Numerical Solutions of
Ordinary Differential Equations

(Inital Value Problems)

Doug Curran
University of Sunderland
United Kingdom

Andras Sovegjarté
Lordnd Eotvos University
Hungary

Laszlé Szili
Lordnd Eotvos University
Hungary

Maria Vicsek

Budapest University of Fconomic Sciences
Hungary

1997

Contents

Chapter 1. Introduction

1.1.

1.2.

1.3.
1.4.

Some concepts and results from the theory

of ordinary differential equations

Necessity and a classification of the approximate
solutions of initial value problems

Basic problems of approximate methods
Exercises

Chapter 2. Single Step Methods

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

Basic concepts

Euler’s method

Convergence and consistency of single step methods
A first improvement of Euler’s method
Runge-Kutta methods

Advanced methods

Stability of single step methods

Exercises

Chapter 3. Linear Multistep Methods

3.1. Basic concepts
3.2. Polynomial interpolation
3.3. Classical linear multistep methods
3.4. General linear multistep methods
3.5. Stability of linear multistep methods
3.6. Advanced methods
3.7. Exercises

Chapter 4. Stiff and Delay Systems of Differential Equations
4.1. Stiffness and stability
4.2. Advanced methods for stiff systems
4.3. Delay differential equations
4.4. Exercises

Bibliography

20
23
33

37
37
39
51
o7
70
81
87
94

97
97
98
102
122
128
138
139

141
141
147
159
161

165

Preface

This course is part of the TEMPUS project Nr. S_JEP-07318-94
European Course in Modelling and Simulation as it is one of the mod-
ules offered to the students.

The course is planned for both undergraduate and postgraduate
students who have the proper background in basic calculus, matrix al-
gebra and who are interested in the numerical solution of initial value
problems of differential equations. This interest is usually aroused by
the fact that almost all dynamic models describing time-dependent phe-
nomena in economy and in the sciences can only be solved by numerical
methods.

We shall use the computer algebra package Maple V Release 4 to il-
lustrate the theory. It helps in understanding the material and provides
the means for experimenting with the different methods.

Our aim was to construct the material in a self-contained way. For
this purpose in Chapter 1 we summarise very briefly the basic con-
cepts and results from the theory of ordinary differential equations and
numerical methods.

In Chapter 2 we deal with the numerical solutions of initial value
problems using single step methods. Linear multistep methods are
analysed in Chapter 3. Chapter 4 treats stiff and delay systems of
differential equations.

e Acknowledgements

We acknowledge and greatly appreciate the help of the TEMPUS
project Nr. S_.JEP-07318-94. The work of the third author has partly
been supported by the grant No. MKM 184/1996 of the Hungarian
Ministry for Education.

CHAPTER 1

Introduction

1.1. Some concepts and results from the theory
of ordinary differential equations

Many problems of applied mathematics lead to differential equa-
tions. We begin our study by explaining what a differential equation
is. As the two words differential and equation suggest, a differential
equation—Iloosely speaking—is an equation containing derivatives of
an unknown function. For example

dy

. d*y
_ 2 T
e =2(y*(x) + sinx), 3= U)—l-xy'(x),

y'(x) = V1+y*(w), vy (2) = 2y (x) — 2* + 2

are differential equations with respect to the unknown function y(z).
For the unknown two variable function wu(z,y) we can consider the
following differential equations:
2 2 2
o Py, o o a2
0x? = Oy? oxr Oy?

If the unknown function depends only on one independent real vari-
able, then the equation is called an ordinary differential equation. The
equations in (1.1) are of this kind.

If the unknown function is a function of two or more independent
real variables, then it is a partial differential equation. For instance,
(1.2).

The order of a differential equation is the highest order of the de-
rivative entering into the equation. For instance, the equations

d
;gd_y =y} (z) + dsinay(z), o' (r) =2 cosy(x)
x

(1.1)

are differential equations of the first-order, and both the equations

d2
xd—z = y3(z) + 4sinay(z), o'(z) = 2% cosy(x)
T
are differential equations of the second-order.
We shall study only ordinary differential equations.

1

2 1. INTRODUCTION
e First-order differential equations

In the most general case an ordinary differential equation of the
first-order contains an independent variable, an unknown function and
its derivative and has the form F(z,y(x),y'(z)) = 0, where F(x, 3o, y1)
is a given real valued function.

The results given here apply to the case where F' is such that the
equation F'(z, 4o, y1) = 0 can be solved for y; in the form y; = f(x, o).
Thus we shall consider differential equations of the form

y'(z) = f(z,y(x)). (1.3)

Our goal is to find the unknown function y(z) satisfying (1.3), i.e.
we want to solve the following problem.

