equations with Maple� Try to �nd
the solutions in their simplest form� and check if Maple �nds all
solution�

�a	 �y��x	y��x	 
 ��x � ��xy��x	�

�b	 y��x	 � �
y�x	

x
�
�
y�x	

x

�

�

�c	 xy��x	� y�x	 � x tan

�
y�x	

x


�

�� Write the di�erential equation

�y����x	 
 xy���x	 
 sin y�x	 � f�x	

as a system of �rst�order di�erential equations�

��� Find the general solution of the following equations

�a	 y���x	 
 y��x	 
 ��y�x	 � x cos� �x�

�b	 y��x	 � �x� y�x	�

�c	 y��x	 � xy��x	�

��� Solve the following initial value problems with Maple and check
the results

�a	 y��x	 � y�x	� y��	 � ��

�b	 y��x	 � �x� y�x	� y��	 � ��

�c	 y��x	 � xy��x	� y��	 � ��

��� De�ne

a �� �� ���� ���� ���� ���� ���� �� ���� ���� ���� ���� ���

Compute this di�erence with Maple in integer and di�erent digits
�oating�point arithmetic and compare the results�
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��� De�ne

a�n	 �� ��n � ���n � �	�

with n � �� �� � � � � and use Maple to evaluate a�n	 as a �oating�
point variable� Explain what is happening when the computed
solution di�ers from ��

�� �a	 Find a root of the equation ax�
bx
c � � using the formula

x �
�b 


p
b� � ac

�a

with values b � � and a � c � ���n� Assess the accuracy of
the results by seeing how closely the equation is satis�ed for
n � �� � � � � ��� Show that going to high precision does not count�
�b	 Think of a clever way to avoid subtractive cancellation� and
improve the results�

��� Use Taylor expansion to avoid subtractive cancellation in the
expression ex � e�x� when x is close to ��

��� Derive absolute and relative error bounds for arithmetic opera�
tions on inexact data�

��� Assume that the real valued function f is continuously di�eren�
tiable in a neighborhood of the point x �� �x�� � � � � xn	 � R

n �
Let x�i be an approximation of xi �i � �� � � � � n	 and x� ��
�x��� � � � � x

�

n	� Denote by 	�x�i 	 an absolute error bound for the
error of x�i �i � �� � � � � n	� Explain why the number

nX
i��

���� �f�xi �x�	
���� 	�x�i 	

may be considered as an upper bound for the absolute error
jf�x	� f�x�	j�

��� Derive error�bound formulas and absolute error bounds for the
following expressions�

�a	 x 
 y 
 x� � xy 
 y��

�b	
p
x� � y��

�c	 � cos x � cos y 
 sinx � sin y�

�d	
sinx

cos y

 z� � ��

�e	 �x� y	e�x�y
�

�
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��� The following �decimal	 numbers are approximated within a rel�
ative error bound �"� In each case� give the smallest intervals
that can be assured to contain the exact values�

�a	 ������

�b	 ��������

�c	 ������

�d	 ��������

��� The exact value of the number
�X
k��

�

k�

is ����� Approximate this number by summing for � to n� and
alternatively� from n to �� Let k be a �oating�point number�
Which direction of summation gives the more accurate answer#
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CHAPTER �

Single Step Methods

���� Basic concepts

We consider the �rst�order scalar initial value problem

y��x� � f�x� y�x��� y�a� � �� �����

where a and � are prescribed real values� We shall suppose that the
problem ����� has a unique solution on the bounded interval I ��
	a� b
 � R �see Theorem ����� Denote by y�x� �x � I� the exact so�
lution of ������

If we cannot construct an expression in a closed�form for the so�
lution y�x� �x � I�� then we can give an approximation of the exact
solution� As we have already mentioned in Section ���� there are two
fundamental types of approximate methods�analytic and discrete�

In the next part of this book we study only discrete methods which
are also called numerical methods� These are based on the following
idea� �x a positive integer N and try to determine an approximate
value yk of the exact value y�xk� for some discrete abscissae xk in the
interval I� where

x� �� a � x� � x� � � � � � xN�� � xN �� b�

The points xk �k � � �� � � � � N� are also called mesh points� They are
often equidistant� i�e�

xk �� a� kh �k � � �� � � � � N��

where

h ��
b� a

N
is the step size of the method� Thus� starting with the given initial
values x�� y� �� �� we can successively compute y�� y�� � � � � yN which
are the approximations of y�x��� y�x��� � � � � y�xN��

The discrete methods can be divided into two groups according to
the form of the representation of the solution�

� single step methods determine the approximation yk�� at the ab�
scissa xk�� � xk � h solely on the basis of the approximation
point �xk� yk�� whereas

��
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� multistep methods use the information at more than one previous
support abscissae to determine the approximation at the next
point�

In this chapter we investigate the �rst group of numerical methods
and the second one will be discussed in the next chapter�

In general� any single step method can be written in the form�

x� � � a� y� �� �

xk�� � � xk � h� h �� �b� a��N�

yk�� � � yk � h��xk� yk� h�

�k � � �� � � � � N � ���

�����

where � �the increment function� is a real valued function de�ned on
I � R � R� � Then ��xk� yk� h� describes how the new approximate
value yk�� is computed from �xk� yk� and the step size h� Therefore�
starting with the initial values a and � of the initial value problem
������ one now obtains approximate values yk for the exact quantities
y�xk� �k � � �� �� � � � � N��

Remark� Therefore to de�ne a single step method it is necessary
to prescribe the values x�� y�� h and the increment function �� Then
yk can be computed recursively� The single step method ����� is also
called a di�erence equation for the unknown values yk� In some cases
�for example if � is linear� yk may be simply expressed explicitly by
k and then we say that we solve the di�erence equation �see Section
�����

For di�erent choices of the function � di�erent single step methods
may be obtained�

Single step methods ����� can be directly generalized to systems
of di�erential equations and therefore also to higher�order di�erential
equations� The methods and results for initial value problems for sys�
tems of ordinary di�erential equations of �rst�order are essentially in�
dependent of the number of unknown functions� In the following we
therefore limit ourselves for simplicity and clarity to the case of only
one ordinary di�erential equation of �rst�order for a single unknown
function�

Before continuing� we would like to introduce the �big O� concept�
which will be used in the following chapters� The function f�h� is said
to be O�hp� �read �big oh of hp�� at h �  if there are positive numbers
K and h� such that jf�h�j � Khp for all h with jhj � h�� We usually
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write just

f�h� � O�hp��

with h �  understood�
For example sin h is O�h� at h �  because j sinhj � jhj for every

number h� From the Taylor� series expansion we have

j cosh� �j � �

�
h� �jhj � ���

and thus cos h � � is O�h�� at h � � Similarly� sinh � h is O�h�� at
h � � It is customary to express statements such as these in the form

sinh � O�h��

cos h � � �O�h���

sinh � h�O�h���

���� Euler�s method

A �rst numerical method for the solution of the initial value problem
����� is suggested by the following simple observation� Since f�x� y�x��
is just the slope� y��x�� of the desired exact solution of ������ one has
for h ��  approximately �see Figure ����

y�x� h�� y�x�

h
� y��x� � f�x� y�x��

or

y�x� h� � y�x� � hf�x� y�x���

x

y

y�x� h�

o
hf�x� y�x��

y�x�

h

x x� h

Figure ���� Approximation of the derivative
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Once a step size h � �b � a��N has been chosen� starting with the
given initial values x�� y� �� y�a� � �� one thus obtains at equidistant
points

xk �� x� � kh �k � � �� � � � � N�

approximations yk �k � � �� � � � � N� to the values y�xk� of the exact
solution y�x� �x � I� as follows�

x� � � a� y� �� �

xk�� � � xk � h� h �� �b� a��N�

yk�� � � yk � hf�xk� yk�

�k � � �� � � � � N � ���

�����

This is the oldest and the simplest method for the numerical solution of
initial value problems� It was proposed by Euler in ���� and is called
Euler�s method or the polygon method of Euler�

Euler�s method has a geometric interpretation� We start at the
point �x�� y��� and approximate the solution curve by the tangent at
the point �x�� y��� We compute the slope y��x� of the tangent directly
from the di�erential equation� We continue along this tangent until we
reach x� � x��h� The corresponding y�value is y�� Through the point
�x�� y��� there is a solution curve �which� however� does not correspond
to the given initial value�� Similarly� we approximate this curve by a
tangent through the point �x�� y�� and continue along this tangent until
we reach x�� and so on�

x

y

y�x�

y� y� y�

x� x� x�

Figure ��� Euler�s method
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We want to emphasize that Euler�s method is hardly ever used in
practice� as there are more accurate and more e�cient �but� at the
same time� more complicated� methods� Euler�s method is simple� and
that is why we use it for introducing the basic concepts in numerical
solution of initial value problems�

We will illustrate Euler�s method by numerically solving the initial
value problem

y��x� � ��xy��x�� y�� � �� �����

We will also show that how Maple can be used to perform the
calculations encountered when solving a di�erential equation�

This problem has a closed�form solution� and we will use it to check
the accuracy of the numerical solution�

Example ���� Use the Maple�s dsolve procedure to �nd the exact
solution of the initial value problem ������

Solution� We de�ne eq� to be the equation and in cond to be
the initial condition in ������

� eq� �� diff�y�x�� x� � ���x�y�x�	�


eq� ��
�

�x
y�x� � �� x y�x��

� in�cond �� y��� � �


in cond �� y�� � �

The dsolve procedure can exactly solve this problem�

� dsolve�feq�� in�condg� y�x��


y�x� �
�

x� � �

This answer can easily be checked� First� by using the subs procedure
we substitute the obtained function in the equation itself we have

� subs�� ode�


�

�x

�

x� � �
� �� x

�x� � ���
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Evaluating the di�erence of the two sides of this equation we get

� expand� lhs�� � rhs���




Therefore� the function

y�x� �
�

x� � �
�x � R�

is the exact solution of ������ It is easy to prove that this problem has
no other solution on the whole real line�

Example ���� Write a short Maple program to compute the ap�
proximate values yk of the solution of ����� at the points xk �� ��k
�k � � �� � � � � �� by means of Euler�s method with the step size h �
���

Solution� First we de�ne the right hand side of the given di�er�
ential equation� the initial values and the step size

� f �� �x�y� �� ���x�y	��

� a �� �� y� �� �� h �� ������

A Maple program of the algorithm ����� is

� y��proc�k�
option remember

if k�� then y�

else y�k����h�f�a��k����h�y�k����
fi

end�

Note that in de�ning the recursively de�ned function y� we take advan�
tage of the option remember� This instructs Maple to remember the
values of y computed� and thus� when computing y�n�� Maple need
not recompute y�n����

We obtain the approximate values at the prescribed points in the
following way�

� for k from � to � do y�����k� od


�
����������
����������
����������
���������
���������
�����������
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In this case Maple used � digits in �oating�point arithmetic� so we
had the result with round�o� errors� The precision of the �oating�
point arithmetic can be de�ned by setting di�erent values to the Maple
variable Digits� If we want to obtain more accuracy we have to set
this variable to a higher value at the beginning�

We remark that we can obtain results without round�o� errors if
we give h������� instead of h������ since Maple will then use exact
arithmetic�

The above program may be modi�ed to obtain a more complete and
convenient procedure� Fortunately this is unnecessary because Maple
contains such a procedure� Using Maple help

� �dsolve�classical�


we can see that the program can solve a problem by means of Euler�s
method if we invoke the dsolve function with the options

type�numeric and method�classical�foreuler�

In this function the step size may be modi�ed�
Let us consider how Example ��� may be solved using the Euler�s

method of Maple�

Example ���� Compute the approximate values yk of the solution
of ����� at the points xk �� ��k �k � � �� � � � � �� by means of the built�
in Euler�s method of Maple with the step sizes h � ��� ��� ���
Give also the errors

Ek �� y�xk�� yk �k � � �� � � � � ���

Solution� First we de�ne the initial value problem ������

� InValPr �� fdiff�y�x�� x�����x�y�x�	�� y�����g�
Now� we invoke the dsolve function with the above option and with
the step size ��� say�

� es� �� dsolve�InValPr� y�x�� type�numeric�
method�classical�foreuler�� stepsize�������


es� �� proc�x classical� � � � end

The output shows that at this point the program only remembers the
name of the procedure which will be executed if we invoke our function
es�� The approximate value for example at the mesh point x � ��
may be obtained in this manner�
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� es������


	x � ��� y�x� � ��������������


Note the form in which Maple gives the result� The value of the ap�
proximation may be selected from this answer in the following way�

� rhs�es����������


��������������

In this case the dsolve function used �� digits in �oating�point arith�
metic� There are several functions that make Maple compute in �oating�
point arithmetic� the most important being evalf� This procedure ap�
proximates its �rst argument� the number of digits used is equal to the
value of its second argument� For example

� evalf�� ���


���������

Our aim is to compute the approximate values at di�erent mesh
points with di�erent step sizes� Thus we de�ne the following Maple
functions�

� x �� k �� k����� � for the mesh points

� es� �� h �� dsolve�InValPr� y�x�� type�numeric�
method�classical�foreuler�� stepsize�h��

The function es� has a new variable� the step size� Thus� es��h��x�
gives an approximate value of the exact solution of our problem at the
point x using the Euler�s method with the step size h� For example

� es���������x����


	x � ��� y�x� � ��������������


Let us collect everything into a new Maple function which has two
arguments� The �rst argument is the mesh point and the second one
is the step size�

� EulerSol �� �x� h� �� rhs�es��h��x������

Thus EulerSol�x� h� gives the same result as es��h��x� but in a
di�erent form�
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� EulerSol�x���� ������


��������������

We can quickly make several numerical experiments using this func�
tion and not only for problem ������ We illustrate these possibilities by
making a table which contains the mesh points� approximate values of
the exact solution and the values obtained by means of Euler�s method
with step sizes h � ��� ��� ���

From the previous example we know the exact solution

� ExactSol �� x�����x	����


ExactSol �� x	 �

x� � �

To create a table we use the array procedure with corresponding head�
ings�

� mm �� array������ ������
mm��������x�k��� mm��������Exact sol���

mm�������� h���� ��
mm�������� h����� �� mm�������� h������ ��

for i from � to � do
mm�i����������i����
mm�i�����evalf�ExactSol�x�i��������

for j from � to � do
mm�i�j���evalf�EulerSol�x�i������	��j����� ��

od�
od�

� eval�mm�


�
������������������

x �k� Exact sol � h � � �� h � � ��� h � � ����

 �� �� �� ��

�� ���� �� ����� ����

�� ������ ��� ����� ������

�� ������ ������ ������ ������

�� ����� ������ ������ ������

�� �� ������ ����� ����

�� ������ ������ ������ ������

�
������������������
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Since we know the exact solution of ������ the accuracy of the nu�
merical method can be checked very easily and quickly using Maple�

� err �� �x� h� �� ExactSol�x� � EulerSol�x� h��

Therefore� err�x� h� gives the error at the point x if we use Euler�s
method with step size h� To observe the accuracy more conveniently
we compile a table�

� tt �� array������������
tt��������x�k��� tt��������h������
tt��������h������� tt��������h��������

for i from � to � do
tt�i����������i���


for j from � to � do
tt�i�j���evalf�err�x�i������	��j�������


od�
od�

� eval�tt�


�
������������������

x �k� h � � �� h � � ��� h � � ����

   

�� ���� ���� ���
�� ������ ����� ����
�� ������ ����� ����
�� ������ ����� ����
�� ������ ����� ����
�� ������ ����� ���

�
������������������

� The evaluation of the results

��� From the above table it can be seen that if the step size is
�xed� the error of the numerical solution will grow as the number of
steps is increasing� There are two main reasons for this phenomena�
The �rst is the so�called truncation � or discretization� error which is
related to the discretized equation that we solved instead of the exact
equation� The second is the round�o� error which is related to the
�nite representations of the numbers on the computer�
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��� It appears that with decreasing step size h the accuracy of the
approximate solutions is increasing� This leads to the following issue�
whether any desired degree of accuracy can be achieved for any prob�
lem by picking a small enough h� This suggests the de�nition of the
convergence which will be made more precise when speci�c classes of
methods are discussed� Since as h decreases the number of steps and
hence the amount of calculation increases� we would expect the e�ect of
round�o� errors is to increase because there are more of them� Thus�
in the de�nition of the convergence� we must require that the com�
putations indicated in the method be performed exactly� In practice�
this means that additional digits are carried in the computations as h
decreases�

In general� we may ask how can we evaluate the error of a numer�
ical method on the whole interval uniformly� if we have in hand the
numerical results only at discrete points� The answer to this question
is not simple� We want to stress that the basic problem of numerical
analysis is the estimation of errors which occur in numerical processes�

��� To calculate the errors in Example ���� we had to know the
exact solution at every grid point� But� how can we estimate the error
of an approximate solution if we do not know the exact solution of
the original problem� One possibility is as follows� to compute the
approximate solution twice� �rst by a given step size and after this�
with a smaller step size for which the set of grid points contains the
grid points of the �rst calculation� Thus� we may compare the two
computational results in the common grid points� their di�erences give
us information on the error committed in the calculation�

Every discrete method for the solution of an initial value problem
determines the approximate values yk of the exact values y�xk� only at
the mesh points xk �k � � �� � � � � N� of an interval 	a� b
� But in practice
we also need to approximate the exact solution at further points of the
interval�

A natural way to treat this problem is the following� try to �t a
smooth curve through the points �x�� y��� �x�� y��� � � � � �xN � yN�� There
are more possibilities to do this� for example with polynomials or with
spline functions� These formulas will be not reviewed here�

We only remark that fortunately Maple can help also in this type
of case because it contains a built�in algorithm to �t smooth curves
through discrete points using spline functions� The program automati�
cally calls these algorithms when we invoke the dsolve procedure with
the option numeric�true� To illustrate this let us consider the previous
example� Entering
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� es�������������


	x � ����� y�x� � ��������


we see that Maple is able to compute the approximate values not only
at the mesh points� To graph the calculated approximate function we
use the procedure odeplot contained in the plots package� We load
the plots package and then graph the result given in es�������

� with�plots��

� odeplot�es������� �x� y�x��� �������
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Euler�s method is readily applied to systems of di�erential equations
as well as to di�erential equations of high�orders� For illustration we
consider the system of two equations of �rst�order �see Section ����

y���x� � f��x� y��x�� y��x���

y���x� � f��x� y��x�� y��x��

with the initial conditions

y��a� � ��� y��a� � ���

Here f� and f� are given real valued functions and �a� ��� ��� is an
arbitrarily �xed point in the intersection of the domain of de�nition of
f� and f��

Suppose that this problem has a unique solution y��x�� y��x� on the

interval 	a� b
� Denote by y
�k�
� and y

�k�
� an approximate value of y��xk�

and y��xk� respectively� If the mesh points xk are equidistant �i�e�
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xk � x� � hk� h � �b� a��N�� then Euler�s method has the following
form�

x� � � a� y
���
� �� ��� y

���
� �� ���

xk�� � � xk � h� h �� �b� a��N�

y
�k���
� � � y

�k�
� � hf��xk� y

�k�
� � y

�k�
� ��

y
�k���
� � � y

�k�
� � hf��xk� y

�k�
� � y

�k�
� ��

�k � � �� � � � � N � ���

�����

The next example illustrates that Maple can also solve systems of
di�erential equations by means of Euler�s method�

Example ���� Using Euler�s method� �nd a numerical solution of
the following system

y���x� � x � �y��x�� y��x���

y���x� � x � �y��x� � y��x��

with the initial conditions

y��� � �� y��� � �

on the interval 	� ��
 with the step size h � ���

Solution� As in the Example ��� we have

� s� �� diff�y��x��x��x��y��x��y��x��


s� �� diff�y��x��x��x��y��x��y��x��


s� ��
�

�x
y��x� � x �y��x�� y��x��

s	 ��
�

�x
y��x� � x �y��x� � y��x��

� in�conds� �� y���� � �� y���� � �


in conds� �� y��� � �� y��� � �
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� num�sol� �� dsolve�fs��s��in�conds�g� fy��x��y��x�g�
type�numeric� method�classical�foreuler��

stepsize������

� for n from � to � do num�sol������n� od


	x � � y��x� � ��� y��x� � ��


	x � ��� y��x� � ��� y��x� � ��


	x � ��� y��x� � ��� y��x� � ���


	x � ��� y��x� � ���� y��x� � ����


	x � ��� y��x� � ����� y��x� � ��������


	x � ��� y��x� � ������ y��x� � �������


	x � ��� y��x� � �������� y��x� � ����������


Euler�s method can also be used to solve higher�order di�erential
equations� as illustrated in the following example�

Example ���� Use the Euler�s method of Maple to solve the initial
value problem

y���x� �
y��x�

x
� y�x� � � y��� � ���� y���� � ����

on the interval 	�� ���
 with the step size h � ���

Solution� Similarly to the previous example we get

� hoeq �� �D�����y��x���D��y��x��x�y�x���


hoeq �� �D�����y��x� �
D�y��x�

x
� y�x� � 

� in�conds� �� y��� � ����� �D��y���� � �����


in conds	 �� y��� � ���� D�y���� � ����
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� num�sol� �� dsolve�fhoeq� in�conds�g� y�x��

type�numeric� method�classical�foreuler��

stepsize������

� for n from � to � do num�sol��������n� od


	x � ��� y�x� � ����
�

�x
y�x� � ����


	x � ���� y�x� � �����
�

�x
y�x� � �����


	x � ���� y�x� � �������
�

�x
y�x� � �����������������


	x � ���� y�x� � ��������
�

�x
y�x� � ������������������


	x � ���� y�x� � ������������������
�

�x
y�x� � ����������������


	x � ���� y�x� � ����������������
�

�x
y�x� � �����������������


���� Convergence and consistency of single step methods

Numerical results are in�uenced by many types of errors �see Sec�
tion ����� therefore we naturally are concerned with how close we can
make the numerical solution to the exact solution� When we pick a
method it may depend on one or more parameters� for example� the
step size h for Euler�s method� We would like to know how to pick these
parameters to achieve any desired accuracy� It is possible that there
is an error below which is not possible to go� At this point we loosely
de�ne the concept of convergence to mean that any desired degree of
accuracy can be achieved by picking a small enough h� This de�nition
will be made more precise�

The numerical solutions of initial value problems contain two main
sources of error� truncation and round�o� error �

We can ask the following� what is the accumulated error of a
method for a given step size h after one step and after several steps�
Does the numerical solution converge to the exact solution as h 	 �
How fast is the convergence of a method� The answers to these ques�
tions are very important because if we do not proceed carefully it may
well happen that the computed approximations have very little to do
with the desired solution functions� or may even be meaningless� In
this section we deal with these problems�
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� Truncation errors

Now we suppose that the computations indicated in the method be
performed exactly� i�e� round�o� errors are not taken into account�

We distinguish between local and global truncation error � First we
give a general de�nition of the local truncation error which characterizes
the error of a method committed in one step of calculation�

Definition ���� The local truncation error at a point is the dif�
ference between the value given by the method and the value of the
solution of the di�erential equation which passes through the value at
the beginning of the step�

We reformulate it for a single step method�

Definition ���� The local truncation error or the local discretiza�
tion error ek�� at the point xk�� is de�ned by the expression

ek�� �� e�xk��� h� ��

y�xk���� y�xk�� h��xk� y�xk�� h� �� y�xk���� �y�xk����
�����

Therefore� the quantity ek�� indicates how well the exact solution
y�x� ful�lls the formula ������

x

y

y�xk���

y�x� ek��

y�xk� �y�xk���

xk xk��

Figure ���� The local truncation error

Sometimes the local truncation error ����� is de�ned by the di�er�
ence between the exact value y�xk��� and the computed approximation
yk�� after one step� if the exact value y�xk� at the point xk is considered�

When we solve a problem with Euler�s method numerically� at each
step we usually cross over onto another member of the family of so�
lutions� as displayed graphically in Figure ���� Thus� in practice� in
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every step of calculation we have to solve a new initial value problem�
The local truncation error in Euler�s method is the deviation after each
step between a solution curve and its tangent� It is easy to estimate
the local truncation error of this method�

Example ���� Show that if the solution of the initial value problem
����� is twice continuously di�erentiable� then in Euler�s method the
local truncation error ek�� at the mesh point xk�� satis�es the inequality

jek��j � Ch� �k � � �� � � � � N � ���

where C �  is a suitable real number� i�e� ek�� is O�h���

Solution� According to the de�nition ������ the local truncation
error of Euler�s method is given by

ek�� � y�xk���� y�xk�� hf�xk� y�xk���

Replacing y�xk��� by the Taylor�s series expansion with remainder term
at the point xk we get

ek�� � y�xk� � y��xk�h�
y�����

�
h� � y�xk�� hy��xk��

where � � �xk� xk��� and y��xk� � f�xk� y�xk��� Therefore the local
truncation error is

jek��j � jy�����j
�

h� � h�

�
max

x����xN
jy�����j � O�h���

After several steps the total error between the computed approxi�
mation and the exact solution is of interest�

Definition ���� The global 
truncation� error Ek at the point xk
is given by the di�erence

Ek �� y�xk�� yk� �����

This quantity measures the error that accumulated after k steps
�see Figure �����

The global error may be estimated from above by the help of the
local truncation error� Therefore� it plays the central role in the qual�
itative judgement of a single step method� The following theorem for
the general single step method can be proved�
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yN�� eN

y� eN��

e� ENy�

e�
y� e�

y�x��
exact solutions

x� x� x� � � � xN�� xN

�
E�

y�xN�

Figure ���� The global truncation error

Theorem ���� Suppose that the local truncation error satis�es

max
��k�N��

jek��j � Chp���

and suppose that the increment function � satis�es the Lipschitz condi�
tion with respect to its second variable with constant L� Then the global
truncation error EN at the �xed abscissa xN � x� �Nh is bounded by

jEN j � hp
C

L
�eNLh � ��� �����

The theorem remains valid if the method is applied with variable
step sizes� In this case h � max��i�N hi�

� Round�o� errors

In practice� when we apply a numerical method� for example Euler�s
method� round�o� errors occur in the calculation because of the �nite
digits we used� So� in every step an additional term rk is added to the
Euler formula

yk�� � yk � hf�xk� yk� � rk�

where rk acts in the same way as an additional local truncation error�
It may be proved that the total error is

tk � O�
jrj
h

� h��

where jrj is independent on h if the precision �the number of digits�
is kept �xed in the calculation� Thus� the total error tk will initially
decrease as the step size h decreases and the truncation error decreases�
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and then will increase as the round�o� error becomes signi�cant� This
e�ect is illustrated in Figure ����

Error

total error

minimum
error truncation error

round�o� error

hmin h

Figure ���� Total error as a function of h�

The situation is similar in the general single step methods� There�
fore� we can conclude that if the step size h decreases we have to in�
crease the decimal digits of precision to avoid the e�ect of round�o�
errors�

� Convergence
From the Example ��� it follows that the local truncation error is

O�h�� for Euler�s method� Thus� the inequality ����� shows that the
error bound decreases proportionally to the step size h� So� the value
yn converges to the exact value y�xn� at the �xed abscissa xn as h	 �
at least if rounding errors do not accour� The convergence is linear�
with respect to the step size h� and we say that Euler�s method is of
order one� This implies the notion of the convergence�

For given x and h such that �x � x���h � n is an integer� we
introduce the following notation for the numerical solution�

yh�x� � yn if x� x� � nh� �����

A method is expected to be �good� in the sense that the numerical
solution yh�x� converges to the exact solution y�x� as h	 � Further�
more� we expect rapid convergence�

Definition ���� A single step method ����� is said to be conver�

gent� if� for all initial value problems satisfying the hypotheses stated
in the existence theorem� we have

lim
h��

yh�x� � y�x�� x � 	x�� b
 �����
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whenever the starting value satisfy

lim
h��

y� � y�x���

A method which is not convergent is said to be divergent�

Definition ���� The single step method ����� is convergent of

order p� if to any problem ����� with f su�ciently di�erentiable� there
exists a positive h� such that

jy�x�� yh�x�j � Chp for h � h� ������

whenever the starting value satisfy

jy�x��� y�j � C�h
p for h � h��

We say also that the single step method is of order p�
Hence the convergence means that the numerical solution tends to

the exact solution as the grid becomes increasingly �ne� Therefore�
convergence is related to the behavior of the solution of the di�erence
equations�

We note that errors are permitted in the starting value y� since in
practice we cannot represent y�x�� exactly in �nite precision�

From the above de�nition it follows that a single step method is of
order p if and only if its local truncation error ek satis�es

max
��k�N

jekj � O�hp���

so that for the global truncation error EN we have

max
��k�N

jEN j � O�hp��

We now turn to the question of what conditions a numerical method
must satisfy if it is to be convergent�

As from the Example ��� may be shown� for a reasonable single
step method we have to require that the local truncation error tend to
zero as h	 � which is equivalent to

lim
h��

��x� y� h� � f�x� y�� for all �x� y�� ������

This implies the following

Definition ���� A single step method ����� is called consistent

with the problem ����� if ������ holds�

In other words� consistency means that the di�erence equation formally
converges to the di�erential equation as h	 �

It can be proved �see e�g� 	He
 Theorem ���� that a single step
method ����� is convergent if and only if it is consistent� whenever the
increment function � is continuous with respect to its variables and
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satis�es a Lipschitz condition with respect to its second variable� It is
easy to see that the Euler�s method is consistent and so convergent�

���� A �rst improvement of Euler�s method

There are several ways to derive more accurate methods for the
approximate solution of the initial value problem ������ In this section
we shall show some of the ideas from which higher�order methods can
be obtained�

� Taylor series method

We derived the Euler�s method from the relation

y�x� h� � y�x� � y��x�h�

which can be viewed as an approximation of y�x � h� by the �rst
two terms of the Taylor expansion of the function y about the �xed
point x� It is well known that a more accurate approximation may be
obtained in a small neighborhood of the point x if the function y has
su�ciently many derivatives and we preserve some higher order terms
of the expansion�

More precisely� suppose that the solution y of the initial value prob�
lem ����� is �p��� times continuously di�erentiable on the interval 	a� b

and consider a mesh point xk� Then by Taylor formula we have

y�xk � h� � y�xk� �
y��xk�

��
h�

y���xk�

��
h� � � � �� y�p��xk�

p�
hp �Rp�

������

where the remainder term Rp has the following form�

Rp �
y�p������

�p� ���
hp�� �xk � � � xk � h�� ������

The condition is satis�ed with respect to the solution y if the two
variable function f is p times continuously di�erentiable on the strip
	a� b
 � R� In this case we can compute the higher derivatives of the
function y at the point xk directly from the given di�erential equation
y��x� � f�x� y�x���

In order to perform this �rst introduce the shorthand notations

f �� f�x� y�� fx ��
�f�x� y�

�x
�

fxx ��
��f�x� y�

�x�
� fxy�
 fyx� ��

��f�x� y�

�x�y

������
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etc� all evaluated at the point �xk� y�xk��� By di�erentiating both sides
of the di�erential equation y��x� � f�x� y�x�� in accordance with the
chain rule of elementary calculus� we �nd the relations

y��xk� � f �� �D�f��xk� y�xk��

y���xk� � fx � ffy �� �Df��xk� y�xk���

y����xk� � �fxx � �ffxy � f �fyy� � �fx � ffy�fy �� �D�f��xk� y�xk��

���
������

Therefore from ������ we have

y�xk � h� � y�xk� �

pX
i	�

�Di��f��xk� y�xk��

i�
hi �Rp�

If we replace y�xk� by the approximate value yk and neglect the re�
mainder term Rp�� then for a �xed positive integer p �� �� and for
equidistant mesh points we obtain the following p�term Taylor series
method�

x� � � a� y� �� �

xk�� � � xk � h� h �� �b� a��N�

yk�� � � yk �
�D�f��xk�yk�

�

h � � � �� �Dp��f��xk�yk�

p

hp

�k � � �� � � � � N � ���

������

The increment function � of this method is

��xk� yk� h� �

pX
i	�

�Di��f��xk� y�xk��

i�
hi���

From ������ and ������ it follows that under the supposed condition
the local truncation error of this procedure is

ek�� � O�hp���

and thus the order of p�term Taylor series method is p�
We remark that the one term Taylor series method is the Euler�s

method�
Taylor series methods have the merit that they are self�starting and

allow easy changes of step size� They have the disadvantage that they
require successive derivatives of the two variable function f to be calcu�
lated� The coe�cients �Djf��xk� yk� may be obtained by successively
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di�erentiation of the given di�erential equation� Since the resulting
expression becomes complicated� hand computation of these deriva�
tives is tedious� Fortunately Maple can help us because of its symbolic
di�erentiation facility�

Let us illustrate this by the following example�

Example ���� Use the three term Taylor series method to obtain
approximations yk of the initial value problem ����� at the points xk ��
��k �k � � �� � � � � �� using the step size h � ��� Give also the errors

Ek � y�xk�� yk �k � � �� ���� ���

where y�x� denotes the exact solution of ������

Solution� From the Example ��� we know that the function

� ExactSol �� x�������x	��


ExactSol �� x	 �

� � x�

is the unique solution of ����� on the whole real line�
We de�ne the functions �Djf��x� y� �j � � �� �� � � � �  see ������  

in Maple as a three variable function Df�x�y�j� in the following way�

� f �� �x�y� �� ���x�y	�


f �� �x� y�	 �� x y�

� tt ��
proc�x�y�j�

option remember


if j�� then f�x�y�

else subs�diff�y�x��x��f�x�y�� y�x��y�

diff�tt�x�y�x��j����x��

fi
end�

� Df �� �x�y�j� �� subs�t�x� s�y� tt�t�s�j���
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Let us test this function�

� for j from � to � do Df�x�y�j� od


�� x y�

�� y� � � x� y�

�� y� x� �� x� y�

�We can check the results by using hand calculations��
We write a Maple program for the algorithm ������� First we give

the initial values and the step size

� a �� �� y� �� �� h�������

Now� we de�ne the two variable function TaSeM in such a way that
TaSeM�k�p� gives the approximate value of the solution of ����� at the
point xk � a� kh by means p�term Taylor series method with the step
size h�

� TaSeM ��
proc�k�p�

option remember


if k�� then y�

else TaSeM�k���p� �

sum���subs�x�a��k����h� y�TaSeM�k���p��

Df�x�y�i�����h	i��i��� �i�����p�

fi
end�

The approximate values at the points ��� ��� � � � � �� can be obtained
in the following way

� for k from � to � do TaSeM����k� �� od


�

���������

����������

���������

���������

����������

����������
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Since we know the exact solution of ����� thus we can calculate the
�total� error of the applied method�

� for k from � to � do
ExactSol�a����k�h� � TaSeM����k��� od



���� ���

����� ��

����� ��

����� ��

���� ���

���� ���

This results illustrate that a better approximation can be attained
by means a p�term �p � �� Taylor series method than by the Euler�s
method �see Example �����

The p�term Taylor series method can be approached in another way�
The algorithm ������ gives an approximate value yk�� at the point xk��

by the following formula

yk�� �� yk � c
�k�
� h� c

�k�
� h� � � � �� c�k�p hp�

where yk is a given approximate value at the point xk � xk���h� Here

the coe�cients c
�k�
i �i � �� �� � � � � p� may be calculated by successive

di�erentiation of the given di�erential equation�
The basic idea of the new approach is to determine the coe�cients

c
�k�
i �i � �� �� � � � � p� in another way� Let us denote by y�x� the exact
solution of ����� and consider the formula

y�x� � y�xk� � c
�k�
� �x� xk� � c

�k�
� �x� xk�

� � � � �� c�k�p �x� xk�
p � Tp�

where c
�k�
i �i � �� �� � � � � p� are unknown numbers� Substitute this into

the di�erential equation of ����� and take x � xk � h� Now use the
fact that the left� and right�hand sides are equal if and only if the
coe�cients of the same powers of h are equal� Then comparing the
corresponding coe�cients results in a set of nonlinear equation from

which the unknown coe�cients c
�k�
i �i � �� �� � � � � p� can be determined

recursively�
This approach has the disadvantage that the set of recursion for�

mulae must be found for each new di�erential equation� However� this
task can be done by the computer� Moreover� this method allows us to
get a relatively simple control of step size and to control the number
of terms which must be considered in order to keep the approximation
errors within a prescribed bounds�
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The dsolve function of Maple contains such a method if we invoke
it with the optional equations

type � numeric and method � taylorseries

This method can be used for solutions with high accuracy� This method
will usually take more time than other methods with low accuracy
results� therefore it is suggested that it is better to use this method
only when a very high degree of accuracy is desired�

Example ���� Applying the dsolve procedure of Maple with the
option method�taylorseries� �nd an approximate value of the solu�
tion of the initial value problem ����� and compute the global truncation
error at the point ���

Solution� Let us consider the function

� ns �� dsolve�fD�y��x�����x�y�x�	�� y�����g� y�x��

type�numeric� method�taylorseries��

If x is a number then ns�x� gives an approximate value of the solution
of ������ for example at ��� we have

� ns�����


	x � ��� y�x� � ���������������


The global truncation error is de�ned by Ek �� y�xk� � yk� The
exact solution of ����� is y�x� � ���x���� �x � R�� thus for the global
truncation error Maple gives

� ��������	�� � rhs�ns���������


������� ����

� An extrapolation method

The idea of this powerful method is as follows� Suppose that we
have calculated an approximate value yk of the exact solution of the
initial value problem ����� at the point xk � 	a� b
� We solve ����� by
means of Euler�s method with the step size h and obtain the value

y
���
k�� � yk � hf�xk� yk�� ������
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Then the same problem is solved with the step size h��� A double step
with the step size h�� produce the values

y
���

k� �

�

� yk �
h

�
f�xk� yk��

y
���
k�� � y

���

k� �

�

�
h

�
f�xk �

h

�
� y

���

k� �

�

��

������

Therefore� we obtain two approximate values y
���
k�� and y

���
k�� at the point

xk��� Eliminating c� from the asymptotic expansions

y
���
k�� � y�xk��� � c�h �O�h���

y
���
k�� � y�xk��� � c�

h

�
�O�h���

we get

y�xk��� � �y
���
k�� � y

���
k�� �O�h��� �����

and we can de�ne a new approximate value yk�� of the exact solution
at the point xk�� by the formula

yk�� �� �y
���
k�� � y

���
k��� ������

Using ������ and ������ yk�� can be written in more convenient form�

yk�� � yk � hf�xk �
h

�
� yk �

h

�
f�xk� yk���

We formulate the result as an algorithm�

x� � � a� y� �� ��

xk�� � � xk � h� h �� �b� a��N�

k� � � f�xk� yk��

k� � � f�xk �
�

�
h� yk �

�

�
hk���

yk�� � � yk � hk��

�k � � �� � � � � N � ���

������

This procedure is called the modi�ed Euler�s method or the improved
polynomial method� Using the asymptotic expansion ����� it may be
proved that this method is of second order�

The geometric interpretation of this method is given in Figure ����
Namely� a simple step requires the evaluation of the function f for
two di�erent pairs of values� The quantity k� is equal to the slope of
the directional �eld at the point �xk� yk�� It serves to determine the
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auxiliary point �xk � h��� y
���

k� �

�

� and the corresponding slope k�� The

approximation yk�� is computed by means of this slope� so that the
change in the directional �eld is taken into account�

x

y

k� k� yk��

yk y
���

k� �

�

xk xk�h
�

xk��

Figure ���� Modi�ed Euler�s method

Maple�s dsolve function with the option

method � classical	impoly


allows us to implement the modi�ed Euler�s method� More information
can be obtained by the command

� �dsolve�classical�

Only the available possibilities will be illustrated�

Example ���� Solve the initial value problem ����� on the interval
	� �
 by the modi�ed Euler�s method of Maple� Choose the step sizes
h � ��� ��� Verify the order of convergence of the method by means
of the computed global truncation errors at the points xk �� ��k �k �
� �� � � � � ���

Solution� First we de�ne vv as a function of the step size h so that
vv�h� gives an approximate solution of ����� by means of the modi�ed
Euler�s method�

� vv �� h��dsolve�fD�y��x�����x�y�x�	�� y�����g� y�x��

type�numeric� output�listprocedure�

method�classical�impoly�� stepsize�h��

Now we de�ne the two variable function ModEuM in such a way that
ModEuM�mp� h� gives an approximate value of the solution at the point
mp using step size h�
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� ModEuM �� �mp� h��� subs�vv�h�� y�x���mp��

We can quickly compute the numerical values at the mesh points us�
ing di�erent step sizes� For example� if h � �� then at the points
� ��� ��� � � � � �� we have

� for k from � to � do ModEuM�k����� ���� od


��

���������������

����������������

�����������������

���������������

�����������������

For the global truncation error we obtain

� for k from � to � do
����k�����	���� � ModEuM�k����� ���� od




��������

��������

��������

�������

��������

Now we compute only the global truncation errors at the required
mesh points using step size h � ���

� for k from � to � do

����k�����	���� � ModEuM�k����� ����� od




������ ���

������ ���

������ ���

������ ���

����� ���
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The obtained results suggest that the order of the modi�ed Euler�s
method is two�

� The idea of Runge

It was Runge who� in ����� �rst pointed out a possibility of evading
successive di�erentiations and of preserving at the same time the in�
creased accuracy a�orded by Taylor series� His idea can be formulated
as follows�

Consider the initial value problem ����� and let us start from the
geometrical interpretation of Euler�s method� In Figure ���� we see that
the error of this procedure is large due to the fact that we go along the
direction of tangent at the point �xk� yk� for a whole step� while the
solution curve starts to deviate from this direction by a considerable
amount during the step�

We hope that we should be able to make a correction for the bend�
ing of the curve if we make a weighted average of the tangent direction

at the points �xk� yk� and �xk��� y
�E�
k���� where y

�E�
k�� denotes the approx�

imate value obtained by means of Euler�s method at the point xk���
More generally� we can also average using a smaller step size �say ch�
where  � c � �� to compute the approximate value yk�� at the point
xk��� If we introduce the parameters b�� b� and d for the corresponding
weights then we obtain the following class of methods�

x� � � a� y� �� ��

xk�� � � xk � h� h �� �b� a��N�

k� � � f�xk� yk��

k� � � f�xk � ch� yk � dhk���

yk�� � � yk � h�b�k� � b�k���

�k � � �� � � � � N � ���

������

The central principle of the Runge approach is to choose the parameters
b�� b�� c and d in such a way that the method ������ has as high an order
as possible�

For the solution of this problem we have to consider the local trun�
cation error of the method ������ at the point xk�� � xk � h� It is
de�ned by

ek�� � y�xk � h�� y�xk�� h�b��k� � b��k��� ������

where

�k� �� f�xk� y�xk��� �k� �� f�xk � ch� y�xk� � dh�k��
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and y�x� �x � I� denotes the exact solution of ������
We expand the function y�x� �x � I� into Taylor series about xk

and the two variable function f about �xk� y�xk��� Using notations
������ we have

y�xk � h� � y�xk� � y��xk�h�
y���xk�

�
h� �O�h�� �

� y�xk� � fh�
fx � ffy

�
h� �O�h���

������

Expanding the function f in a Taylor series about the point �xk� y�xk��
gives

�k� � f � �cfx � dffy�h �O�h��� ������

Substituting ������ and ������ into ������� we obtain the following ex�
pansion for the local truncation error�

ek�� � ��� b� � b��fh� �
�

�
� b�c�fxh

� � �
�

�
� b�d�ffxh

� �O�h���

We see that order � can be achieved by choosing

b� � b� � �� b�c �
�

�
� b�d �

�

�

resulting in a family of solutions

b� � �� �� b� � � c � d �
�

��
� ������

where � ��  is a free parameter� A natural question arises� is it possible
to get a method of order � or not� However� this is not the case because
it may be shown that the coe�cient of h� of the Taylor series for ek��

contains a term that is independent of the four parameters� Thus the
maximal attainable order is � for the methods �������

By taking � � �� i�e�

b� � � b� � � c � d �
�

�
�

we get the modi�ed Euler�s method� For � � ���� i�e�

b� � b� �
�

�
c � d � ��

we obtain the so called improved Euler method or Heun�s method�
The dsolve function computes an approximate solution of an initial

value problem by means of this method if we invoke it with the following
options

type � numeric and method � classical	heunform
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Example ���� Solve the initial value problem ����� on the interval
	� ��
 by means of the built�in Heun�s method of Maple with the step
size h � ��� Print out the computed values at each step� and the error
as calculated with respect to the exact solution�

Solution� Similarly to the previous example we get

� h �� ����

� ExactSol �� x �� ���x	�����

� vv�� dsolve�fD�y��x�����x�y�x�	�� y�����g� y�x��

type�numeric� output�listprocedure�

method�classical�heunform�� stepsize�h��

� HeunSol �� mp �� subs�vv� y�x���mp��

Therefore HeunSol�mp� represents an approximate value of the solution
at the mesh point mp�

Now we de�ne an error function and compile a table which contains
the mesh points� the values of the exact solution� of the Heun�s solution
and of the errors�

� Err �� t �� ExactSol�t� � HeunSol�t��

� mm��array������������

mm��������point�� mm��������exact sol���

mm��������Heun sol��� mm��������error��

for i from � to � do
mm�i����������i����

mm�i�����evalf�ExactSol������i��������

mm�i�����evalf�HeunSol������i��������

mm�i�����evalf�Err������i��������

od�

� eval�mm�
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�
������������������

point exact sol � Heun sol � error

 �� �� 

�� ����� ��� ���

�� �������� �������� �����

�� �������� �������� �����

�� ������ �������� �����

�� �� ���� ����
�� �������� ������� ������

�
������������������

Compare the errors of Heun�s method and those of the Euler�s method
�see Example �����

� An implicit method

Another single step method can be obtained with the aid of a de��
nite integration of the di�erential equation y��x� � f�x� y�x�� over the
interval 	xk� xk��
� Thus we obtain the integral equation

y�xk���� y�xk� �

Z xk��

xk

f�x� y�x��dx�

where y�x� is the unknown function� The value of the integral can be
approximated by means of a quadrature formula� For example� using
the simple trapezoidal rule we get

yk�� � yk �
h

�
�f�xk� yk� � f�xk��� yk���� � ������

If �xk� yk� is known this is an implicit equation for the unknown value
yk��� Therefore we call ������ an implicit method� Each step requires
the solution of a nonlinear equation� �We remark that in the special
case of a �rst order linear di�erential equation� ������ is also a linear
equation from which an explicit recursion formula can be obtained��

For a nonlinear di�erential equation the implicit equation ������ al�
ready has the convenient �xed point form� We can use the Banach �xed
point theorem �see� e�g� 	Sc
� which in this case states the following�
If the function f satis�es a Lipschitz condition� where the Lipschitz
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constant L satis�es �hL��� � �� then the sequence of successive ap�
proximation

y
���
k�� �� yk � hf�xk� yk��

y�n�k�� � yk �
h

�
	f�xk� yk � f�xk��� y

�n�
k���
 �n � �� �� �� � � � ��

������

converges to the unique solution of ������ which is denoted by yk���
Since the value yk�� is only an approximation of y�xk��� we may

restrict the �xed point iteration ������ to a single step� Thus� by slightly
changing the notation� we obtain Heun�s method�

y
�P �
k�� �� yk � hf�xk� yk��

yk�� � yk �
h

�
	f�xk� yk � f�xk��� y

�P �
k���
�

�����

In this case the explicit �rst order Euler�s method is used to determine a

so�called predicted value y
�P �
k��� which is subsequently corrected by means

of the implicit method ������ to obtain yk��� The explicit method �����
is therefore called a predictor�corrector method� We formulate this as
an algorithm�

x� � � a� y� �� ��

xk�� � � xk � h� h �� �b� a��N�

k� � � f�xk� yk��

k� � � f�xk � h� yk � hk���

yk�� � � yk �
�

�
h�k� � k���

�k � � �� � � � � N � ���

������

In order to determine yk�� the average of the two slope k� and k� of

the direction �eld are used at the points �xk� yk� and �xk��� y
�P �
k���� It

may be proved that the Heun�s method is of second order�

��	� Runge
Kutta methods

In the previous section we explained the Runge�s idea to obtain
a numerical solution of initial value problem ������ His method was
subsequently improved by K� Heun� in ��� and W� Kutta� in ����
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Kutta�s proposal �somewhat more general than a similar one made
by Heun� consists in considering the following class of single step meth�
ods�

x� � � a� y� �� �

xk�� � � xk � h� h �� �b� a��N�

k� � � f�xk � c�h� yk � h
sX

j	�

a�jkj�

� � �

ks � � f�xk � csh� yk � h
sX

j	�

asjkj�

yk�� � � yk � h
sX

j	�

biki

�k � � �� � � � � N � ���

������

where s is a given positive integer and aij� bi� ci �i � �� �� � � � � s� j �
�� �� � � � � s� are undetermined parameters� This procedure is called an
s�stage RungeKutta method for the solution of initial value problem
������

The increment function in this case is given by

� ��
sX
i	�

biki�

where bi �i � �� �� � � � � s� are real numbers and the functions ki � I �
R � R 	 R �i � �� �� � � � � s� satisfy the following equations

ki�x� y� h� � f�x� cih� y �
sX

j	�

aijkj�x� y� h��

�i � �� �� � � � � s�

It is convenient to display the coe�cients occurring in ������ in the
following form� known as a Butcher array

c� a�� a�� � � � a�s
c� a�� a�� � � � a�s
���

���
���

���
cs as� as� � � � ass

b� b� � � � bs
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As we have mentioned in the previous section� the idea behind the
Runge approach is to choose the parameters in such a way that the
method ������ has as high an order as possible� This means that we
try to determine the above parameters in such a way that the Taylor
expansion of the local truncation error

e�x� h� �� y�x� h�� y�x�� h��x� y�x�� h�

in powers of h starts with the largest possible power� That is for a
given positive integer s and a �xed point x � 	a� b
 we must determine
the constants aij� bi� ci �i � �� �� � � � � s� j � �� �� � � � � s� �which do not
depend on f� and the largest possible positive integer p such that�

�ie�x� h�

�hi

�
h	�

� y�i��x�� i

�
�i����x� y�x�� h�

�hi��

�
h	�

� 

�i � �� �� � � � � p�

������

and �
�p��e�x� h�

�hp��

�
h	�

�� �

More detailed calculations show that the p equalities in ������ are
equivalent to a system of� in general� nonlinear implicit equations for
the parameters aij� bi� ci� In many cases the number of the equations
obtained is smaller than the number of unknowns� It may be shown
that for each s� there will be a largest value of p for which these equa�
tions are solvable if the following �the row�sum condition� holds�

ci �
sX

j	�

aij� �i � �� �� � � � � s� ������

which we shall always assume�
We see that the idea behind this approach is simple and natural�

The actual derivation� however� is lengthy� and the corresponding cal�
culations become rapidly more complicated as s is further increased�
For example� if s � �� Kutta obtains �� equations in �� unknowns� and
it appears as yet uncertain whether these equations are dependent�

It may also be proved that the general s�stage Runge Kutta method
is consistent �it is a necessary condition for the convergence of a nu�
merical method� if and only if
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sX
i	�

bi � � ������

which we shall always assume�
If in ������ we have that aij �  for j � i �i � �� �� � � � � s� then

each of the ki is given explicitly in terms of previously computed kj
�j � �� �� � � � � i � ��� and the method is then an explicit or classical
RungeKutta method� If this is not the case then the method is implicit
and� in general� it is necessary to solve at each step of the computation
an implicit system for the ki� Runge Kutta methods �rst appeared in
����� and up to the ���s only explicit methods were considered�

� Special cases
Now� we consider some special cases of explicit Runge Kutta meth�

ods�
For one�stage rules �s � ��� in view of ������ and ������� the Runge 

Kutta methods take the form

yk�� � yk � hb�f�xk� yk��

From ������ we see that the necessary and su�cient condition for these
methods to be consistent is b� � �� Therefore the consistent one�
stage Runge Kutta method coincides with Euler�s method which was
examined in Section ���� We remark that the order of one�stage Runge
Kutta method is ��

As we have seen in the previous section the maximal attainable
order is � for the two�stage explicit Runge Kutta methods and there
exists a singly in�nite family of these methods of order ��

We illustrate these types of methods solving the initial value prob�
lem in ������

Example ����� Solve the initial value problem ����� by means of
the two�stage explicit RungeKutta method built�in into Maple� Let the
step size be�for example� h � ���

Solution� Using Maple help

� �dsolve�classical�

we can see that the program can solve an initial value problem by
means of the two�stage classical Runge Kutta method if we invoke the
dsolve procedure with the options

type � numeric and method � classical	rk�
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First we de�ne the step size� the exact solution of ����� and then
invoke the dsolve procedure with the above options

� h �� ����

� ExactSol �� x �� ���x	�����

� vv� �� dsolve�fdiff�y�x��x�����x��y�x��	�� y�����g�
fy�x�g� type�numeric� output�listprocedure�

method�classical�rk��� stepsize������

The value of the approximate solution at a mesh point can be obtained
by the following function

� RK��Sol �� mp �� subs�vv�� y�x���mp��

For example

� RK��Sol�����


����������������

We calculate only the errors at the points �� ��� � � � � ���

� RK��Err �� t �� ExactSol�t� � RK��Sol�t��

� for k from � to � do RK��Err�����k� od




�����

�������

��������

��������

�������
��������

Compare these errors with the errors obtained by Euler�s method in
Example ����
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By ������ and ������ the three�stage explicit Runge Kutta methods
can be written as

x� � � a� y� �� �

xk�� � � xk � h� h �� �b� a��N�

k� � � f�xk� yk��

k� � � f�xk � hc�� yk � hc�k���

k� � � f�xk � hc�� yk � h	�c� � a���k� � a��k�
�

yk�� � � yk � h�b�k� � b�k� � b�k��

�k � � �� � � � � N � ��

������

or in a Butcher array form

   
c� c�  
c� c� � a�� a�� 

b� b� b�

Example ����� Derive the three�stage explicit RungeKutta meth�
ods�

Solution� In this case we can use Maple to obtain the system of
equations �������

The local truncation error of the method ������ at the �xed point
x is de�ned by

e�x� h� �� y�x� h�� y�x�� h�b�k� � b�k� � b�k��� ������

where

k� �� f�x� y�x��� k� �� f�x� hc�� y�x� � hc�k���

k� �� f�x� hc�� y�x� � h	�c� � a���k� � a��k�
�
������

and y�x� �x � 	a� b
� denotes the exact solution of ������
Our aim is to give the Taylor�s series expansion of e�x� h� as a func�

tion of h about the point h � � To do this we use the Maple�s taylor
procedure� which gives the Taylor�s series expansion of a function� with
respect to its variable� about a given point� up to an also a given order�
Then the convert function with the option polynom may be used to
convert the series expansion to a polynomial�

Consider y�x�h��y�x� as a function of h �x is a �xed point�� Then
the third�degree Taylor�s polynomial of this function about h �  can
be obtained in the following way�

� tay�pol�� ��
convert�taylor�y�x�h��y�x�� h��� ��� polynom�
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tay pol � �� D�y��x� h�
�

�
�D�����y��x� h� �

�

�
�D�����y��x� h�

Since the function y is a solution of ����� thus its derivatives satisfy
the relations ������� We calculate the derivatives using the following
procedure�

� tt ��
proc�x�y�j�

option remember


if j�� then f�x�y�

else subs�diff�y�x��x��f�x�y�� y�x��y�

diff�tt�x�y�x��j����x��

fi
end�

Now we de�ne the functions Djf�x� y� �see �������

� Df �� �x� y� j� �� subs�t�x� s�y� tt�t�s�j���

For j � � �� � we have

� for j from � to � do simplify�Df�x� y� j�� od


f�x� y�

D��f��x� y� �D��f��x� y� f�x� y�

D�� ��f��x� y� � �D�� ��f��x� y� f�x� y� �D�� ��f��x� y� f�x� y�
��

�D��f��x� y�D��f��x� y� �D��f��x� y�
� f�x� y�

Substituting these formulas into the polynomial tay pol � we ob�
tain

� convert�taylor�y�x�h��y�x�� h��� ��� polynom��

� for j from � to � do

subs� �D��j��y��x��Df�x� y� j���� � od�

� tay�� �� 


tay � �� f�x� y� h�
�

�
�D��f��x� y� �D��f��x� y� f�x� y�� h

��

�

�
�D�� ��f��x� y� �D�� ��f��x� y� f�x� y� � �D�� ��f��x� y��

D�� ��f��x� y� f�x� y�� f�x� y� �D��f��x� y� �D��f��x� y��

D��f��x� y� f�x� y���h
�
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We de�ne the shorthand notation introduced in ������

� sn �� ff�x�y��f� D����f��x�y��fx� D����f��x�y��fy�

D������f��x�y��fxx� D������f��x�y��fyy�

D������f��x�y��fxyg�
Thus the expression tay � can be written in the following form

� Tywsn�� subs�sn� tay���


Tywsn �� f h �
�

�
�fx � fy f� h��

�

�
�fxx � fxy f � �fxy � fyy f� f � fy �fx � fy f�� h�

Let us consider the remainder term of ������� First de�ne the quantities

� k���f�x�y��

k���f�x�h�c��y�h�c��k���

k���f�x�h�c��y�h���c��a����k��a���k����

The third�degree Taylor�s polynomial of the remainder term of ������
can be calculated in the following way

� tf �� convert�taylor�h��b��k��b��k��b��k��� h��� ���

polynom��

�We do not display the output�� Substituting sn into tf we get

� Tfwsn �� �subs�sn� tf��


Tfwsn �� �b� f � b	 f � b� f� h�

�b� �fx c� � fy f c� � � b	 �fx c	 � fy c	 f�� h��

��b� �
�

�
fxx c� � � fxy f c� � �

�

�
f � c� � fyy � fy� a�	 c	 f � fy a�	 fx c	 �

�b	 �
�

�
fxx c	 � � fxy c	 � f �

�

�
c	 � f � fyy��h�

We save the Taylor�s expansion of the local truncation error in the new
variable

� lte �� collect�Tywsn � Tfwsn� h��

Collecting the coe�cients of h� h� in the local truncation error we get

� eq�h �� factor�coeff�lte� h��


eq h �� �f ��� � b� � b	 � b� �
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� eq�h� �� factor�coeff�lte� h� ���


eq h	 �� ��

�
��� � � b� c� � � b	 c	 � �fx � fy f�

In order to simplify the coe�cient of h� we introduce the notations F
and G de�ned below

� expand�coeff�lte� h� ����

� collect�expand�algsubs�fxx���fxy�f�fyy�f	��G����G��

� eq�h��� collect�algsubs�fy�fx�fy	��f�F� ��fF�Gg�


eq h� �� �
�

�
� �

�
b	 c	 � � �

�
b� c� ��G� ��b� a�	 c	 �

�

�
�F

The obtained results mean that if the six parameters b�� b�� b�� c�� c�� c��
a�� satisfy the system of four nonlinear equations

b� � b� � b� � ��

b�c� � b�c� �
�

�
�

b�c
�
� � b�c

�
� �

�

�
�

a��b�c� �
�

�

������

then the coe�cients of h� h�� h� in the Taylor series expansion of ������
are zeros� i�e� the order of the corresponding methods is at least ��

The obvious question arises of whether a method of order � is pos�
sible� However� this is not the case because the coe�cient of h� of the
Taylor series for e�x� h� contains a term that is independent of the six
parameters� Thus the maximal attainable order for explicit three�stage
RungeKutta methods is ��

The above example shows that there exists a doubly in�nite family
of explicit three�stage Runge Kutta methods� A well�known particu�
lar case is the classical three�stage RungeKutta method with Butcher
array

   

�
�

�
�

 

� �� � 

�


�
�

�




��
� RUNGE�KUTTA METHODS ��

It is clear that the order of this method is ��
In a similar way it is possible to show that there exists a doubly

in�nite family of explicit four�stage Runge Kutta methods of order ��
none of which has order greater than �� The best known of these is the
classical four�stage RungeKutta method which has Butcher array

    

�
�

�
�

  

�
�

 �
�

 

�   � 

�


�
�

�
�

�


Maple also contains the algorithms of the three� and four�stage
classical Runge Kutta methods� We illustrate these methods on the
following example�

Example ����� Apply the classical three� and four�stage Runge
Kutta methods of Maple to the solution of the initial value problem
������ over the interval 	� ��
� Let the step size be h � ��� Compare
the computed values with the values of the exact solution at the mesh
points � ��� � � � � ���

Solution� First we de�ne the step size and the exact solution

� h �� ����

� ExactSol �� x �� ���x	�����

To obtain the approximate values of the exact solution by means
of the three�stage classical Runge Kutta method we have to use the
option method�classical�rk���

� vv� �� dsolve�fdiff�y�x��x�����x��y�x��	�� y�����g�
fy�x�g� type�numeric� output�listprocedure�

method�classical�rk��� stepsize������

� RK��Sol �� mp �� subs�vv�� y�x���mp��

The computed errors at the points � ��� � � � � �� are

� RK��Err �� t �� ExactSol�t� � RK��Sol�t��
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� for k from � to � do RK��Err�����k� od



�������
��������
��������
�������
��������
��������

For the four�stage classical Runge Kutta method we use the option
method�classical�rk�� and then we have

� vv� �� dsolve�fdiff�y�x��x�����x��y�x��	�� y�����g�
fy�x�g� type�numeric� output�listprocedure�

method�classical�rk��� stepsize������

� RK��Sol �� mp �� subs�vv�� y�x���mp��

� RK��Err �� t �� ExactSol�t� � RK��Sol�t��

� for k from � to � do RK��Err�����k� od



���� ���

����� ��

����� ��

���� ��

���� ��

����� ��

These results show that the four�stage Runge Kutta method is more
accurate than the three�stage Runge Kutta method�

We have mentioned before that there exists a single explicit one�
stage Runge Kutta method of order �� a singly�in�nite family of two�
stage methods of order �� a doubly�in�nite family of three�stage meth�
ods of order � and a doubly�in�nite family of four�stage methods of
order �� In ����� J�C� Butcher showed that there exist no p�stage ex�
plicit Runge Kutta methods of order p for p � �� The question of what
order can be achieved by an explicit s�stage method is still an open one�
For example the following is known� Maximal attainable orders of ex�
plicit s � �� �� �� �� ��stage Runge Kutta method s are p � �� �� �� �� �
respectively�
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� Implicit Runge
Kutta methods

The numerical solution of di�erential equations with certain proper�
ties� for example sti� equations� require special methods� The implicit
Runge Kutta methods belong to this class� that is characterized by
the fact that the slopes k�� k�� � � � are de�ned by an implicit system of
equations� Heun�s method ����� is a special case of an implicit Runge 
Kutta method� Much of our discussion of implicit methods will be left
to Chapter �� where the problem of sti�ness is addressed�

���� Advanced methods

Up to this point we have not discussed how the step size h of the
previous methods is to be chosen� Obviously� there is trade�o� to be
made� If the step size is too small� then computer time is needlessly
wasted and accumulation of round�o� errors can become a hazard� A
large step size invites large truncation error� Therefore the practical
use of a numerical method requires convenient techniques for estimating
errors� These techniques are used in adaptive implementations of the
methods for assessing the appropriateness of the step size being used
in the light of the accuracy requirements being imposed�

We examine principles for step size selection� Techniques for auto�
matic step size selection are based on estimating the local truncation
error at each step and then choosing the step size to keep this estimated
error within some tolerance bound�

� Error control
Ideally a numerical method should use the minimum step size to

ensure that the global error jyk � y�xk�j remains within a speci�ed
tolerance 	 �  for k � � �� ���� N � This requirement is inconsistent
with using a constant step size h� Now it is impossible� in general�
to control the global error� However controlling the local truncation
error will� under certain conditions on the initial value problem and
numerical method� serve to control the global truncation error�

There are two commonly used techniques for error control with
single step methods�

A possible procedure for obtaining error estimates was proposed by
Richardson ������ and called the deferred approach to the limit or the
Richardson extrapolation method� It is an old technique� and one which
is applicable to any numerical method� Richardson�s extrapolation
method consists in repeating the integration from xk to xk�� but with
two half�size steps instead of a single full�size step� A comparison of the
results obtained furnishes the error estimate� These types of estimates
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work well in practice� and can be successfully used to monitor the step
size�

To illustrate this technique of controlling the local truncation error
suppose that we have used a Runge Kutta method of order p to obtain
the numerical solution yk�� at xk��� Let us now compute a second
numerical solution at xk�� by applying the same method with step size
h��� denote the solution so obtained by �yk��� Then using the asymp�
totic expansion of the local truncation error the following convenient
indicator of local truncation error can be obtained

ek�� � yk�� � �yk��

�p�� � �
�

This formula can be used for automatic step size selection� The above
idea has been developed by C�W� Gear� J� Stoer and R� Bulirsch�

An other modern approach is to devise special methods which are
actually two methods built into one� One of the constituent methods
has an order p� say� and the second has an order p� �� The di�erence
of the results computed by these methods provides an error estimate
for the order p method�

To illustrate the technique of controlling the local truncation error
consider Euler�s method

yk�� � yk � hf�xk� yk��

which has local truncation error

ek�� � y�xk���� y�xk�� hf�xk� y�xk���

Now the modi�ed Euler�s method ������

�yk�� � �yk � hf�xk �
�

�
h� �yk �

�

�
hf�xk� �yk��

has local truncation error �ek�� of order O�h��� Suppose that

�yk � yk � y�xk��

Then

y�xk���� yk�� � y�xk���� yk � hf�xk� yk�

� y�xk���� y�xk�� hf�xn� y�kn��

� ek���

Thus

ek�� � y�xk���� yk��

� 	y�xk���� �yk��
� 	�yk�� � yk��


� �ek�� � 	�yk�� � yk��
�
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But ek�� is O�h� while �ek�� is O�h��� and so the most signi�cant portion
of ek�� must be attributed to 	�yk�� � yk��
� Consequently the local
truncation error can be approximated by

ek�� � 	�yk�� � yk��
 �����

and this formula can be used for the selection of the step size�
Methods of this type have been devised by E� Fehlberg and by a

number of other authors�

� Runge
Kutta
Fehlberg method

Now suppose that two discrete methods are available� one with a
local truncation error ek�� of order O�hp� and the second has a local
truncation error �ek�� of order O�hp���� By a similar analysis to that
above equation ����� will still apply� However since ek�� is of order
O�hp� a constant c exists such that

ek�� � chp�

Thus

chp � 	�yk�� � yk��
�

Now since our intention is to vary the step size to control the local
truncation error consider a stepsize qh where q � � Then

ek���qh� � c�qh�p � qp�chp� � qp��yk�� � yk����

To bound the truncation error by 	� choose q so that

qp��yk�� � yk��� � ek���qh� � 	�

Thus

q �
	
 	

j�yk�� � yk��j
�� �

p

������

One technique which utilizes ������ for error control is the Runge
KuttaFehlberg method �or RKF�� method� which consists of the order
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four explicit method� in Butcher notation
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to advance the solution and the order �ve explicit method
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to estimate the error� This process is known as embedding� In practice
to avoid too many step size changes q is chosen conservatively as

q �
	
 	

�j�yk�� � yk��j
�� �

�

� ���
	
 	

j�yk�� � yk��j
�� �

�

�

Another possibility� as we have seen earlier� to estimate the error
control is based on step�doubling �i�e� on Richardson extrapolation��
however experience has shown that the above error control is roughly
a factor of two more e�cient than one based on step doubling � The
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RKF�� method seem to be e�cient and suitable for tolerances down
to about ����

The Maple�s dsolve procedure uses the above Runge Kutta Fehl�
berg method if we invoke it with the options

type � numeric and method � rkf��

�Note the default value of the method option is just rkf����
We refer to the on�line help system for immediate help on how to

change the various parameters of this method�

Example ����� Compute the approximate value yk of the solution
of ����� at the point xk �� �� by means of the built�in RungeKutta
Fehlberg method of Maple� Give also the errors

Ek �� y�xk�� yk �k � � �� � � � � ���

Solution� First we compute the exact solution of the initial value
problem ������

� eq �� diff�y�x�� x� � ���x�y�x�	�


eq ��
�

�x
y�x� � �� x y�x��

� in�cond �� y��� � �


in cond �� y�� � �

� es��dsolve�feq� in�condg� y�x��


es �� y�x� �
�

x� � �

� Exact�Sol�� t �� subs�x�t� rhs�e���

At the point x � �� we have

� Exact�Sol�����


����������

Obtaining the solution by means of RKF�� method we get

� RKF���Meth �� dsolve�feq�in�condg�y�x��
type�numeric� method�rkf���


RKF�� Meth �� proc�rkf�� x � � � � end
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� RKF���Meth�����


	x � ��� y�x� � ���������������


� RKF���Sol �� x�� rhs�op���RKF���Meth�x���


RKF�� Sol �� x	 rhs�op��� RKF�� Meth�x���

� RKF���Sol�����


���������������

The errors can be computed in the following way�

� Error �� x �� Exact�Sol�x� � RKF���Sol�x��

� for k from � to � do Error�����k� od




���� ���

���� ���

���� ���

���� ���

��� ���

��� ���

� Gear method

C�W� Gear developed a polynomial extrapolation method which can
be used for the numerical solution of sti� problems �see Chapter ���
The Maple�s dsolve procedure uses this method if we invoke it with
the options

type � numeric and method � gear	polyextr


R� Bulirsch and J� Stoer worked out a rational extrapolation method to
obtain high�accuracy solutions to initial value problems with minimal
computational e�ort� Maple also contains this method in its options

type � numeric and method � gear	bstoer
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� Continuous Runge�Kutta methods� DVERK�

DVERK�� is another well�known high�order continuous Runge 
Kutta method with step size control� This method is based on a ��
stage �th order formula with �th order error estimate by Fehlberg� It
has been much used for high precision computation� for example in as�
tronomy and it is preferable for tolerances between approximately ���

and �����
Invoking the dsolve function in Maple with the

type � numeric and method � dverk��

options causes dsolve to �nd a numerical solution with the seven�eight
order continuous Runge Kutta method�

��� Stability of single step methods

Any numerical method applied to the initial value problem ����� will
introduce errors due to discretization and round�o�� In most situations
the e�ect of errors in a numerical method does not signi�cantly a�ect
the �nal results� However� in certain cases it can lead to a serious loss
of accuracy� The terms stability and instability are used to describe
this phenomenon� As we have mentioned in Section ��� there are two
types of instability  inherent and numerical�

In this section we suppose that the conditions of the Theorem ���
are satis�ed� From it follows that the initial value problem ����� has a
unique solution on the interval 	a� b
� We also suppose that the prob�
lem ����� is well�conditioned� Roughly speaking this means that small
perturbations in the stated problem will only lead to small changes in
the solutions�

There are several types of numerical stability� Here we consider only
two fundamental types of them� zero�stability and absolute stability�
We shall also investigate the stability properties of some of the single
step methods�

� Zero�stability
We have already seen that for �xed positive values of h� the errors

produced by a convergent method increase as x increase� when applied
to the initial value problem ������ Even when the local error at each
step is small� the global error may become large due to accumulation
and ampli�cation of the local errors�

We supposed that our problem ����� is well�conditioned� We can
ask what conditions must be imposed on the method in order that
the numerical solution displays a stability property analogous to that
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displayed by the exact solution� This leads to the concept of zero�
stability� which controls the manner in which error accumulate� but
only in the limit as h	 �

Definition ���� We say that a single step method of class ����� is
zero stable if� for su�ciently small stepsizes h� small perturbations in
the starting values produce small perturbations in subsequent values�

Therefore a single step method ����� is zero�stable if for each dif�
ferential equation satis�es a Lipschitz condition there exist positive
constants h� and K such that the di�erence between two di�erent nu�
merical solution yk and y�k of ����� satis�es

jyk � y�kj � Kjy� � y��j
for all  � h � h� and k � � �� � � � � N �

Several comments can be made about the de�nition�
�� Zero�stability is concerned with what happens in the limit as

h	 �
�� Well�posed is a property of di�erential equation� zero�stability is

a property of numerical method� respectively�
�� Zero�stability does not require convergence� although we will

show that the converse is true� The method yk�� � yk� �k � � �� ���� N�
�� is zero�stable� but not convergent for any but the trivial problem
y� � �

�� Computers can calculate only with �nite precision� so that in�
evitably round�o� errors arise� When we perform calculations by the
method using two di�erent rounding procedures�for example using
two di�erent computers�this could result two numerical results which
being in�nitely far apart� no matter how �ne the precision� Thus� if
the method zero�unstable� the sequence yk is essentially uncomputable�

Stability is nearly automatic for single step methods as the following
theorem shows� �In Chapter � we shall see that the situation changes
in the case of multistep methods��

Theorem ���� If ��x� y� h� satis�es a Lipschitz condition� then the
single step method given by ����� is zero�stable�

It can be seen that for all of the methods discussed earlier� � will
also satisfy a Lipschitz condition for  � h � h�� therefore they are
zero�stable�

Example ����� Show that the modi�ed Euler�s method ������ for
the numerical solution of the initial value problem ����� is zero�stable�
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Solution� The increment function is

��x� y� h� � f�x�
h

�
� y �

h

�
f�x� y���

which is continuous in x and y because f is� Since f satis�es a Lipschitz
condition with respect to its second variable �see Theorem ���� thus we
have

j��x� y� h�� ��x� y�� h�j �

� jf�x�
h

�
� y �

h

�
f�x� y��� f�x�

h

�
� y� �

h

�
f�x� y��j �

� Ljy � h

�
f�x� y�� y� � h

�
f�x� y��j �

� Ljy � y�j� L
h

�
jf�x� y�� f�x� y��j �

� L�� �
Lh

�
�jy � y�j�

Thus � satis�es a Lipschitz condition in y for  � h � h� and by the
last theorem the modi�ed Euler�s method is zero�stable�

� Absolute stability �Linear stability theory�

The concept of zero�stability� and also convergence are concerned
with the limiting process as h 	 � In practice� we must compute
with a �nite number of steps� i�e� with �nite� nonzero step size h� In
particular we want to know if the errors we introduced at each step
�truncation and round�o�� have a small or large e�ect on the answer�
What is needed is a stability theory which applies when h takes a �xed
non�zero value�

We attempt to de�ne absolute stability as follows� A method is
absolute stable for a given step size h and a given di�erential equation
if the change due to a perturbation of size 	 in one of the mesh value
yk is no larger than 	 in all subsequent values ym m � n�

But� unfortunately� this de�nition is strongly dependent on the
problem� so we utilize the idea of a test equation� The simplest such
test equation is the linear scalar di�erential equation

y��x� � �y�x�� � � C � ������

with the initial condition y�x�� � y�� which is simple enough to be
analyzed theoretically but still so general that it can present some
di�culty for a numerical method�



�� �� SINGLE STEP METHODS

Remark� We can draw conclusions about how a method works on
the system dy�dx � Ay� where A is a constant� diagonalizable matrix�
by checking its behavior on test equations with � � an eigenvalue of
A�

Equation ������ has as its solution

y�x� � y�e
��x�x���

which at xk � x� � kh becomes

y�xk� � y�e
�kh � y��e

�h�k� ������

A single step method when applied to ������ will lead to a �rst
order di�erence equation

yk�� � R��h�yk� ������

where R is a function determined by the coe�cients in the method� The
function R is called the stability function of the method� For example
in the case of explicit Runge Kutta methods the stability function R
is a polynomial and for implicit Runge Kutta methods R is a rational
function�

It is clear that ������ has a solution of the form

yn � c��R��h��
n� ������

where c� is a constant to be determined from the initial condition�
Let us �rst consider the simpler case of a real �� For � �  we

have �h �  and R��h� � �� This means that the approximations�
yk� are computed qualitatively in a correct way� The process of natural
and applied sciences that are described by di�erential equations usually
contain exponentially decreasing components� This is the case for � �
� Now yk decreases like the exact solution y�xk� if and only if the
condition jR��h�j � � is satis�ed�

If R��h� is a polynomial in �h� this condition cannot be satis�ed
for all negative values of �h� Systems of di�erential equations often
have solutions consisting of components that decay exponentially but
in an oscillating way� Such components correspond to complex values
�� Now the solution y�x� is complex� and again we have the equation
y�xk��� � e�hy�xk�� The complex multiplier e�h has� in the only case
of real interest Re��� � � a modulus less than one� The necessary and
su�cient condition for the numerical approximations yk to decrease in
absolute value like y�xk� is therefore given by jR��h�j � �� This gives
a motivation for the next de�nition

Definition ���� A single step method ����� is said to be absolutely
stable for given �h� if for that �h� jR��h�j � �� when the method is
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applied for the test initial value problem ������� and to be absolutely

unstable for that �h otherwise� The set

B �� fz � C � jR�z�j � �g
is called the region of absolute stability� The intersection of B with
the real axis is called the interval of absolute stability�

Consequently� the step size h �  must be chosen in such a way that
for Re��� �  we have �h � B� In the case of systems of di�erential
equations the step size h must be chosen in such a way that for all
decay constants �i with Re��i� �  the conditions �ih � B are all
simultaneous satis�ed� If the condition �h � B is violated the method
produces meaningless results� that is the method is unstable�

Example ����� Find and sketch the region of absolute stability for
a� Euler�s method�
b� trapezoidal method ������

Solution� �a� If Euler�s method is used for the test equation �������
we get

yk�� � yk � h�yk � �� � �h�yk �� R��h�yk�

Thus the stability function of Euler�s method has the form

R�z� � � � z�

Consequently� Euler�s method is absolutely stable in the region

j� � zj � ��

which is a unit circle in the complex z�plane centered at ���� ��
We can draw the region of absolute stability using Maple� First we

de�ne the stability function R�

� z �� x � I�y�

� R �� �x� y� �� simplify�evalc�abs���z���


� R�x�y�
 p
� � � x� x� � y�

Now we use the Maple�s implicitplot procedure�which is in the plots
package to draw the region of absolute stability�

� with�plots��

� implicitplot�R�x�y���� x������� y�������

filled�true� scaling�CONSTRAINED�




�� �� SINGLE STEP METHODS

-2

-1

0

1

2

y

-3 -2 -1 1x

�b� The trapezoidal method ����� applied to the test equation
������ leads us to the explicit computational scheme

yk�� � yk �
h

�
��yk � �yk����

Thus

yk�� �
� � �

�
�h

�� �
�
�h

yk �� R��h�yk�

The stability function of trapezoidal method is

R�z� �
� � z

�� z
�

We draw the region of absolute stability as below

� z �� x � I�y�

� R �� �x� y� �� simplify�evalc�abs���z�z	�������

� R�x�y�


�

�

p
� � � x� � x� � � x� � � x y� � x� � � x� y� � y�

� with�plots��

� implicitplot�R�x�y���� x������� y�������

filled�true� scaling�CONSTRAINED�
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Experiments with di�erent regions of the plot suggests that the region
of absolute stability of the trapezoidal method is the open left half
complex plane� It is easy to prove that

jR�z�j � � i� Re�z� � �

Thus for the trapezoidal method there is no bound on the step size
which has to be taken into account in order to obtain a stable integra�
tion� The problem of the choice of h will be treated in connection with
systems of sti� di�erential equations�

Example ����� Find and sketch the absolute stability region for
the following second�order RungeKutta method�

yk�� � yk �
�

�
�k� � k��� ������

where

k� � f�xk� yk��

k� � f�xk � h� yh � hk���

Solution� The right�hand side of the equation ������ is f�x� y� �
�y� Applying the above method for ������ we have

yk�� � yk �
h

�
��yk � ��yk � �hyk�� �


� � �h �

��h�

�

�
yk�

Thus the stability function of ������ has the form

R�z� � � � z �
z�

�
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and the region of absolute stability of the method ������ is given by

B � fz � C �
��� � z �

z�

�

�� � �g
which is shown below�

� z �� x � I�y�

� R �� �x� y� �� simplify�evalc�abs���z�z	�������

� R�x�y�


�

�

p
� � � x� � x� � � x� � � x y� � x� � � x� y� � y�

� with�plots��

� implicitplot�R�x�y���� x������� y�������

filled�true� scaling�CONSTRAINED�
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���� Exercises

�� Use the Taylor�s series expansion to �nd the order p in O�hp� at
h �  for the function eh � cos h�

�� Give the solution of the following di�erence equation

y� �� �� yk�� � ��yk �k � � �� � � � ��
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�� Show that the solution of the di�erence equation y� � � y� �
�� yk�� � yk � yk�� �k � � �� � � � � is

yk �
�p
�

��� �p
�

�

�k
�
���p�

�

�k�
�k � � �� �� � � � ��

Try to solve the above di�erence equation using Maple�

�� Obtain the local truncation error for

�a� Heun�s method�

�b� the modi�ed Euler�s method�

�� Examine the consistency of the methods of Q��

�� Determine an upper bound for the global truncation error of
Euler�s method in solving the initial value problem

y��x� � ��y�x�� y�� � ��

�� Use the second order Taylor series method to �nd a numerical
solution of the di�erential equation

y��x� � � � x sinxy�x�� y�� � �  � x � �

using a stepsize h � ���

�� Use the fourth order Taylor series method to �nd a numerical
solution of the di�erential equation

y��x� � �y�x� � x � �� y�� � ��  � x � �

using a stepsize h � ���

�� By choosing a suitable value for � in ������ obtain the method

yk�� � yk �
h

�

h
f�xk� yk� � �f�xk �

�

�
h� yk �

�

�
f�xk� yk��

i
and the mid�point method

yk�� � yk � hf
�
xk �

�

�
h� yk �

�

�
hf�xk� yk�

�
�

�� Use the methods of Q� together with the modi�ed Euler�s method

yk�� � yk �
h

�

�
f�xk� yk� � f

�
xk � h� yk � hf�xk� yk�

��
to �nd a numerical solution of

y��x� � �y�x� � x� � �� y�� � ��  � x � �

using a stepsize h � ��� Which method is most accurate�
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��� Explain why all the above methods would give the same solution
for the di�erential equation

y��x� � �y�x� � x� �� y�� � ��

��� Use Maple�s dsolve procedure to �nd the exact solution of the
following initial value problem

y��x� � x� xy�x�� y�� � ��

Solve this problem also by means of a� Euler�s method� b� four�
stage Runge Kutta method� c� Heun�s method� d� RKF��
method�
Experiment with di�erent step sizes h� Compare the results with
the exact solution� Compare also the answers obtained by the
above methods�

��� Write Maple programs to solve the system of ordinary di�erential
equations

y��x� � f�x�y�x��� y�x�� � y�

by a� Huen�s method and b� the classical �th order Runge Kutta
method� Test your programs on the systems

i� y���x� � y��x�� y��x�y��x�� y��� � ���

y���x� � �y��x� � y��x�y��x�� y��� � ���

ii� y���x� � y��x�� y��� � �

y���x� � �y��x� � 
��� y���x��y��x�� y��� � ���
where 
 is a parameter� �Try 
 � ��� �� �� ���

iii� y���x� � ��y��x� � y��x��� y��� � ��

y���x� � y��x� � ��y��x�� y��� � ��

y���x� � ��� �y��x� � y��x�y��x�� y��� � ��

��� Examine the zero�stability of the three�stage classical Runge 
Kutta method�

��� Find and sketch the region of absolute stability for the following
methods

�a� yk�� � yk�hf�xk� yk��� �backward Euler�s method��

�b�

yk�� � yk �
h

�

h
f�xk� yk� � �f�xk �

�

�
h� yk �

�

�
f�xk� yk��

i

�c� three�stage classical Runge Kutta method�
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CHAPTER �

Linear Multistep Methods

���� Basic concepts

Consider the �rst�order scalar initial value problem

y��x� � f�x� y�x��� y�a� � �� �����

where a and � are given real values and suppose that it has a unique
solution y�x� on the bounded interval I �� 	a� b
 � R�

In this chapter our aim is to determine approximate values yk of
the exact value y�xk� using multistep methods at the equidistant mesh

points of the interval I

xk �� a � kh �k � �� �� � � � � � N��

where h �� �b� a��N is the step size�
As we have seen in Chapter  a single step method determines an

approximation of the exact solution of ����� at a mesh point solely on
the basis of the approximation at the previous mesh point� In contrast
multistep methods utilize the approximation at more then one previous

mesh points to calculate the approximation at the next point�
Here we study only linear multistep methods �these are also called

m�step linear methods� which have the following general form�

mX
j��

�jyk�j � h
mX
j��

�jf�xk�j� yk�j�� �k � �� �� � � � � � N �m�� ����

where m � N is a given positive integer� �j and �j �j � �� �� � � � � m�
�m �� �� are given real numbers �the parameters of the method�� Thus
the approximate value yk�m depends on m previous values yk� yk��� � � � �
yk�m��� In order to generate the sequence of approximations �yk� k �
N� it is �rst necessary to obtain starting values y�� y��� � � �ym��� They
may be determined� for example� by a single step method� Using the
shorthand notations

fi �� f�xi� yi� �i � �� �� � � � � �

��
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the general m�step linear methods can be written in the form

y� �� �� y�� � � � � ym���
mX
j��

�jyk�j � h
mX
j��

�jfk�j�

�k � �� �� � � � � � N �m��

�����

If �m � � the method is said to be explicit because yk�� can be ex�
pressed explicitly� If �m �� � then the method is implicit and leads to
a nonlinear equation for ym�k�

Remark� To de�ne a linear multistep method it is necessary to
prescribe the parameters m� h� �j� �j �j � �� �� � � � � m� and the starting
values y�� y�� � � � � ym��� Then yk �k � m�m��� � � � � N� can be computed
using ����� which is also called a di�erence equation for the unknown
values yk �k � m�m � �� � � � � N��

It is clear that the following single step methods

yk�� � yk � hfk �explicit Eulers� method�

yk�� � yk � hfk�� �implicit Eulers� method�

yk�� � yk �
h


�fk � fk��� �trapezoidal method�

are special cases of the class of ��step linear methods�
Linear multistep methods ����� can be directly generalized to sys�

tems of di�erential equations and therefore also to higher�order di�er�
ential equations� The methods and results for initial value problems for
systems of ordinary di�erential equations of �rst�order are essentially
independent of the number of unknown functions� In the following we
therefore limit ourselves for simplicity and clarity to the case of only
one ordinary di�erential equation of �rst�order for a single unknown
function�

���� Polynomial interpolation

To introduce linear multistep methods we need some fundamental
facts from the theory of polynomial interpolation�

Let x�� x�� � � � � xn denote distinct real numbers �they are called nodal
points� and let y�� y�� � � � � yn be arbitrary real numbers� The points
�xj� yj� �j � �� � � � � � n� can be imagined to be data values to be con�
nected by a curve�
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It is easy to prove that there exists a uniquely determined interpo�

lation polynomial

Pn���x� � a� � a�x� a�x
� � � � �� an��x

n��

of degree at most �n� �� satisfying the interpolation conditions

Pn���xj� � yj� �j � �� � � � � � n��

This polynomial can be written in the Lagrangian form�

Pn���x� �
nX

j��

yjlj�x�� �����

where

lj�x� �
�x� x�� � � � �x� xj����x� xj��� � � � �x� xn�

�xj � x�� � � � �xj � xj����xj � xj��� � � � �xj � xn�

�j � �� � � � � � n�

�����

are Lagrange�s fundamental polynomialswith respect to the nodal points
x�� � � � � xn�

Fortunately the Maple�s interp procedure helps us to compute in�
terpolation polynomials�

Example ���� Using the interp function of Maple �nd the inter�

polating polynomial of degree � � for the data

������� �������� ��� ��� ��� ��� �� ����

Also� check the result�

Solution� First we de�ne the data in Maple

� points �� ���� ��� �� �� ���

values �� ��	� ��� �� 
� ����

points �� 	�� ��� �� �� 

values �� 	��� ��� �� �� ��


Now we invoke the interp procedure to obtain the required interpola�
tion polynomial�

� ip �� interp�points� values� x�

ip �� x� � x � �



��� �� LINEAR MULTISTEP METHODS

The value of this expression� for example� at the point x � � can be
obtained using the substitution procedure subs

� subs�x���� ip�

��
In order to compute the value of the above polynomial at any point in
a more convenient way we de�ne the following function

� Int�Pol �� proc�t�

local z

subs�z�t� interp�points� values� z��

end�

The asked polynomial is

� Int�Pol�x�

x� � x � �

and� for example� at x � �� we get

� Int�Pol����

��
The values of the polynomial Int Pol at the points may be obtained
using the Maple�s map procedure

� points

map�Int�Pol� points�

	�� ��� �� �� 

	��� ��� �� �� ��


The output shows that the polynomial Int Pol satis�es the required
interpolation conditions�

Let us remark that the resulting polynomial is only of the degree ��

Example ��� Find Lagrange�s fundamental polynomials with re�

spect to the nodal points ����� �� �� �
Solution� We de�ne the nodal points in the Maple�s variable

points and take the values as parameters denoted by y��������y����
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� points �� ���� ��� �� �� ��

values �� �y���� y���� y�
�� y���� y����

points �� 	�� ��� �� �� 

values �� 	y���� y��� y���� y���� y���


Now we construct the interpolation polynomial collecting its terms with
respect to y��������y����

� pp �� collect�interp�points� values� x��

fy���� y���� y�
�� y���� y���g�

pp �� �� �

�
x� � �

�
x� �

�

�
x �

�

�
x�� y���

� ��

�
x �

�

�
x� �



�
x� � �

�
x�� y��

� ���

�
x� � � �

�

�
x�� y���

� �


�
x� �

�
x� �



�
x� � �

�
x�� y���

� �� �

�
x�

�

�
x� � �

�
x� �

�

�
x�� y���

The Lagrange�s fundamental polynomial with respect to the point x� �
� can be obtained using the coeff procedure

� coeff�pp� y����

� �

�
x� � �

�
x� �

�

�
x �

�

�
x�

Finally we get

� for i from � to � do
sprintf��l��f���� i�� coeff�pp� y�i�� od

l�� � � � �

�
x� � �

�
x� �

�

�
x�

�

�
x�

l�� � � � 

�
x�

�

�
x� �



�
x� � �

�
x�

l�� � � � �

�
x� � � �

�

�
x�
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l�	 � �


�
x� �

�
x� �



�
x� � �

�
x�

l�
 � � � �

�
x �

�

�
x� � �

�
x� �

�

�
x�

���� Classical linear multistep methods

In this section we introduce the historically oldest variants of the
linear multistep methods�

� Adams�Bashforth methods

In ����� Adams and Bashforth gave an improvement of the Euler�s
method� Their idea to obtain a numerical solution of initial value
problem ����� is based on integration of an interpolating polynomial�
Let us take a �xed number k and consider the equation

y�xk���� y�xk� �

Z xk��

xk

f�t� y�t��dt� �����

which is obtained by integrating the di�erential equation in ����� over
the interval 	xk� xk��
� In general no primitive for the right�hand side
of ����� can be found� because y�x� is an unknown function� Therefore
the value of the integral has to be approximated�

Fix the positive integer m and suppose that k � m� Denote by
Pm���k�x� the uniquely determined polynomial of degree � m�� for the
following m support points� �xk� f�xk� y�xk���� �xk��� f�xk��� y�xk������
� � � �xk���m� f�xk���m� y�xk���m���� Now the integrand in ����� can be
replaced by the interpolating polynomial

Pm���k�x� �
mX
j��

f�xk�m�j� y�xk�m�j��lj�x��

where lj�x� �j � �� � � � � � m� are Lagrange�s fundamental polynomials
with respect to the nodal points xk���m� � � � � xk� Thus� we obtain the
following approximate formula �see Figure ����

y�xk���� y�xk� �
Z xk��

xk

Pm���k�t�dt �

�
mX
j��

f�xk�m�j� y�xk�m�j��

Z xk��

xk

lj�t�dt�

�����
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Observe that the coe�cients of f�xk�m�j� y�xk�m�j�� in ����� do not
depend on f � The importance of this fact is obvious� Therefore� replac�
ing in the above formula all exact values y�xi� by approximate values
yi� f�xi� y�xi�� by fi �� f�xi� yi� and � by an equality sign� we obtain
the m�step Adams�Bashforth method

y� �� �� y�� � � � � ym���

yk�� � yk � h ��m�fk���m � �m�fk���m � � � �� �mmfk� �

�k � m� �� m�m� �� � � � ��
�����

where the coe�cients �mj �j � �� � � � � � m� of the method are given by

h�mj �

Z xk��

xk

lj�t�dt

and they only depend on the mesh points�
These methods have the feature that they are explicit� The reader

may wish to check that the ��step Adams�Bashforth method is the well
known explicit Euler�s method�

x

y
Pm�k�x�

�fk�� �fk�� �fk �fk��

xk�� xk�� xk xk��

�fk�j �� f�xk�j� y�xk�j��

Figure ��� Approximation of the integral

In order to be able to use an m�step method �for m � ��� besides
the initial condition y� �� �� �m��� more initial values y�� y�� � � � � ym��
are necessary� They must be determined by other methods� e�g� with
the aid of a single step method� The Runge�Kutta procedures are quite
suitable and possibly a smaller step size h� � h is adequate�

We recall that �see Section ��� the local truncation error of a
method at the point xk�� is the di�erence between the true solution
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and the solution provided by one step of the method starting from the
exact values� i�e� in the present case

e�xk��� h� �� y�xk���� y�xk�� h
mX
j��

�mjf�xk�m�j� y�xk�m�j���

A simple calculation is enough to see that

e�xk��� h� � O�hm���

and this means that each type of m�step Adams�Bashforth methods has

the order p � m�
The order can simply be increased whereby the property that each

integration step requires only one function evaluation is maintained�
This minimal amount of e�ort� explains why Adams�Bashforth meth�
ods are often used�

The next example illustrates how the coe�cients of Adams�Bash�
forth methods can be determined�

Example ���� Find the coe�cients of the m�step Adams�Bash�

forth method for m � � �� �� ��

Solution� Consider the case m �  and introduce the notation

�fk�� �� f�xk��� y�xk����� �fk �� f�xk� y�xk���

The interpolation polynomial through the points �xk��� �fk���� �xk� �fk�
can be written in the form

P��k�x� �
x� xk��
xk � xk��

�fk �
x� xk

xk�� � xk
�fk���

Thus ����� gives

y�xk���� y�xk� �
Z xk��

xk

P��k�t�dt � h

�
��


�fk�� �

�


�fk

�
� �����

If in ����� we replace y�xi� by the approximate values yi� �fi by fi ��
f�xi� yi� and � by an equality sign� then for k � �� � � � � we obtain

yk�� � yk �
h


��fk�� � �fk��

i�e� ��� � ��
�
and ��� �

�
�
�

In order to obtain a numerical method for the solution of the initial
value problem ����� we have to provide two starting values y� and y��
Taking y� �� � and y� �� y� � hf�� where f� �� f�a� y��� we get the
two�step Adams�Bashforth method
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x� � � a� y� �� ��

xk�� � � xk � h� h �� �b� a��N�

f� � � f�x�� y���

y� � � y� � hf��

yk�� � � yk � h���

�
fk�� �

�

�
fk��

fk�� � � f�xk��� yk����

�k � �� � � � � � N � ���

������

In order to derive the coe�cients in the case of m � �� �� � let us
investigate the right�hand side of ����� using Maple�

First we de�ne a function which gives the array of the fundamental
points

�xk���m� � � � � xk��� xk�
of the interpolation� �In the following commands x denotes the mesh
point xk��

� fpoints �� proc�m�

local i� vv�

vv��array����m��

for i to m do vv�i���x��m�i��h od�

eval�vv�

end�

For example if m � � we have

� fpoints���

	x� � h� x�  h� x� h� x


Using the notation f�i� for f�xk�i� y�xk�i�� we de�ne the array of
the function values in a similar way

� fvalues �� proc�m�

local i� vv�

vv��array����m��

for i to m do vv�i���f�i�m� od�

eval�vv�

end�
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For m � � we obtain

� fvalues���

	f����� f���� f����� f���


For m � � the integral in ����� can be computed in the following
way

� ip �� interp�fpoints���� fvalues���� z��

int�ip� z�x��x�h��

simplify���

�

�
h ��� f���� � �� f���� �� f���� � �� f����

Now we determine the integral in ����� for m � �� � �� �� ��

� for i to � do simplify�

int�interp�fpoints�i��fvalues�i��z��z�x��x�h�� od

f��� h

�


h �� f���� f�����

�

�
h �� f���� �� f���� � � f����

�

�
h ��� f���� � �� f���� �� f���� � �� f����

� h

��
����� f��� � ��� f����� �� f����� ���� f��� � ��� f�����

From the results one can see that the coe�cients of f�i� do not
depend on x� i�e� on the index k� The importance of this fact is
obvious� In order to use a method of such type we have to store only
those coe�cients which are collected in Table ����
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m �m� �m� �m� �m� �m�

� �

 ��



�



�
�

�
���

�

�

�

� � �

�

��

�
���

�

��

�

�
��

��
����

��

���

��
����

��

����

��

Table ��� Coe�cients for Adams�Bashforth methods

Maple includes an Adams�Bashforth method procedure as illus�
trated in the following example�

Example ���� Solve the initial value problem

y��x� � �xy��x�� y��� � � ������

by means of the built�in Adams�Bashforth method of Maple� Take the

step size h � ���� and print the di�erence between yk and the exact

value y�xk� at the mesh points xk � kh� k � �� �� � � � � ��

Solution� Invoking the dsolve procedure with the options

type � numeric and method � classical	adambash


and using ���digits �oating�point arithmetic we get

� Digits �� ���

� AB�� �� dsolve�fdiff�y�x��x�����x��y�x����� y�����g�
fy�x�g� type�numeric�

method�classical�adambash�� stepsize�����

AB � �� proc�x classical� � � � end

� AB�������

	x � ��� y�x� � ����������������
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Now we de�ne the function AB Sol which gives the value of the approx�
imate solution at an arbitrary mesh point�

� AB�Sol �� x �� rhs�op��� AB���x���� AB�Sol�����

����������������

The exact solution of ������ is

� es �� dsolve�fdiff�y�x��x�����x��y�x����� y�����g�
y�x��

es �� y�x� �
�

x� � �

In order to compute the value of this expression at di�erent points we
need the following function

� Exact�Sol �� proc�t�
subs�x�t� rhs�es��

end�

� Exact�Sol�x�

�

x� � �

� Exact�Sol�����

���������������

Therefore the di�erences between the approximate and the exact values
at the required mesh points are

� Error �� x �� Exact�Sol�x� � AB�Sol�x��

� for k from � to � do Error�����k� od

�
��������� ����

��������� ����

��������� ����

��������� ����

�������� ����

�������� ����
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� Adams�Moulton methods

In ���� Moulton modi�ed the Adams�Bashforth methods as fol�
lows� To obtain a better approximation of the integral in ������ the
value f�xk��� y�xk���� at the new abscissa xk�� is also used in addition
to the values f�x� y�x�� at the abscissae

xk���m� � � � � xk��� xk��� xk�
As �m� �� support ordinates are available� we can construct an inter�
polation polynomial Pm�k�x� of degree � m �see Figure ���� Therefore
we get

y�xk���� y�xk� �
Z xk��

xk

Pm�k�t�dt �

�
m��X
j��

f�xk�m�j� y�xk�m�j��

Z xk��

xk

lj�t�dt�

�����

x

y
Pm�k�x�

�fk�� �fk�� �fk �fk��

xk�� xk�� xk xk��

�fk�j �� f�xk�j� y�xk�j��

Figure �� Approximation of the integral

Replacing in ����� all exact values y�xi� by approximate values yi�
f�xi� y�xi�� by fi �� f�xi� yi� and � by equality sign� we obtain the
m�step Adams�Moulton method

y� �� �� y�� y�� � � � � ym���

yk�� � yk � h��m�fk���m � � � �� �m�m��f�xk� yk����

�k � m� �� m�m� �� � � � ��
������
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where the coe�cients �mj �j � �� � � � � � m��� of the method are given
by

h�mj �

Z xk��

xk

lj�t�dt

and they only depend on the mesh points�
In order to be able to use an m�step method �for m � ��� besides

the initial condition y� �� �� �m��� more initial values y�� y�� � � � � ym��
are necessary� They must be determined by other methods� e�g� with
the aid of a single step method� The Runge�Kutta procedures are quite
suitable and possibly a smaller step size h� � h is adequate�

These methods have the feature that they are implicit in the sense
that right side of ������ will depend on the unknown yk��� In order
to use an implicit method we have to solve a nonlinear equation� We
shall see later how we can do it�

It may be shown that the local truncation error of the method ������
satis�es

e�xk��� h� � O�hm����

therefore the order of the m�step Adams�Moulton method is p � m���
It is interesting to compare a m�step Adams�Bashforth �explicit�

method to the �m� ���step Adams�Moulton �implicit� method� Both
methods require m evaluation of f per step and both have the terms
O�hm� in their local truncation error� as we have seen above� In gen�
eral� the local truncation errors are smaller for the Adams�Moulton
methods� This leads to greater stability for the implicit methods and
smaller rounding errors� The price for this higher accuracy is that in
general a nonlinear equation has to be solved at each step�

The next example illustrates how the coe�cients of Adams�Bash�
forth methods can be determined�

Example ���� Compute the coe�cients of them�step Adams�Moul�

ton method for m � �� �� � �� ��

Solution� If m � � then ����� yields

y�xk���� y�xk� �

Z xk��

xk

f�x� y�x��dx � hf�xk��� y�xk�����

Replacing y�xi� by its approximate value yi and � by �� we obtain

yk�� � yk � hf�xk��� yk���

which is the implicit Euler�s method�
In the case of m � � we have two points �xk� �fk� and �xk��� �fk����

where we used notation �fi �� f�xi� y�xi��� It is easy to see that the
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minimal degree interpolating polynomial through these points has the
form

P��k�x� �
x� xk��

xk � xk��

�fk �
x� xk

xk�� � xk
�fk���

Integrating gives

y�xk���� y�xk� �

Z xk��

xk

f�x� y�x��dx �

�
Z xk��

xk

P��k�x�dx �
h


� �fk � �fk����

This leads to the following numerical method

yk�� � yk �
h


�f�xk� yk� � f�xk��� yk���� � ������

This is the well�known trapezoidal method which is also an implicit

procedure�
Now� suppose that m is an arbitrary nonnegative integer and con�

sider again the general approximate formulaZ xk��

xk

f�x� y�x��dx �
Z xk��

xk

Pm�k�x�dx�

The integral on the right�hand side can be computed using Maple�

� fpoints �� proc�m�

local i� vv�

vv��array����m����

for i to m�� do vv�i���x��m�i��h od�

eval�vv�

end�

� fpoints���

	x� � h� x�  h� x� h� x� x� h


� fvalues �� proc�m�

local i� vv�

vv��array����m����

for i to m�� do vv�i���f�i�m� od�

eval�vv�

end�



��� �� LINEAR MULTISTEP METHODS

� fvalues���

	f����� f���� f����� f���� f���


� for i from � to � do simplify�

int�interp�fpoints�i��fvalues�i��z��z�x��x�h�� od

f��� h

�


h �f��� � f����

� �

�
h ��� f���� � f��� � f�����

�

�
h �f��� � �� f��� � � f���� � f�����

�

��
h ��� f���� �� f���� � ��� f���� �� f���� � ��� f����

We collect the coe�cients in Table ���

m �m� �m� �m� �m� �m�

� �

�
�



�



 � �

�

�

�

�

�

�
�

�
� �

�

��

�

�

�

� � ��

��

���

��
���

��

���

��

��

��

Table �� Coe�cients for Adams�Moulton methods

� Predictor�corrector methods

As we have mentioned above� in order to use an implicit method
we have to solve a nonlinear equation of the form

x � F �x�� ������
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where F is a real valued function of one real variable� An approximate
solution of ������ may be found by means of �xed point iteration� i�e�
we take some initial value x	�
� insert it into the right�hand side of ������
to get an updated value of the solution� insert this updated value back
into the right�hand side� and continue iterating

x	i��
 � F �x	i
� �i � �� �� � � � � ��

Example ���� Use the �xed point iteration to �nd an approximate

solution of the real root of the equation x � e�x� Perform the compu�

tation using Maple�

Solution� It is easy to see that our equation has exactly one real
root�

� plot�fx� exp��x�g� x������� ����
�

-1

0

1

2

3

-1 1 2 3 4x

Using the graph we choose the following initial value

� x� �� ����

The sequence of iteration can be de�ned as follows

� ItSeq �� proc�i�

option remember�

if i�� then x�
else exp��ItSeq�i����

fi
end�

Now� we give the results for i � �� ��� �� � � � � ���
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� for i from � to � do ItSeq����i� od

��
���������
����������
����������
����������
����������
����������

It can be shown that this method converges to the unique root�

Let us consider the implicit trapezoidal method

yk�� � yk �
h


�f�xk� yk� � f�xk��� yk���� ������

for the solution of the initial value problem ������ Suppose that we
know the approximate values y�� y�� � � � � yk� The next approximation
yk�� can be computed from the implicit equation ������� We normally
do this by the �xed point iteration

y
	�

k���

y
	i��

k�� � yk �

h


�f�xk� yk� � f�xk��� y

	i

k�����

�i � �� �� � � � � ��

������

It can be shown that the sequence will converge to the unique solution
of ������ provided that f satis�es the Lipschitz condition and h is

small enough� Although ������ will converge for arbitrary y
	�

k��� each

iteration calls for one evaluation of the function f � and computation can
obviously be minimised if we can provide as good a guess as possible

for y
	�

k��� This is conveniently done by using a separate explicit method

to provide the initial guess� y
	�

k��� We call this explicit method the

predictor and the implicit method ������ the corrector� the two together
comprise a predictor�corrector pair�

Let the predictor be the two�step Adams�Bashforth method

yk�� � yk �
h


��f�xk� yk�� f�xk��� yk����� ������

There are various ways� or modes� in which the pair ������� ������ can
be implemented�

Firstly� we could use the predictor to give the �rst guess y
	�

k��� then

allow the iteration ������ to proceed until we achieve convergence� This
is called the mode of correcting to convergence� This method is rarely
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used since the inherent accuracy of the implicit formula does not war�
rant more than a couple of iterations�

A much more acceptable procedure is to �x in advance just how
many iterations of the corrector are to be permitted at each step� In
practice� only a �xed number� say M � of iterations are carried out�
Normally this number is small� usually � or � A useful mnemonic for
describing modes of this sort can be constructed by using P and C to
indicate one application of the predictor or the corrector respectively�
and E to indicate one evaluation of the function f �

Suppose we apply the predictor to evaluate y	�
k��� evaluate f
	�

k�� �

f�xk��� y
	�

k���� and then apply ������ just once to obtain y

	�

k��� The

mode is then described as PEC� If we call the iteration a second
time to obtain y

	�

k��� which obviously involves the further evaluation

f
	�

k�� � f�xk��� y

	�

k���� then the mode is described as P�EC��� There

is one further decision we have to make� At the end of P�EC�� step

we have a value y
	�

k�� for yk�� and a value f

	�

k�� � f�xk��� y

	�

k���� We

may choose to update the value of f by making a further evaluation

f
	�

k�� � f�xk��� y

	�

k���� the mode would then be described as P�EC��E�

There is some evidence that �nal E is superior� so the strategy usually
recommended is either PECE or P�EC��E�

By varying the predictor and the corrector di�erent predictor�correc�
tor methods can be derived� Almost all modern predictor�corrector
codes for the solutions of initial value problems use Adams�Bashforth
methods as predictors and Adams�Moulton methods as correctors�
Such methods are consequently sometimes called Adams�Bashforth�

Moulton methods�
In our case the algorithms of the corresponding Adams�Bashforth�

Moulton methods in PEC mode and in PECE mode can be formulated
as follows

x� � � a� y� �� ��

xk�� � � xk � k� h �� �b� a��N�

y� � � y� � hf�x�� y��

P � y
	�

k�� � � y

	�

k �

h

�
��f�xk� y

	�

k �� f�xk��� y

	�

k����

E � f
	�

k�� � � f�xk��� y

	�

k����

C � y
	�

k�� � � y

	�

k �

h

�
�f�xk� y

	�

k � � f

	�

k����

������
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x� � � a� y� �� ��

xk�� � � xk � k� h �� �b� a��N�

y� � � y� � hf�x�� y���

P � y
	�

k�� � � y

	�

k �

h

�
��f�xk� y

	�

k �� f�xk��� y

	�

k����

E � f
	�

k�� � � f�xk��� y

	�

k����

C � y
	�

k�� � � y

	�

k �

h

�
�f�xk� y

	�

k � � f

	�

k����

E � f
	�

k�� � � f�xk��� y

	�

k����

�����

Example ���� Compare the PECE and the PEC methods above�

used to �nd approximations to y����k� �k � �� �� � � � � �� for the initial

value problem

y��x� � �xy��x�� y��� � � �����

using a step size h � �����

Solution� First we de�ne the parameters and the exact solution
of the initial value problem �����

� a �� �� y� �� �� h �� �����

� f �� �x�y� �� ���x�y�x���

f �� �x� y�	 � x y�x��

� ExactSol �� x �����x�����

ExactSol �� x	 �

x� � �

The PECE method ����� can be coded in Maple in the following way

� PECE ��
proc�k�

local yk�� fk�

option remember

if k�� then y�

elif k�� then y��h�f�a�y��

else yk� �� PECE�k����

����h��
�f�a��k����h�PECE�k�����

f�a��k����h�PECE�k������
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fk� �� f�a�k�h�yk���

PECE�k��������h��f�a��k����h�PECE�k�����fk��

fi
end�

The results follow

� for i from � to � do PECE����i� od

�
�����������
�����������
���������
���������
����������
����������

� for i from � to � do ExactSol�����i��PECE����i� od

�
������������
������������
������������
������������
�����������
������������

Now we give a code of the PEC algorithm ������

� PEC ��
proc�k�

local yk�� y�

option remember

if k�� then ff��� �� f�a�y��� y�

elif k�� then y���y��h�ff����

ff�����f�a�h�y��� y�

else yk���PEC�k��������h��
�ff�k����ff�k�����

ff�k���f�a�k�h�yk��

PEC�k��������h��ff�k����ff�k��

fi

end�
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In this case the results are

� for i from � to � do ExactSol�����i��PEC����i� od

�

������������
������������
������������
������������
������������
������������

Maple also contains an Adams�Bashforth�Moulton method� Using
Maple help

� �dsolve�classical�

we can see that Maple can solve a problem by means of an Adams�
Bashforth�Moulton method if we invoke the dsolve function with the
option

type � numeric and method � classical	abmoulton


In this function the step size and the number of corrections may be
modi�ed�

Example ���� Solve the initial value problem ����� by means of

the built�in Adams�Bashforth�Moulton method of Maple� Take the step

size h � ���� and obtain the di�erence between yk and the exact value

y�xk� at the mesh points xk � kh� k � �� �� � � � � ��

Solution� Using ���digits �oating�point arithmetic we get

� Digits �� ���

� ABM�� �� dsolve�fdiff�y�x��x�����x��y�x����� y�����g�
fy�x�g� type�numeric�

method�classical�abmoulton�� stepsize������

� ABM�������

	x � ��� y�x� � �������������
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� ABM�Sol �� x �� rhs�op��� ABM���x����

ABM�Sol�����

�������������

� es �� dsolve�fdiff�y�x��x�����x��y�x����� y�����g�
y�x���

� Exact�Sol �� proc�t�

subs�x�t� rhs�es��

end�

� Exact�Sol�x�

�

x� � �

� Exact�Sol�����

���������������

� Error �� x �� Exact�Sol�x� � ABM�Sol�x��

� for k from � to � do Error�����k� od

�

��������� ����

��������� ����

��������� ����

��������� ����

�������� ����

�������� ����

� Backward di�erentiation methods

The multistep methods introduced above� are all based on numeri�
cal integration� Now we consider multistep formulas based on numeri�
cal di�erentiation�

Assume that the approximations yk� yk��� ���� yk�m�� to the exact so�
lution of ����� at the equidistant points xk� xk��� � � � � xk�m�� are known�
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To derive a formula for yk�m let us consider the minimal degree poly�
nomial Pm�k�x� which interpolates the data

f�xi� yi� � i � k� k � �� � � � � k �mg� ����

The unknown value yk�m will be determined in such a way that the
polynomial Pm�k�x� satis�es the di�erential equation ����� at least one
mesh point�

P �
m�k�xk�m�r� � f�xk�m�r� yk�m�r�� �����

For r � � we get explicit formulas� which are equivalent to the explicit

Euler method and the mid�point rule if m � � and m � � respectively�
We obtain much more interesting formulas when ����� is taken

at r � �� Expanding the polynomial P �
m�k in terms of yk�j �j �

�� �� � � � � m� we get the implicit �m�step backward di�erentiation� for�
mulas

y� �� �� y�� y�� � � � � ym���
mX
j��

�mjyk�j � hf�xk�m� yk�m��

�k � �� �� � � � � � N �m��

�����

where �mj �j � �� �� � � � � m� are constants� independent on h� k and f �
The coe�cients �mj can be determined using Maple� By slightly

changing the notation of indices� �rst we de�ne the data ���� as a
function of m�

� fpoints �� proc�m�

local i� vv�

vv��array����m����

for i to m�� do vv�i���x��m�i��h od�

eval�vv�

end�

� fpoints���

	x� � h� x�  h� x� h� x� x� h


� yvalues �� proc�m�

local i� vv�

vv��array����m����

for i to m�� do vv�i���y�i�m� od�
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eval�vv�

end�

� yvalues���

	y����� y���� y����� y���� y���


Now we de�ne the interpolation polynomials Pm�k�x� as a function of
m�

� ip �� m �� interp�fpoints�m�� yvalues�m�� z��

The left�hand side of the equation in ����� for m � �� � �� �� � can be
obtained in the following way�

� bdf �� m �� h�simplify�subs�z�x�h� diff�ip�m�� z����

� for m to � do bdf�m� od

y���� y���

�


y����  y��� �

�


y����

��

�
y���� �

�
y���� � y��� �

�


y����

� y���� � �

�
y��� �

�

�
y����� �

�
y���� � y���

�� y���� �

�
y���� � �

�
y���� � � y���� � ���

��
y���� ��

�
y���

��

�
y����� � y��� �

��


y���� � ��

�
y���� � �

�
y����� �

�
y��� � ��

�
y���

We collect the obtained coe�cients in Table ����
It may be shown that the order of the m�step backward di�erenti�

ation method is m� The important feature of these methods is the size
of their regions of absolute stability� These properties are signi�cant in
the context of sti�ness�
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m �m� �m� �m� �m� �m� �m� �m�

� �� �


�


� �



� ��

�

�


�� ��

�

�
�

�
��

�
� �� �

�

� ��

�

�

�
���

�
� �� ���

��

�
�

�
��

�

��

�
��

�

��


�� ��

�

Table ��� Coe�cients for backward di�erentiation methods

���� General linear multistep methods

All of the numerical methods for the solution of the initial value
problem ����� studied in the previous section can be written in the
general form

y� �� �� y�� � � � � ym���

xk �� a� kh� h �� �b� a��N�
mX
j��

�jyk�j � h
mX
j��

�jf�xk�j� yk�j��

�k � �� �� � � � � � N �m��

�����

wherem is a given positive integer� �j and �j �j � �� �� � � � � m� are given
constants� independent on h� k and the underlying di�erential equation�
We also assume that �m � �� Therefore if values yk� yk��� � � � � yk�m��
are known at the points xk� xk��� � � � � xk�m�� then the new approximate
value yk�m at the point xk�m can be calculated from the equation

yk�m �
m��X
j��

�jyk�j � h�mf�xk�m� yk�m� � h
m��X
j��

�jf�xk�j� yk�j��

�����
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This class of methods is referred to asm�step linear methods because
the numerical approximations yi as well as the values f�xi� yi� appear
linearly in the formula� The starting values y�� y�� � � � � ym�� may be
determined by a single step method� When �m � � �for example�
as in the Adams�Bashforth methods� the methods are called explicit�
otherwise implicit �e�g� Adams�Bashforth�Moulton methods�� For an
explicit method� the sequence �yk� can be computed directly� provided
the necessary additional starting values have been obtained� whereas
for an implicit method it is necessary to solve a nonlinear equation at
each step�

When we solve an initial value problem by means of ����� then it
is necessary to analyze�

� what happens when the step size tends to zero �convergence��
� how well the di�erence equation in ����� approximates the dif�
ferential equation ����� �truncation errors��

� how sensitive the di�erence equation is to perturbations in the
data �stability��

� Convergence
When we use a numerical method for the solution of the initial

value problem ����� the main question is� whether any desired degree
of accuracy can be achieved by picking a small enough step size� This
suggests the de�nition of convergence� which expresses the property
that by using a su�ciently small step size and accurate computation the
numerical solution can be made arbitrarily close to the true solution�

If we apply the multistep method ����� with step size h to the
problem ����� we obtain a sequence �yi�� For given x and h such that
�x � x���h � n is an integer� we introduce the following notations for
the numerical solution�

yh�x� � yn if x� x� � nh� �����

A method is expected to be �good� in the sense that the numerical
solution yh�x� converges to the exact solution y�x� as h	 �� Further�
more� we expect rapid convergence�

Definition ���� The linear multistep method ����� is said to be

convergent if� for all initial value problems ����� satisfying the hypothe�
ses of Theorem ���� we have

lim
h��

yh�x� � y�x�� x � 	a� b
 �����
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whenever the starting values satisfy

lim
h��

yh�a � ih� � y�a� �i � �� �� ���� m� ���

A method which is not convergent is said to be divergent�

Definition ��� Method ����� is convergent of order p if� to any

problem ����� with su�ciently di�erentiable f � there exists a positive

real number h� such that

jy�x�� yh�x�j � Chp for h � h� �����

whenever the starting values satisfy

jy�a� ih�� yh�a� ih�j � C�h
p for h � h�� �i � �� �� ���� m� ���

We also say that the linear multistep method is of order p�
It turns out that the problem of convergence in the cases of multi�

step methods is more complicated than for single�step cases�

� Truncation errors

Suppose that the computations indicated in the method are per�
formed exactly� i�e� round�o� errors are not taken into account�

Let us denote by y�x� the exact solution of ����� and by yi the
approximate value of y�xi� obtained by the method ������

As we have seen in Section �� the local truncation error is a good
measure for accuracy in the case of single step methods� Reformulating
De�nition �� for linear multistep methods we get

Definition ���� Let u�x� be the exact solution of the initial value

problem

u��x� � f�x� u�x��� u�xk�m��� � yk�m���

Then the local truncation error of the multistep method ����� at xk�m
is de�ned by

ek�m �� e�xk�m� h� �� u�xk�m�� �yk�m� ������

where �yk�m is the numerical solution obtained from ����� using the

exact starting values yi � u�xi� for i � k� k � �� ���� k �m� ��

Using ����� the local truncation error ek�m can be written in the
form

ek�m � u�xk�m�� �yk�m �

u�xk �mh� �
m��X
j��

�ju�xk � jh�� h
mX
j��

�jf�xk � jh� u�xk � jh���

������
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The di�erence between the exact and the numerical solution is the
accumulated or global error�

Definition ���� The global truncation error of a linear multistep

method ����� at xk�m denoted by Ek�m is de�ned by

Ek�m � y�xk�m�� yk�m�

where y�x� is the exact solution of ����� and yk�m is the approximate

value of y�xk�m� obtained by the method ������

The local truncation error and the starting errors accumulate to
produce the global truncation error� but this accumulation process is
very complicated� and we cannot hope to obtain any usable general
expression for the global truncation error� In this respect the situation
here is di�erent from the single step methods� Figure �� illustrates
the relationships between the local and the global truncation errors�

� Consistency
We now turn to the question of what conditions a numerical method

must satisfy if it is to be convergent�
We know that the local truncation error indicates how well the

exact solution of the initial value problem ����� satis�es the recurrence
formula ������ A �rst thought on the appropriate level of accuracy
that might be needed for convergence is that we should ask that the
local truncation error ek�m 	 � as h	 �� Further thought shows that
this is not going to be enough� The appropriate level of accuracy is to
demand that ek�m�h	 � as h	 ��

Definition ���� A method of class ����� is said to be consistent

if

max
��k�N

��ek
h

��	 � as h	 ��

It is consistent of order p if

max
��k�N

��ek
h

�� � O�hp��

It may be proved �see� e�g� 	SB
� Theorem �������� that consistency
is necessary for convergence� i�e� a linear multistep method ����� which
is convergent is also consistent � This result shows that it is important
to determine the consistency of a linear multistep method�

It is appropriate at this stage to introduce the �rst and the second
characteristic polynomials � and � associated with the method ������
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de�ned by

��	� �
mX
j��

�j	
j� ��	� �

mX
j��

�j	
j �	 � C �� �����

Dahlquist was the �rst to observe the fundamental role of these poly�
nomials in the theory of multistep methods�

Fortunately for linear multistep methods a simple su�cient condi�
tion may be given to ensure that the method is consistent� To obtain
such a condition one has to examine the behavior of the expression of
the local truncation error ������� Using the fact that the function u�x�
satis�es the di�erential equation u��x� � f�x� u�x�� we get

ek�m � u�xk �mh� �
m��X
j��

�ju�xk � jh�� h
mX
j��

�ju
��xk � jh��

Assume that u�x� is su�ciently smooth �this is the case if f has su��
ciently many continuous partial derivatives�� Expanding u�x� ih� and
its derivative u��x� ih� in Taylor series about xk and collecting terms
in powers of h gives

ek�m � c�u�x� � c�hu
��x� � ���� cph

pu�p�x� � ���� ������

where the constants ci are independent of u�xk� and h� Using our
initial assumption �m � � the following formulae for the constants ci
are easily established�

c� �
mX
j��

� �����

c� �
mX
j��

�j�j � �j� � ������ �����

ci �
�

i�

� mX
j��

�jj
i � i

mX
j��

�jj
i��
�
� �i � � �� � � � ��

������

According to De�nition ��� the following simple su�cient condition
for the consistency may be obtained� If the characteristic polynomials

� and � associated with the method ����� satisfy the condition

���� � � and ������ ���� � � ������

then method ����� is consistent � In general� it has order p if

c� � c� � � � � � cp � � and cp�� �� ��
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Example ���� Examine the consistency of the two�step Adams�

Bashforth method �������

Solution� The method ������ can be written in the form

yk�� � yk�� � h
���


fk �

�


fk��

�
�

therefore its characteristic polynomials are

��	� � 	� � 	� ��	� �
�


	 � �


�

Since ���	� � 	 � � thus

���� � �� ����� � � � ����

and hence the method is consistent�

Example ����� Determine the order of consistency of the trape�

zoidal method �������

Solution� The trapezoidal method has the following form

yk�� � yk �
h


�fk � fk����

The characteristic polynomials are

��	� � 	 � � ��	� �
�


	 �

�


�

Since ���	� � �� thus

���� � �� ����� � � � �����

and the method is consistent�
Let us denote by u�x� the solution of the initial value problem

u��x� � f�x� u�x��� u�xk� � yk�

By ������ we get

ek�� � u�xk � h�� u�xk�� h


�u��xk� � u��xk � h�� �

Through Taylor expansion in h one �nds

ek�� �
��u�xk� � hu��xk� �

h�


u���xk� �

h�

�
u����xk� � � � �

	
� u�xk��

�h



��u��xk� � u��xk� � hu���xk� �
h�


u����xk� � � � �

	
�
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thus

ek��

h
� �h�

�
u����xk� �O�h���

Hence the method is consistent of order two�

Unfortunately the consistency is only a necessary but not a su��
cient condition for the convergence� as the following example illustrates�

Example ����� The method

yk�� � yk�� � yk �

h

�

�
f�xk��� yk��� � �f�xk��� yk��� � �f�xk� yk�

�
is consistent but it is divergent�

���� Stability of linear multistep methods

In this section we suppose that the conditions of the Theorem ��
are satis�ed� From this it follows that the initial value problem ����� has
a unique solution on the interval 	a� b
� We also suppose that the prob�
lem ����� is well�conditioned� Roughly speaking this means that small
perturbations in the stated problem will only lead to small changes in
the solutions�

We consider several types of numerical stability�

� Zero�stability
As we have seen in the preceding section convergence implies consis�

tency� the converse is not true� It can happen that the di�erence system
produced by applying the numerical method ����� to the initial value
problem ����� su�ers an in�built instability which persist even in the
limit as h	 � and prevents convergence� This leads to the concept of
zero�stability� which controls the manner in which errors accumulate�
but only in the limit as h	 ��

Definition ���� We say that a linear multistep method of class

����� is zero stable if� for su�ciently small stepsizes h� small pertur�

bations in the starting values produce small perturbations in subsequent

values�

We recall that zero�stability is nearly automatic for single step
methods �see Theorem ��� The following example shows that the
situation changes in the case of multistep methods�
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Consider the two step method

y� � s��h�� y� � s��h��

yk�� � �yk�� � yk � h�fk�� � fk��

applied to the problem

y��x� � x� y��� � ��

whose exact solution is y�x� � x�� Now

��	� � 	� � �	 � � ��	� � 	 � � ���	� � 	 � ��

thus

���� � �� ����� � ���� � ��
and hence the method is consistent provided we choose starting values
such that s��h�	 �� s��h�	 �� Now

yk�� � �yk�� � yk � h�xk�� � xk� �

� h���� k��

The roots of ��	� are 	 � � and 	 � � Hence the general solution of
the di�erence equation is

yk � A�Bk � k�k � ��h��

The particular solution satisfying the initial conditions is

yk � 	s��h�� s��h�
 � 	s��h�� s��h�

k � k�k � ��h��

Now for the starting values

s��h� � �� s��h� � ��

yk � k�k � ��h� � x� � x�

k
	 x� as h	 � �k 	
��

However for the exact starting values

yk � �h� � h�k � k�k � ��h� � �x�

k�
�
x�

k�
k � x� � x�

k
�

But

k

k�
	
 as k 	
 �h	 ���

hence the method is not convergent for these starting values� Thus we
see that the method is sensitive to small perturbations in the starting
values i�e� it is unstable in the sense that the resulting perturbations
are unbounded� even in the limit as h	 ��

It is clear that the reason for the instability is the root � of the
characteristic polynomial ��	��
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The de�nition of the zero�stability given above is a desirable one
rather then a convenient one� We want a practical technique for testing
for stability�

To obtain such a condition consider the equation

y��x� � �� y��� � �� �soln� y�x� � ���

Then ����� reduces to
mX
j��

�jyk�j � �� ������

If

��	� �
mX
j��

�j	
j

has distinct roots 	�� 	�� ���� 	m� then the solution of the di�erence equa�
tion ������ is

yk � A��	��
k � A��	��

k � � � �� Am�	m�
k�

If the method is consistent then� since
Pm

j�� �j � �� one root� say
	� � �� This root corresponds to the exact solution of the di�erential
equation� Hence for stability we require

j	ij � ��  � i � m�

If ��	� has a root 	j� of multiplicity r� then

�	j�
k� k�	j�

k� k��	j�
k� � � � � kr���	j�

k

are solutions of ������� Hence for a multiple root� with multiplicity
r � �� stability requires that

j	jj � ��

Definition ���� We say that a linear multistep method ����� sat�
is�es the root condition if the roots of the �rst characteristic polyno�

mial ��	� all lie within or on the unit circle in the complex plane� and

are simple if they lie on the unit circle�

We have shown that a necessary condition for zero�stability is that
the method satis�es the root condition� We can strengthen this to�

Theorem ���� The linear multistep method ����� is zero�stable if
and only if it satis�es the root condition�

We can now state the fundamental theorem concerning convergence�

Theorem ��� A method of class ����� is convergent if and only

if it is both consistent and zero stable�
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A more accurate result can be stated �see� e�g� 	H�
� Chapter III�
Theorem �����

Theorem ���� If the multistep method ����� is zero�stable and the
order of its consistency is p then it is convergent of order p�

� Absolute stability
The concept of zero�stability� and also convergence are concerned

with the limiting process as h 	 �� In practice� we must compute
with a �nite number of steps� i�e� with �nite� nonzero step size h� In
particular we want to know if the errors we introduced at each step
�truncation and round�o�� have a small or large e�ect on the answer�
What is needed is a stability theory which applies when h takes a �xed
non�zero value�

We have already considered the notion of absolute stability for sin�
gle step methods �see Section ���� This concept can be generalized to
linear multistep methods�

To illustrate the problem of absolute stability let us consider the
mid�point method

yk�� � yk � hfk��

applied to the test equation

y��x� � 
y�x�� ������

Substituting into the di�erential equation gives

yk�� � yk � h
yk���

Thus

yk�� � 
yk�� � yk � ��

Let yk � 	k� Thus

	k�	� � h
	 � �� � ��

Solving

	��� �
h
�p�h�
� � �


� h
�

p
h�
� � ��
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Thus there are two roots

	� � h
�
p
h�
� � �

� h
�
�
� �

�


h�
� � �

�
h�
� � � � � �

� � � h
�
�


h�
� � �

�
h�
� � � � �

� eh� �O�h��

and

	� � h
�
p
h�
� � �

� h
� �� � �


h�
� � �

�
h�
� � � � � �

� �� � h
� �


h�
� �

�

�
h�
� � � � �

� �e�h� �O�h���

Therefore the solution of the di�erence equation is

yk � A	k� �B	k� � Aekh� �B����ke�kh�
� Ae
xk �B����ke��xk �

Thus if 
 � � the di�erence equation has a spurious solution cor�
responding to 	� which will eventually dominate the desired solution
leading to instability� This is illustrated in the following example�

Example ���� Solve the initial value problem

y��x� � �y�x�� y��� � � ������

using the mid�point method with h � ���� Let the starting value y� be
an Euler�s step� Compare the computed one with the exact solution�

Solution� First we �nd the exact solution of ������

� In�Val�Pr �� fdiff�y�x�� x� � �y�x�� y��� � �g

In Val Pr �� f �

�x
y�x� � �y�x�� y��� � �g

� es �� dsolve�In�Val�Pr� y�x���

� Exact�Sol �� proc�t�

subs�x�t� rhs�es��

end�
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� Exact�Sol�x�

�

ex

Now we de�ne the parameters of the initial value problem

� f �� �x� y� �� �y

f �� �x� y�	 �y

� a �� �� y� �� �� h �� �����

y� �� y� � h�f�a�y��

y� �� ���

A Maple program of the mid�point method is

� mpm �� proc�k�

option remember

if k�� then y�

elif k�� then y�

else mpm�k������h�f�a��k����h�mpm�k����

fi
end�

� x �� k �� k�h� � for the mesh points

� mpm���

���

We de�ne the error function in the following way

� Error �� k �� Exact�Sol�x�k�� � mpm�k��

Finally we create a table with appropriate headings�

� mm��array������� ������

mm��������Mesh points��mm��������Exact sol���

mm���
����Approx�sol���mm��������Error��

for i from � to �� do
mm�i�����x�i����

mm�i�����evalf�Exact�Sol�x�i����� ���

mm�i�
���evalf�mpm�i���� ���

mm�i�����evalf�Error�i���� ���
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od�
eval�mm�


������������������������

Mesh points Exact sol � Approx � sol � Error

�� ����� ��� ����

��� ������ ���� �������
��� ����� ������ ������

���� ������ ����� �������
��� ����� ����� �����

���� ���� ����� ������
���� ������ ������ �����

��� ������ ���� �������
�� ������ ����� ������

�
������������������������

If 
 � � then the spurious solution decays as x increases and hence
the instability does not manifest itself�

Now consider the linear multistep method

mX
j��

�jyk�j � h
mX
j��

�jfk�j ������

applied to the test equation

y��x� � 
y�x��

On substitution into the di�erential equation ������ we obtain

mX
j��

�jyk�j � h

mX
j��

�jyk�j�

Thus
mX
j��

�jyk�j � h

mX
j��

�jyk�j � ��
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Let yk � 	k� then
mX
j��

�j	
j � h


mX
j��

�j	
j � ��

Hence

��	� h
� �� ��	�� h
��	� � �� ������

��	� h
� is called the stability polynomial of the linear multistep method
������� Now one of the roots 	��h
� of ��	� h
� will correspond to the
true solution� the other roots will lead to spurious solutions whose
magnitude will have to be controlled to obtain stability� For a pth
order method we can show that

	��h
� � eh� �O�hp���� ������

Definition ���� A linear multistep method is said to be absolutely

stable for a given h
 if all the roots of ��	� h
� lie within the unit circle�

A region R� of the complex plane is said to be a region of absolute

stability if the linear multistep method is absolutely stable for all h
 in

R��

The most convenient method for �nding regions of absolute stability
is the boundary locus technique� The region R� of the complex �h
��
plane is de�ned by the requirement that for all h
 � R� all of the
roots of ��	� h
� have modulus less than �� Let the contour �R� in the
complex �h
��plane be de�ned by the requirement that for all h
 � R�

one of the roots of ��	� h
� has modulus �� that is� is of the form
	 � ei�� Since the roots of a polynomial are continuous function of its
coe�cients it follows that the boundary of R� must consist of �R� �or
of part of �R�� some parts of �R� could� for example� correspond to
��	� h
� having one root of modulus �� some of the remaining roots
having modulus less than � and some having modulus greater than ���
Thus� for all h
 � �R�� the identity

��ei�� h
� � ��ei��� h
��ei�� � �

must hold� This equation is readily solved for h
� and we have that
the locus of �R� is given by

�h
� � �h
��� �
��ei��

��ei��
� �����

In most cases we simply use ����� to plot �h
��� for a range of  �
	�� �
�

Example ����� Find and sketch the region of absolute stability of

m�step Adams�Moulton method for m � �� � �� ��
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Solution� If m � � then we have the trapezoidal rule

yk�� � yk �
h


�fk � fk����

From Example ��� of Section �� we know that the region of absolute
stability of this method is the whole left half�plane�

We investigate the cases m � � �� � with Maple� The coe�cients
of these methods are in the Table ��� Therefore the corresponding
characteristic polynomials can be de�ned in the following way

� rho� �� x �� x�� � x

� �� x	 x� � x

� sigma� �� x�� ���������������x��������x��

� �� x	 � �

�
�



�
x �

�

�
x�

� rho
 �� x �� x�
 � x��

�� �� x	 x� � x�

� sigma
 �� x ��

��������������x���	�����x����	�����x�


�� �� x	 �

�
� �

�
x �

��

�
x� �

�

�
x�

� rho� �� x �� x�� � x�


�� �� x	 x� � x�

� sigma� �� x �� ���	����������������x�

����������x�������������x�
� ����������x��

�� �� x	 � ��

��
�

��

���
x� ��

��
x� �

��

���
x� �

��

��
x�
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The locus of the boundary �R� can be drawn using the complexplot

procedure which is in the plots package�

� with�plots��

� t �� I�theta�

� am� �� complexplot�rho��exp�t���sigma��exp�t���

theta������Pi��

� am
 �� complexplot�rho
�exp�t���sigma
�exp�t���

theta������Pi��

� am� �� complexplot�rho��exp�t���sigma��exp�t���

theta������Pi��

� pr �� textplot�f������ �m�����

������ ��
� �m�
���

����
� ���� �m����g� align�LEFT��

� display�fam�� am
� am�� prg�

m=4

m=2

m=3

-3

-2

-1

0

1

2

3

-6 -5 -4 -3 -2 -1

For the Adams�Moulton methods with m � � �� �� �R� is a simple
closed contour� To see that the interiors of the regions bounded by
�R� are indeed the regions of absolute stability� all we need do is
observe that� from ������� all linear multistep methods are necessarily
absolute unstable for small positive values of Re �h
��
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� Strong stability

Now from ������ if h
 is real� positive and small then j	��h
�j � �
and such h
 are outside R�� If h
 is real� negative and small then
j	��h
�j � �� However it is possible that ��	� h
� possesses another
root 	j�h
� such that j	j���j � � and j	j�h
�j � � for h
 real� negative
and small� Such a method will have no interval of absolute stability� at
least in the neighborhood of the origin� An example of such a method
is Simpson�s method

yk�� � yk �
h

�
�fk�� � �fk�� � fk��

for which

��	� h
� � ��� h


�
�	� � �h


�
	 � �� �

h


�
��

with roots

	��h
� � � � h
�O�h���

	��h
� � �� � �

�
h
�O�h���

so that if Re�h
� is small and positive j	��h
�j � � whereas if Re�h
�
is small and negative j	��h
�j � �� Thus the method has no region of
absolute stability in the neighborhood of the origin� More precisely we
can show that R� is empty�

If we wish to avoid the possibility of an empty R� we choose a
method satisfying the strong root condition�

Definition ���� A method is said to satisfy the strong root con�

dition if the characteristic polynomial has a simple root at � � � and

all the remaining roots lie strictly within the unit circle�

Definition ����� A method of class ����� is said to be strongly

stable if it is consistent and satis�es the strong root condition�

A class of methods which are strongly stable are the Adams meth�
ods previously encountered for which the characteristic polynomial ��	�
has the form

��	� � 	k � 	k���

��	� Advanced methods

The unpredictable behavior of solutions of di�erential equations
forces the numerical integration to proceed with step sizes which� in
general� must vary from point to point if a prescribed error bound is to
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be maintained� Multistep methods which use equidistant mesh points
and a �xed order� therefore� are not very suitable in practice�

Predictor�corrector methods possess many advantages� notably the
facility for monitoring the local truncation error cheaply and e�ciently�
However� there is a balancing disadvantage� shared by all multistep
methods� namely the di�culties encountered in implementing a change
of step size�

A program embodying a multistep method will have to use tech�
niques for starting� changing step� and changing order as necessary�
The choice of which class of methods to use depends on the prob�
lem� Often little is known about the problem to be integrated� so the
Adams� methods whose extraneous eigenvalues are zero is usually the
best choice� �Other methods for special problems will be discussed in
Chapter ���

Suppose that we have used an mth order Adams�Bashforth�Moul�
ton method to compute yk� but before going on to compute yk�� we
want to change the step size from h to �h� In order to apply the
method to compute an approximation to the exact solution at xk��h�
we need back data at xk� which we have� and at xk��h�xk� �h� � � � �
xk � �m � ���h� which we do not have� Many di�erent ways of tack�
ling this problem have been proposed� The available techniques can be
categorized into two di�erent groups� The �rst� known as interpolatory
techniques� use polynomial interpolation of the existing back data in
order to approximate the missing back data� there are several ways of
doing this� In the second group� the Adams�Bashforth�Moulton meth�
ods themselves are replaced by Adams�Bashforth�Moulton�like meth�
ods which assume that the data is unevenly spaced� and whose coe��
cients therefore vary as the step size varies� Stepchanging techniques
based on such methods are usually known as variable step techniques�

��
� Exercises

�� Write Maple programs to solve the system of ordinary di�erential
equations

y��x� � f�x�y�x��� y�x�� � y�

by the two�step Adams�Bashforth method�

� Use the Euler�s method as a predictor and trapezoidal method
as a corrector in a� PECE and b� PEC modes and c� correcting
to convergence to solve the initial value problem

y��x� � xe�y�x� y��� � �� � � x � �
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�� Examine the consistency of the methods

a� yk�� � �yk � �yk�� � hfk���
b� yk�� � ��

�
yk � �yk�� � �

�
yk�� � �hfk�

�� Examine the zero stability of the methods of Q��

�� Show that Simpson�s method satis�es the root condition but not
the strong root condition�

�� Show that the solution of the di�erence equation for Simpson�s
method applied to the test equation

y��x� � 
y�x�

can be written as

yk � Ae�xk �Be�
�

�
�xk �

What implications does this have for the stability of the method�

�� Use the boundary locus method to obtain regions of absolute
stability for the following methods

a� yk�� � yk � hfk�� backward Euler�s method�
b� yk�� � yk�� � hfk mid�point method�

�� Show that the method

yk�� � yk �
h


�fk�� � �fk���

is not strongly stable�
Show also that when the method is applied to the test equation
y��x� � 
y�x� the roots of the di�erence equation are

	� � � � h
�O�h���

	� � ��� �


h
 �O�h���

Is R� empty�
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CHAPTER �

Sti� and Delay Systems of Di�erential Equations

���� Sti�ness and stability

Example ���� Let us solve the following system of di�erential equa�
tions �Is��

x��t� � ����x�t� � y�t��

y��t� � ����y�t�

with the initial conditions

x��� � �� y��� � ��

We determine the exact solution with Maple�

� sys �� diff�x�t�� t� � �����x�t� 	 y�t��

diff�y�t�� t� � ���
����y�t��

sys ��
�

�t
x�t� � ���� x�t� � y�t��

�

�t
y�t� � �

�

��
y�t�

� init�cond �� x������ y������

init cond �� x��� � �� y��� � �

� funcs �� fx�t�� y�t�g�

funcs �� fx�t�� y�t�g

� Sol �� dsolve�fsys� init�condg� funcs��

Sol �� fx�t� �
	
	

			
e����� t� �

��

			
e������ t�� y�t� � e������ t�g

���
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Let us display the components of the solution vector�

� assign�Sol��

� with�plots��

� P� �� plot�x�t�� t�����

� P� �� plot�y�t�� t�����

� display�fP�� P�g��
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From the result it can be seen that the function e����t in the solution
decays exceedingly fast while the decay of the other term e����t is a
thousandfold more sedate� Thus� the solution vector tends to the zero
vector as t���

Now let us try to solve the problem numerically with the explicit
Euler�s method with the step size h � ���� �

� s� �� diff�x�t�� x�� �����x�t� 	 y�t��

s� �� diff�y�t�� t�� ����y�t��

s� ��
�

�t
x�t� � ���� x�t� � y�t�

s� ��
�

�t
y�t� � ��� y�t�

� in�cond� �� x������ y������

in cond� �� x��� � �� y��� � �
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� num�sol� �� dsolve�fs�� s�� in�cond�g� fx�t�� y�t�g�

type�numeric� method�classical�foreuler��

stepsize�������

� for n from � to � do num�sol�����n� od�

�t � �� x�t� � ��� y�t� � ���

�t � ��� x�t� � �
����
	������� y�t� � �	����	�
���

�

�

�t � ��� x�t� � ���������		�
���
� y�t� � �	���	��
�	�			�	�

�t � �	� x�t� � ������	������� ���� y�t� � �	��

��������

�t � ��� x�t� � �
�������		
	� ���� y�t� � �

��
��
���������

�t � ���� x�t� � ���������	����� ����� y�t� � �
�������	�
�����

We see that at the step size h � ���� the Euler�s method gives a very
bad result� it has a frightful numerical instability� If we choose the
step size less then ��� we get appropriate results� The situation is
quite similar if we apply another explicit numerical methods� discussed
earlier� With any of the method� the presence of the e����t term would
require a stepsize h � ���� �as we see below� for the method to be
stable� This is so even though the term e����t is completely neglibile
in determining the values of x�t� and y�t� as soon as one is away from
the origin� This behaviour in the numerical solution is referred to as
sti�ness� Systems such as this where there is mismatch between the
requirements of accuracy and stability� at least for methods with a
�nite region of absolute stability� are referred to as sti� �

Definition ���� A system of di�erential equations is called sti�

system if there are either quickly or slowly varying components of the
solution vector�

We try to give an explanation in the case of Euler�s method� If
the abowe problem is integrated by the Euler�s method� the numerical
solution can be represented in �closed form� as follows

xi � C���� ���h�i � C���� ���h�i

yi � � C���� ���h�i�

Evidently� the approximations converge to zero as i � � only if the
steplength h is chosen small enough to have

j�� ���hj � � and j�� ���hj � �� �����
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The in�uence of the component e����t in the exact solution is negligibly
small in comparison with e����t� Unfortunately� this is not true for the
numerical solution� In view of ������ indeed� the steplength h � � must
be chosen so that

h �


���
�

Appropriate numerical methods for sti� di�erential equations can
be derived from implicit methods� As an example� we consider the
implicit Euler method�

yn�� � yn � hf�xn��� yn���� n � �� � ��� ����

Let us consider the following linear system of di�erential equations
as model problem

y� � Ay� y��� � y�� �����

where y�t� is the solution vector and A is a constant n� n matrix�
If the Euler method is applied to ����� with constant steplength�

it will produce a sequence yi of approximation vector for the solution
y�ti� which satisfy a recurrence formula

yn�� � g�hA�yn� �����

The function g�z� depends only on the method employed and is usually
a rational function in which it is permissible to substitute a matrix for
the argument� For the implicit Euler method the formula ����� gives

yn�� � yn � hAyn��� i�e� yn�� � ��� hA���yn�

whence

g�z� �
�

�� z
�

Let �i i � �� ��� n be the eigenvalues of the matrix A� The di�er�
ential equation ����� is stable if all �i are negative� or more generally
if their real parts are negative� In this case� the solution y�t� of �����
converges to zero as t��� while the discrete solution fyng by virtue
of ������ converges to zero as i�� only for those stepsizes h � � for
which

jg�h�i�j � �

for all eigenvalues �i of A� Now the region of absolute stability of the
implicit Euler method is

j�� h�j � �

implying no restricition on the stepsize h for Re��� � �� Thus although
the system is sti� the implicit Euler method can provide an acceptable
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solution with a stepsize which is governed by the requirement of accu�
racy rather than stability�

The more negative �i� the shorter the characteristic time� Let the
step size h the same for all components of the solution for a numerical
method� The step size may be controlled by the most negative eigen�
value �i which corresponds to the fastest decay and dies �rst in the
true solution�

Definition ��� If the matrix A has eigenvalues of very di�erent
magnitudes� the system ����� is called sti�� The quotient of the largest
and the smallest �in modulus	 eigenvalues of a linear system �and for
a general nonlinear system� the eigenvalues of the Jacobian matrix	 is
re�erred to as the sti�ness ratio�

The sti�ness ratio of the Example ���� is ���� Sti� systems fre�
quently occur in practice� this is typical of certain physical processes�
chemical engineering problems� economics etc�� There may be large
negative eigenvalues �strong damping of some components� or large
imaginary eigenvalues �rapid oscillations�� It leads to a strict restric�
tion for the step size� The integration with large step sizes causes
instability� therefore� we need to keep

j�maxhj � C� C � constant

For linear di�erential systems� methods which have a region of ab�
solute stability including the whole left hand plane impose no stability
related restriction on the stepsize� Such methods are said to be A�
stable�

Definition ���� A numerical method is said to be A�stable if

RA � fh� j Re�h�� � �g �����

where RA is the stability domain of the method�

A slightly less restrictive type of stability is A��� stability de�ned
as follows�

Definition ���� A numerical method is said to be A��� stable

� � ��� �
�
� if

RA � fh� j � � � � � arg�h�� � �g �����

The concept of A��� stability is more adequate� which means that
the stability region should include the sector jarg�h��� �j � �� The
special case of the left half�plane� � � ��� is the A�stability�

In Chapter � was shown that the trapezoidal method is precisely
A�stable� Dahlquist proved that if a multistep method is A�stable� then
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k � � i�e� an A�stable multistep method may be at most a two�step
method� It can be shown that the trapezoidal method has the smallest
truncation error among all A�stable linear multistep methods�

The methods which have been most successful for sti� problems are
all implicit�

An alternative way of slackening the requirements of A�stability is
to assume that all the eigenvalues which produce the fastest transients
lie to the left of a line Re�h�� � �a� where a � �� This leads to the
de�nition of sti� stability�

Definition ���� A numerical method is said to be sti�y stable if

RA � R� �R�

where

R� � fh� j Re�h�� � �ag

R� � fh� j � a � Re�h�� � �� �c � Im�h�� � cg

and a and c are positive real numbers�

The rationale for this de�nition is as follows� eh� is the change in
a component in one step due to an eigenvalue �� If h� � u � iv� then
the change in magnitude is eu� If u � �a � �� then the component
is reduced by at least e�a in one step� We are not interested in the
accuracy of components that are very small� so for some a we are
willing to ignore all components in R��

These concepts are illustrated in the diagram below�

c

�

�� ��

�c

A�stable A����stable Sti�y�stable
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���� Advanced methods for sti� systems

	 Gear method

Considering �Ge��Ge��� in this section we describe the technique
used in the Gear�s numerical integration program� The method may be
either a form of the Adams methods� or a method for sti� equations�
The order is chosen to try to maximize the step size� Since the amount
of work per step is relatively independent of order� this chois will tend
to minimize the amount of work�

The Adams�Bashforth pth order predictor equation for the di�er�
ential equation y� � f�t� y� is

y	�
n � yn�� � 	�hy
�

n�� � ��� � 	phy
�

n�p� �����

where y � y�ti� and ti � ih �h being the step size�� y
�

i � f�ti� yi�� and

where 	i are given� for example in Chapter �� The approximation y
	�

n

is used in this predictor corrector scheme as the �rst approximation in
the Adams�Moulton corrector formula of pth order given by

y	m��

n � yn�� � 	��hf�tn� y

	m

n � � 	��hy

�

n�� � ��� � 	�p��hy
�

n�p��� ���
�

The coe�cients 	�i can also be found in Chapter �� If the corrector
equation ���
� is iterated until it converges to yn �as is guaranteed for
small enough h and smooth functions f� the truncation error intro�
duced in the nth step of the integration will be

CA
p��h

p��y�p����tn� �O�h�p�����

where y�k� is the kth derivative of y�
The method for sti� equations is similar� It uses a pth order pre�

dictor formula of the form

y	�
n � ��yn�� � ��� � �pyn�p � 
�hy
�

n�� ���	�

and a corrector

y	m��

n � ���yn�� � ��� � ��pyn�p � 
��hf�tn� y

	m

n �� ������

The truncation error when ������ is iterated to convergence is

CS
p��h

p��y�p����tn� �O�hp����

where CS
p�� � ���p� ��� The ��i and the 
�� are given in �He��

The predictor corrector equations can be expressed in matrix form�
In the case of Adams methods� we are going to de�ne the vector
yn � �yn� hy

�

n� hy
�

n��� ���� hy
�

n�p���
T � where T is the transpose operator�

Similarly de�ne

yn
	m
 � �y	m


n � hy
�	m

n � hy

�

n��� ���� hy
�

n�p���
T �
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where hy
�	m

n is a symbol for a quantity to be de�ned below� For m 
 �

we de�ne it as hf�tn� y
	m��

n �� Then we note from ���
� that

y	m��

n � y	m


n � 	�� �hf�tn� y
	m

n �� hy

�	m

n � ������

for m 
 �� Subtracting ����� from ���
� and de�ning 	�p � �� we obtain

y	�
n �y	�
n � 	�� �hf�tn� y
	�

n ��

� f
	� � 	��
	��

hy
�

n�
� ����

	p � 	�p
	��

hy
�

n�pg��
�����

We set �i � �	i � 	�i ��	
�

� and de�ne

hy
�	�

n � ��hy

�

n�� � ��� � �phy
�

n�p� ������

Now ����� is equivalent to ������ when m � �� We note that ����� and
������ may be written as

yn
	�
 � Byn��� ������

where

B �

�
��������

� 	� 	� � � � 	p�� 	p
� �� �� � � � �p�� �p
� � � � � � � �
� � � � �
� � � � �
� � � � �
� � � � � � � �

�
��������
�

Noting that

hy
�	m��

n � hf�tn� y

	m

n �

� hy
�	m

n � �hf�tn� y

	m

n �� hy

�	m

n ��

we see that ������ may be written as

yn
	m��
 � yn

	m
 � cF �yn
	m
�� ������

where c � �	�� � �� �� ���� ��
T and

F �yn
	m
� � hf�tn� y

	m

n �� hy

�	m

n � ������

After M iteration we accept the result by setting

yn � yn
	M 
�

For sti� methods we de�ne the vector

yn � �yn� hy
�

n� yn��� ���� yn�p�
T
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and perform similar operations� If we de�ne the coe�cients �i � ��i�
��i ��


�

� and �� � 
��

�

� we also arrive at eqs� ������ and ������ where
the matrix B is now given by

B �

�
��������

�� 	� �� � � � �p�� �p
�� �� �� � � � �p�� �p
� � � � � � � �
� � � � � � � �
� � � � �
� � � � �
� � � � � � � �

�
��������
�

and c is as before�
We now note that the predictor formulas ����� and ���	� are equiva�

lent to �tting a pth degree polynomial through the known information
carried in yn��� Instead of saving the information in this form� we will
make a linear transformation Q and save zn�� � Qyn��� The trans�
formation Q is chosen so that the p � � components of zn�� are the
function value yn�� and the �rst p derivatives of the polinomial used
in the prediction process� If the kth derivative saved in zn�� is scaled
by hk�k� the matrix Q is independent of h�

Thus we have zn � �yn� hy
�

n� ���� h
py

�p�
n �p��T � where y

�k�
n is the kth

derivative of the approximating polynomial� By applying the transfor�
mation Q to eqs� ������ and ������ we get

zn
	�
 � Qyn

	�
 � QBQ��zn��� ������

zn
	m��
 � Qyn

	m��
 � zn
	m
 � lF �Q��zn

	m

�� ����
�

where l � Qc� Since both zn and yn have yn and hy
�

n as their �rst two
components and F depends on these only� F �Q��zn� � F �zn�� The
matrix Q depends on whether the Adams or sti� methods are used�
hence l depends on the method� The l for the Adams methods are given
in �Ge��� those for sti� methods are given �Ge��� �This formulation
of the Adams method is essentially the same as the Nordsieck method
�No��� The matrix QBQ�� provides a pth order approximations to
zn

	�
 in terms of zn��� hence it is the Pascal triangle matrix�
��������

� � � � � � � � �
�  � � � � p� � p

� � � � � � �
� � � � � �

� �
� � p

�

�
��������
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for either method� �The entries in the columns of this matrix are the
binomial coe�cients��

A complication occurs in the case of sti� equations� Iteration ������
does not converge unless h is very small� To overcome this problem we
note that the e�ect of any number of iterations of ����
� is to compute

zn � zn
	�
 � lb� ����	�

where b is scalar� If h is small enough� the iteration will converge to a
solution of

F �zn� � �� �����

If we attempt to solve ����� directly by Newton�s method using ����	�
and starting with a �rst approximation of zn

	�
� we get successive ap�
proximations given by

zn
	m�� � zn

	m
 � l����F��z�l���F �zn
	m
��

where

����F��z�l��� � �l� � hl��f��y�
�� � W�

�In the case of system of equations� W is a matrix�� Therefore� if
sti� methods are used� the program multiplies the value of F by W
before performing the correction� If f�t� y� is linear in y� the corrector
will converge in one iteration� If it is nonlinear� several iterations may
be needed� This process will converge for su�ciently small h since
Newton�s method is convergent in some neighborhood of the solution�

and since� as h tends to �� y
	�

n tends to yn� For most functions f�t� y�

that occur� large values of h still permit rapid convergence�

Example ��� Let us solve the Curtiss�Hirschfelder equation

y
�

� ����y � cos�t��� � � t � ��� y��� � ��

The equation has signi�cance as a good test case for computational
algorithm because it is a moderately sti� problem�

Solution� Let us �nd the exact solution by the Maple�

� eq �� diff�y�t�� t� � �����y�t� � cos�t���

eq ��
�

�t
y�t� � ��� y�t� � �� cos�t�

� init�cond �� y��� � ��

init cond �� y��� � �
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� Sol �� dsolve�feq� init�condg� y�t���

Sol �� y�t� �
���

���
cos�t� �

��

���
sin�t� �

�

���
e���� t�

� assign�Sol��

� plot�y�t�� t������

-1

-0.5

0

0.5

1

5 10 15 20
t

The solution is a smooth solution in the vicinity of y � cos t and all
other solutions reach this one after a rapid �transient phase��

Now� we solve the problem by means of the Euler�s method

� num�sol �� dsolve�feq� init�condg� y�t��

type�numeric� method�classical�foreuler��

stepsize������

� for n from � to � do num�sol���n� od�

�t � �� y�t� � ���

�t � � y�t� � ������������		��
��

�t � �� y�t� � ������������� �����

�t � �� y�t� � �������		�����
�	 �����

�t � 
� y�t� � ����	���

�	
�

 �����

�t � ��� y�t� � ������������		�	�� �����
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We observe that whenever the step size is a little too large �h � ������
the numerical solution goes too far beyond the equilibrium and violent
oscillations occur�

Criteria for error control

The average user would like to be able to specify an error parameter
which would cause the program to bound the error over the whole
interval�

If� for a single equation� �f��y � �� the total is the sum of the
truncation error in each step� If these errors are bounded by  �which
is the optimum choice for a �xed order method�� the total error is
bounded by N in N steps� This leads us to consider bounding the
error in a step of length h by h� Then the total error would be bounded
by  per unit interval�

Gear made some tests� using both  and h as the error bound
in each step� The latter was unsatisfactory for sti� problems for the
following reasons� Usually the object of integrating a sti� problem is
to continue until the system is in equilibrium� Toward the end of the
integration� very large steps may be taken� An error control of h
per step would then allow large errors to be made� However� the best
choice for these problems is to make large errors initially� as they are
later damped out� Therefore� the program controls an estimate of the
error per step to be less than � The decision whether this is a relative
or an absolute error control depends on the solution� If it is growing�
a relative control is used� if it is decaying� an absolute control is used�

Starting� step� and order changing

Starting is achieved by setting the order to one the �rst call� For
this order� z� is �y�� hy

�

��
T � Since y� is given and hy

�

� can be computed
from hf�t�� y��� there is no starting problem�

A change of step size requires only that components of z be scaled
by powers of the change� A decrease in order corresponds to discarding
a component of z� When the order is increased from p to p � �� the
backward di�erence of the last component of z divided by p � � gives
an estimate of hp��y�p�����p� ��� to be appended to z�

Invoking the dsolve function with the type�numeric option and
method�mgear or method�mgear�choices� causes a numerical solution
to be found by way of a Gear multi�step method� The chices of the
mgear method are adamspc� msteppart� mstepnum The �rst choice
corresponds to an Adams predictor�corrector method� msteppart is a
multi�step method suitable for sti� systems� and which evaluates the
Jacobian matrix of the system at each step� mstepnum is essentially the
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same as the above� however the Jacobian is computed using numerical
di�erencing of the derivatives�

It can be asked about the existence of sti�y stable methods of
order greater than two� It is shown in �Ge��� that the k�step methods
presented by Gear are sti�y stable for k � � for some a and c and
of order k� with ���� � �k� The result is obtained by �rst computing
���� from ���� so as to get an order k method� The coe�cients of
the polynomials ���� are in the Table ���� �See also �Ge�� x
������
The locus in the z�plane for which a root of ���� � z���� � � has
magnitude one can then be plotted by plotting z � ���ei�����ei���
where � � ��� ��� These loci for k � �� � � and k � �� �� � can be
plotted in the following way

� sigma �� �k� x� �� x�k�

� �� �k� x�� xk

� rho� �� x �� x���

�� �� x� x� �

� rho��� x�� ��
���x�����x	��
���

� �� x�
�


x� �  x�

�



� rho� �� x�� ���
���x�����x��	��
���x��
��

�� �� x�
��

�
x� � � x� �

�


x�

�

�

� rho� �� x �� ���
����x�����x��	��x�����
���x	��
���

�� �� x�
�

�
x � � x� � � x� �

�

�
x �

�

�

� rho� �� x�� ����
����x�����x��	��x���

���
���x��	��
���x���
���

�� �� x�
���

��
x� � � x � � x� �

��

�
x� �

�

�
x�

�

�



��� �� STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

� rho� �� x�� ���
����x�����x��	���
���x���

���
���x��	���
���x�����
���x	��
���

�� �� x�
�	

�
x� � � x� �

��


x �

�

�
x� �

��

�
x� �

�

�
x �

�

�

� with�plots��

� t �� I�theta�

� am� �� complexplot�rho��exp�t��
sigma��� exp�t���

theta����Pi��

� am� �� complexplot�rho��exp�t��
sigma��� exp�t���

theta����Pi��

� am� �� complexplot�rho��exp�t��
sigma��� exp�t���

theta��PiPi��

� am� �� complexplot�rho��exp�t��
sigma��� exp�t���

theta����Pi��

� am� �� complexplot�rho��exp�t��
sigma��� exp�t���

theta����Pi��

� am� �� complexplot�rho��exp�t��
sigma��� exp�t���

theta����Pi��

� pr� �� textplot�f������� �m����� ����� �m�����

������� �m����g� align�LEFT��

� pr� �� textplot�f������� �m����� ������� �m�����

������� �m����g� align�LEFT��

� display�fam�� am�� am�� pr�g�scaling�CONSTRAINED��

display�fam�� am�� am�� pr�g�scaling�CONSTRAINED��
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All roots for z outside of the closed locus are less then one in magnitude�
Thus� the absolute stability region is the exterior of the closed curves�
For k � �� ��� these methods are not sti�y stable�

	 LSODE the Livermore Sti� ODE solver

LSODE is the �Livermore Solver� of Hindmarsh �Hi��� The code is
based on the Nordsieck representation of the �xed step size backward
di�erentiation formalae methods� It emerged from a long development
starting with Gear�s DIFSUB program in �	��� Its exemplary user in�
terface and ease of application has been a model for much subsequent
ODE software� The method allows us to choose between analytically
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supplied Jacobian or numerically computed �nite di�erence approxi�
mations as well as between full or banded linear algebra� Maple also
contains this method in its option

type � numeric and method � lsode

The various choices of lsode method we refer to the on�line help system
for immediate help� Another reference on the lsode procedure is �Hi���

Example ���� Let us solve the two�dimensional di�erential equa�
tion system of Van der Pol

x
�

�t� � y�t�

y
�

�t� � ���� x��y � x

where � is a positive constant�
We choose the initial condition as follows
 x��� � ��� y��� � 

and x��� � �� y��� � ��� and let the parameter � � ��� �� �� �� etc�
Plot the phase trajectories in the plane xy and plot x�t� with respect

to t�

It is possible to show� that the problem does have a unique limit
cycle� it has a stable periodic solution whose period and amplitude
depend on the parameter ��

We investigate the solutions by Maple�

� with�plots��

� vderpol �� diff�x�t�� t� � y�t��

diff�y�t�� t� � �x�t�	epsilon����x�t�����y�t��

vderpol ��
�

�t
x�t� � y�t��

�

�t
y�t� � �x�t� �  ��� x�t��� y�t�

� ics �� x������ y�����
��

ics �� x��� � �� y��� �
�



� epsilon �� ���

� f� �� dsolve�fvderpol� icsg� fx�t�� y�t�g�

type�numeric� output�listprocedure��

� fx�� � subs�f�� x�t��� fy� �� subs�f�� y�t���

� fx������ fy������
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�		������
���
	�

������
��	���	���

� odeplot�f�� �x�t�� y�t��� ���� numpoints������
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� epsilon �� ��

� F� �� dsolve�fvderpol� icsg� fx�t��y�t�g�

type�numeric� method�mgear�adamspc���

� odeplot�F�� �x�t�� y�t��� ���� numpoints������
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� epsilon �� ��

� F� �� dsolve�fvderpol� icsg� fx�t�� y�t�g�

type�numeric� method�lsode�backfunc���

� odeplot�F�� �x�t�� y�t��� ���� numpoints������
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� epsilon �� ���

� F� �� dsolve�fvderpol� icsg� fx�t�� y�t�g�

type�numeric� method�lsode�adamsfull���

� odeplot�F�� �x�t�� y�t��� ���� numpoints������
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We see that this equation is easily integrate for moderate values of ��
But if we choose � � ���� the problem might become di�cult� It turns
out that the period of the solution increases with ��

���� Delay di�erential equations

Delay di�erential equations are equations with �retarded arguments�
such as

y
�

�t� � f�t� y�t�� y�t� ��� �����

or of even more general form

y
�

�t� � f�t� y�t�� y�t� ���� y�t� ����� ����

Here the derivative of the solutions depends also on its values at pre�
vious points�

Retarded arguments are present in many models of applied math�
ematics� They can also be the source of interesting mathematical phe�
nomena such as instabilities� limit cycles� periodic behaviour�

	 The existence of the solution

For equations of the type ����� or ����� where the delay values
t� � are bounded away from t by a positive constant� the question of
existence is an easy matter� suppose that the solution is known� say

y�t� � ��t� for t� � � � t � t�� �����

Then y�t � �� is a known function of t for t� � t � t� � � and �����
becomes an ordinary di�erential equation� which can be treated by
known existence theories� We then know y�t� for t� � t � t� � � and
can compute the solution for t� � � � t � t� � � and so on� This�
so�called �method of steps� then yiels existence and uniqueness result
for all t� For more details see �BeCo� and �Dri��

Example ���� Let us consider the equation

y
�

�t� � �y�t� ��� y�t� � � for � � � t � �� �����

Procceeding as describe above� we obtain

y�t� � �� t for � � t � �

y�t� � �� t �
�t� ���

�
for � � t � 

y�t� � �� t�
�t� ���

�
�

�t� ���

��
for  � t � �� etc�
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It can be observed� that despite the fact that the di�erential equa�
tion and the initial function are C�� the solution has discontinuities in
its derivatives� This results from the fact that the initial function does
not satisfy the di�erential equation� With every time step �� however�
these discontinuities are smoothed out more and more�

Our next example clearly illustrates the fact that the solutions of a
delay equation depend on the entire history between t�� � and t�� and
not only on the initial value�

Example ���� Let us solve the equation

y
�

�t� � ����y�t� �� �����

supposing that the solution is known on the intervals
�a	 ��t� � ��
 for �� � t � ��
�b	 ��t� � ��
 � t for �� � t � ��
�c	 ��t� � ��
 � t for �� � t � ��

	 Application of numerical methods

If we apply the Runge�Kutta method �Ch��� formulas ����� to a
delay equation ����� we obtain

g
�n�
i � yn � h

X
j

aijf�tn � cjh� g
�n�
j � y�tn � cjh� ���

yn�� � yn � h
X
j

bjf�tn � cjh� g
�n�
j � y�tn � cjh� ����

But which values should we give to y�tn � cjh � ��� If the delay is
constant and satis�es � � kh for some integer k� the most natural idea
is to use the back�values of the old solution

g
�n�
i � yn � h

X
j

aijf�tn � cjh� g
�n�
j � �

�n�
j � �����

yn�� � yn � h
X
j

bjf�tn � cjh� g
�n�
j � �

�n�
j � �����

where

�
�n�
j �

�
��tn � cjh� �� if n � k

g
�n�k�
j if n 
 k�

This can be interpreted as solving successively

y
�

�t� � f�t� y�t����t� ���



���� EXERCISES ���

for the interval �t�� t� � � �� then

y
�

�t� � f�t� y�t�� z�t��

z
�

�t� � f�t� �� z�t����t � ���

for the interval �t� � �� t� � � �� then

y
�

�t� � f�t� y�t�� z�t��

z
�

�t� � f�t� �� z�t�� ��t��

�
�

�t� � f�t� �� ��t����t� ����

for the interval �t���� t���� �� and so on� This is the perfect numerical
analog of the �method of steps� mentioned above�

It can be proved� that if aij� bj� ci are the coe�cients of a p�th
order Runge�Kutta method� then ������ ����� is convergent of order
p�

Unfortunately� this method does not allow us to change the step
size arbitrarily� and an application to variable delay equations is not
straightforward� If complete �exibility is desired� we need a global
approximation to the solution� There is no use in having approxima�
tions only at a sequence of points� Therefore� choice methods for these
problems are multistep methods of Adams or BDF type or continuous
Runge�Kutta methods�

���� Exercises

�� Obtain a numerical solution of the system of di�erential equa�
tions

x
�

� ����x� 			���y � ������� x��� � �
y

�

� x� y� y��� � �

by
� a� the classical �th order Runge�Kutta method�
� b� direct application of the Trapezoidal method�

Use a variety of stepsizes� Solve the equations exactly� Explain
what happens�

� Let us examine the so�called simpli�ed �Brusselator� model which
have important applications to the interpretation of biological
phenomena

x
�

�t� � A� x�y � �B � ��x

y
�

�t� � Bx� x�y�
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The system has one critical point� x � A� y � B�A� For B �
A� � � it has a limit cycle which� by numerical calculations� is
seen to be unique� Plot the phase�trajectory with di�erent A
and B � A � �� B � �� etc�

�� Let us consider the equations of the spherical pendulum in spher�
ical coordinates�

�
��

� �
cos�

sin�
�

�

�
�

�
��

� sin�cos���
�

�� � sin��

Plot the solution curve in � � t � � and � � t � ����

�� Let us solve the �full Brussellator� model and plot the two�
dimensional projections of the solutions�

x
�

�t� � � � x�y � �z � ��x

y
�

�t� � xz � x�y

z
�

�t� � �xz � ��

The system posses a critical point at x � �� y � z � �� The
condition for stability is � � ���	� Thus when � increases
beyond this value� there arises a limit cycle which exists for all
values of � up to approximately ���� When � continues to grow�
the limit cycle �explodes� and x� � while y and z ��� So the
system has a completely di�erent behavior from the simpli�ed
model�

�� A famous chemical reaction with a limit cycle in three dimensions
is the �Oregonator� reaction� with a periodic solution describing
the Belusov�Zhabotinskii reaction�

x
�

�t� � �����y � x��� 
����� ����x� y��

y
�

�t� �
�

����
�z � �� � x�y�

z
�

�t� � ������x� z�

x��� � �� y��� � � z��� � �� t � ��� ��� 	�� ���� ����

This is an example of a sti� di�erential equation whose solutions
change rapidly over many orders of magnitude� It is a challenging
example for numerical codes�
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�� The chemical reaction of Robertson

x
�

�t� � �����x� ��yz

y
�

�t� � ����x� ��yz � �� ���y�

z
�

�t� � �� ���y�

x��� � �� y��� � �� z��� � ��

one of the most prominent examples of the sti� literature� Hind�
marsh discovered that many codes fail is t becomes very large
����� for example�� The reason is that whenewer the numerical
solution of y accidentally becomes negative� it then tends to ��
and then run ends by over�ow� Therefore let us try to choose
tout � �� ��� ���� ���� ���� �����

�� Let us consider the famous Lorenz model which was established
for the weather prediction�

x
�

�t� � ��x � �y

y
�

�t� � �xz � rx� y

z
�

�t� � xy � bz

where �� r and b are positive constants� Plot the solution curve
in the planes xy and xy� if b � 
��� � � �� and r � 
 and with
the initial value x � �
� y � 
� z � r � �� The solution curve
looks pretty chaotic�


� An example from population dynamics� Let y�t� represent the
population of a certain species� whose development as a function
of time is to be studied� If we assume the growth rate to depend
on the population of the preceding generation� we get a delay
di�erential equation

y
�

�t� � �a� y�t� ���y�t��

All solutions with initial value y��� � � tend asymptotically
to a as t � �� This equation has an equilibrium point at
y�t� � a� This point is locally stable if � � a � ��� It has
two real solutions i� a � ��e � ����
� which makes monotonic
solutions possible� otherwise they are oscillatory� For a � ��
the equilibrium solution is unstable and gives rise to a peri�
odic limit cycle� Let us integrate the problem for � � t � ��
with a � ����� ���� ��� ���� ���� and with initial values y�t� �
�� �� � t � �� y��� � ����
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	� Predator�prey model� Consider� for example� foxes and rabbits
in a closed forest� We will denote by x�t� and y�t� the population
of the prey and predator� respectively� at time t� Besides some
assumptions� we are led to the dynamical system consists of the
two�dimensional di�erential equation system

x
�

�t� � ax� bxy

y
�

�t� � �cy � dxy

where a� b� c� d � �� The prey are the only food source avail�
able to the predator� Thus� if x � �� the predator population
decreases exponentially at the rate c� If y � �� the prey popula�
tion grows exponentially to in�nity at the rate a� b and d are the
measures of the e�ect of the interaction between the two species�
This equations are known as the Lotka�Volterra equations�

Discuss the solution of the system

x
�

� x� ���xy

y
�

� �����y � ���xy

for x and y positive� Plot the phase trajectories with di�erent
initial values� Plot the graph of the prey and predator popula�
tions with time�

��� Quasiperiodic motion on a two�dimensional torus� The under�
lying three�dimensional system consists of the di�erential equa�
tions

x
�

� �a� b�x� cy � x�z � d����� z���

y
�

� cx � �a� b�y � y�z � d����� z���

z
�

� az � �x� � y� � z���

The parameter values are a � ����� b � ���� c � ���� and
d � ��� Let the time step be in the numerical simulation ���
time units� Show the trajectory after ���� and ���� iterations�
In the last case the torus will more densely be covered by the
trajectory�

For other economical model we refer to �Lo��
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