PROBLEM 1.1. Let I be a fixed interval of the real line and consider
the following rectangle or strip on the plane

D :={(u,v) eR* |uecl,velcd,—o00<c<d< +oo}.

Suppose that [is a real valued function defined on D. Find a differen-
tiable function y(x) defined on a real interval J C I such that

(1) (z,y(r))eD (x €J),
(i) y'(z) = f(z,y(x) (z€).

This problem is called an ordinary differential equation of the first-
order, and is usually written in the form (1.3). If such an interval J and
a function y(x) exist, then y(z) is called a solution of the differential
equation (1.3) on the interval J. The graph of a solution of a differential
equation is called an integral curve of the equation. If there are no such
J and y(x), we say that (1.3) has no solution.

In order to understand what is meant by a solution, we give both
the equation and its solution, and we verify that it is a solution.

ExAMPLE 1.1. Verify that the given function is a solution to the
corresponding differential equation:

@) ye) = (o> 0),) + 4D =2

)
T T

(b) yla) = ce® + e (£ € R), yf(a) +29(r) = ¢

where ¢ is a real parameter,

(©) () =7 + o (£ € (-3,3)),
zy' (z) — zy*(z) — (222 + V)y(z) — 2* = 0.

1.1. SOME CONCEPTS AND RESULTS 3
SOLUTION. (a) Differentiating y(z) we have

TCOSx —sinx sinx cosx

! = =
) (‘T) - 1'2 - .1'2 + T
_ _y(=) | cos (> 0).
T T

(b) Let ¢ be a fixed number. Differentiating y(z) we obtain

1 1
y'(z) = —2ce " + gex = —2(ce > + gex) +e” =

= —2y(x) + €" (x € R),

i.e. the function y(z) is a solution of the given differential equation.
(c) In this case, we illustrate how to use Maple. First we define the
given function y(x)

> y :=x => -x + 2%x/(10-x72);

x
10 — 22

y:=x— —r+2

Then we use the Maple’s diff procedure to compute the derivative
y'(x), naming the resulting output d1

> dl = diff(y(x), x);

2 2
447

dl := -1
* 10 — 22 (10 — 22)?

Finally, we compute the left hand side of the given equation

> xxdl - xxy(x)72 - (2*%x"2+1)*y(x) - x73;

2 x? x
4 (a2)2
0—a2 o) T TR)

(222 +1) (—2 +2) —a®

r(—1+

x
10 — 22

In this case Maple does not simplify the result automatically. If we use
the command simplify we obtain

> simplify(");

4 1. INTRODUCTION

To graph y() we can use the plot procedure. For example, entering

> plot(y(x), x=-3..3);

graphs y(z) on the interval [—3, 3]. O

In geometrical language, (1.3) prescribes a slope f(u,v) at each
point (u,v) € D. A solution y(x) on .J is a function whose graph has
the slope f(x,y(z)) for each z € J (see Figure 1.1).

Figure 1.1. Geometrical interpretation of (1.3)

1.1. SOME CONCEPTS AND RESULTS 5

A set of short line segments representing the tangent lines can be
constructed for a large number of points. This collection of line seg-
ments (or vectors) is known as the direction field of the differential
equation and provides a great deal of information concerning the be-
havior of the family of solutions. The direction field associated with
an equation can easily be studied using Maple’s DEplot procedure,
which is contained in the DEtools package.

EXAMPLE 1.2. Draw the direction field of the differential equation
y'(z) =2 +y(x). (1.4)
SoLUTION. First we load the DEtools package:
> with(DEtools):
The next command draws the direction field

> DEplot({diff(y(x), x) = x + y(x)}, {y®)},
x=-2.4..1.5, y=-2..2, arrows=SMALL);

—~———]]]]]
~—~—~—— 7T T]
N~ —~——— 7]] T]
NN~~~ 7 7]
\\\\\\g//////y/)é/ J 7 77
\\\\\\\g////k} A AV AV
NN N NN~~~ L ST
NN NN N NN L s s s
NN NN NN NN s s s s

NNNNNNN—— = - >~ s S

NN\ NS SN S = A 7
AV W W N N o N N N I S S
AN N e N N N S e Y
AT T N O S
T e T N T e N e
AT T T T T e T e T e T
R T T T T e T R T T e
R T T T T T T T T T VT T
R T T Y N T T T e e St
L T T S M P M VR W 222 Y N NN

As we see the magnitude of the arrow at a point (u,v) is proportional
to the magnitude of f(u,v) :=u + v. O

Fortunately the dsolve function of Maple is able to find the solu-
tions to many differential equations. The next examples illustrate how
Maple can be used to solve first-order differential equations.

ExAaMPLE 1.3. Use Maple’s dsolve procedure to find all solutions
of the differential equation (1.4). Draw the graphs of some solutions.

6 1. INTRODUCTION
SOLUTION. The differential equation (1.4) can be defined as follows
> exl := diff(y(x), x) = x + y(x);
erl = 9 y(z) =2 +y(x)
Oz
Now, we invoke the dsolve function

> soll := dsolve(exl, y(x));
soll :==y(x) =—x—1+¢€"_C1

Our differential equation has a family of possible solutions, parameter-
ized by the ”constant of integration”. The dsolve function labels this
constant _C'l.

We would like to check if the answer is correct. (The reader should
do this in every case.) Substituting the obtained functions in the equa-
tion itself we have

> subs(", exl);
3(—x—1+e’” Cl1)=—-1+¢"_C1
ox - N -

Evaluating the difference of the two sides of this equation we see
that

> expand(lhs(") - rhs("));

0

Therefore, for any fixed real number ¢ the function
ye(x) = =2 — 1 4 ce” (r € R) (1.5)

and its restrictions to all the intervals J C R are solutions of (1.3). It
can be shown that this differential equation has no other solution. We
express this fact so that the general solution of (1.3) is (1.5).

Let us observe that Maple returns an equation for the unknown
function. In order to draw the graph of a solution we have to select the
expression for the function.

> rhs(soll);

—r—1+4+¢"_C1

1.1. SOME CONCEPTS AND RESULTS 7

We use seq and subs to define the set of seven functions y.(z) (¢ =
—0.9,—0.6,...,0.6,0.9). These functions can be plotted for example
on the interval (—4,4) in the following way

> plot({seq(subs(_C1=0.3%i, rhs(soll)), i=-3..3)},
x=-4..4, -4..4);

2 4
O
EXAMPLE 1.4. Find the general solution of the differential equation
y'(z) = —y*(2) (1.6)

on the upper half plane using Maple and check the result.

SOLUTION. Similarly to the previous example we obtain
> ex2 := diff(y(x), x) = -y(x)"2;

2= y(a) = —y(a)

> 8012 := dsolve(ex2, y(x), explicit=true);

1
sol2 =y(xr) = ——
y() x4+ _C1
The explicit=true optional equation forces the solution to be re-
turned explicitly in terms of the dependent variable. The default value
is explicit=false. In this case Maple is content with giving the so-
lution in an implicit form.

8 1. INTRODUCTION

Now we check the result in the following way:

> subs(", ex2):
expand (lhs(") - rhs("));

0

Thus, the general solution of our differential equation on the upper
half plane is

1

T x+c

where c is an arbitrary real number. This means that for any fixed real
number ¢ the functions

y(v)

1

c = € (—))
Wla) = —— (@€ (~e,+00))
(1)=—— (re(-o0,—0)
x) = x € (—o0,—cC
yc T + c) ’
and their restrictions to an appropriate interval .J C R and only these
are solutions of (1.6). O

The above examples show that the problem (1.3) may have many
solutions. However, in many cases there exists only one solution passing
through a point and existing on a maximal interval, as illustrated in
the following examples.

EXAMPLE 1.5. Find the solution y(z) of (1.4) passing through the
point (1,2), i.e. satisfying the condition y(1) = 2.

SOLUTION. From EXAMPLE 1.3 we know that the general solution
of (1.4) is

y(x)=ce" —x—1 (x € R),

where, ¢ is an arbitrary real parameter. We have to find a real number
¢ for which

2 =y(1) =ce* —1—1.
This number ¢ can be obtained in the following way

> ¢ := solve(subs(x=1, y(1)=2, soll), _C1);

4
ci= —
e

1.1. SOME CONCEPTS AND RESULTS 9
thus the asked solution is

> simplify(subs(_Cl=c, soll));

y(z) = —x — 1+ 4@

which is defined on the whole real line. It is easy to prove that this is
the unique solution of (1.4) on R satisfying the condition y(1) =2. O

EXAMPLE 1.6. Find the solution y(z) of (1.6) passing through the
point (1,2), i.e. satisfying the condition y(1) = 2.

SOLUTION. We can solve this problem similarly to the previous
example, but fortunately in the dsolve procedure we can immediately
specify an initial condition.

The differential equation (1.6) is defined in our Maple’s variable
ex2. Now we give the initial condition

> in_cond := y(1) = 2;

in_cond = y(1) =2
For the solution the dsolve function have to use in the following form:

> dsolve(ex2, in_cond, y(x));

y(@) = ;1

T3

It is clear that the maximal interval on which this solution may be
defined is the interval (1/2,+00) and there isn’t any other solution of
our problem on this interval. O

Therefore, in order to be able to talk about uniqueness of solutions
of (1.3), one is led to the problem of finding a solution passing through
a given point of the strip D.

Suppose that (7,£) is a given point in D. Then an initial value
problem associated with (1.3) and this point is defined in the following
way.

PROBLEM 1.2. Find a solution y(z) of (1.3) satisfying the condi-
tion y(1) = &.
This problem is denoted by

y() = flzy(@), ylr)=¢ (1.7)

10 1. INTRODUCTION

e Basic questions for initial value problems

1. The first question to be answered is under what conditions on
f can we say that the problem (1.7) has at least one solution. (The
problem of existence of solution.)

The following theorem (see, e.g. [CL], Theorem 1.2) lays down a
sufficient condition for a solution to exist.

THEOREM 1.1 (Cauchy-Peano existence theorem). If f is a con-
tinuous function on the strip D then there exists a solution of the initial
value problem (1.7).

2. The second question is the problem of uniqueness of solutions.
For example we know that the initial value problem
y'(x) =z +yx), y(1)=2
has a unique solution on the whole real line. EXAMPLE 1.6 shows that
the initial value problem

y'(z) =—y*(z), y(1)=2
has a unique solution on the interval (1/2, +00) and this is the maximal
interval in which a solution exists.

Not all problems possess a unique solution. The following example
shows that something more than the continuity of f in (1.7) is required
in order to guarantee that a solution passing through a given point be
a unique solution on a maximal interval.

EXAMPLE 1.7. Let (1,€) be a fized point of the plane. Find all
solutions of the initial value problem

y(z)=2VIy@)l, ylr)=¢ (1.8)
SOLUTION. Assume that & > 0 and consider the differential equa-
tion
> ex3:=diff (y(x), x)=2*sqrt(abs(y(x)));

€3 = %y(x) = 2/[y(@)]

The dsolve function gives the general solution of the above equa-
tion in implicit form

> s013 := dsolve(ex3, y(x));

y()
|y ()]

s0l8 = — +ax=_0C1

1.1. SOME CONCEPTS AND RESULTS 11

We can solve this equation on the upper half-plane (ST := R x R") in
the following way:

> assume(y(x)>0);

> s0l3u := factor(dsolve(ex3, y(x), explicit=true));
sol3u = y(z”) = (—z~ + _C1)?

The appended tilde ™ indicates that the variable x carries assumption.
Therefore on S* we obtain the following solutions

Ye (x) = (‘T - 01)2 (SC € (Cla +OO))?

where ¢, is an arbitrary real number. The integral curve passes through
the point (7, &) if

> ¢l := solve(subs(x=tau, y(tau)=xi, sol3u), _C1)[2];

cl =7 — \/E
On the lower half-plane (S~ := R x R™) we have

> assume(y(x)<0);

> 80131 := factor(dsolve(ex3, y(x), explicit=true));
sol3l == y(z7) = — (v~ — _C1)?
Thus the general solution on S~ can be written in the following form

yCz(x) = _(x - 62)2 (SC € (_00102))7

where ¢, is an arbitrary real constant.

It is clear that the zero function is also a solution of the differential
equation y'(z) = 2/|y(z)|.

These results mean that the initial value problem (1.8) has infinitely
many solutions: for example if & > 0 then for every fixed number
¢ < 7 — +/€ the function

(x —7+6)? ifx>71—
0 ifc<x<7—¢
—(z —¢)? ifr<c

ye(x) ==

is a solution on the whole real line (see Figure 1.2).

12 1. INTRODUCTION

Figure 1.2. Different solutions of (1.8)

We can solve the problem for £ < 0 in a similar way. O

A simple condition which permits one to imply uniqueness is the
Lipschitz condition.

DEFINITION 1.1. Suppose f is defined on a strip D of the plane. If

there exists a constant L > 0 such that for every (u,v,) and (u,vy) in
D

| f(u,v1) = f(u,v2)| < Ljvy — vy
then f is said to satisfy a Lipschitz condition (with respect to the

second variable of f) in D. The constant L is called the Lipschitz
constant.

The following fundamental existence and uniqueness theorem for
the initial value problem given in (1.7) states that the problem (1.7)
has exactly one solution, provided f satisfies a Lipschitz condition (see,
e.g. [He], Theorem 3.1).

THEOREM 1.2 (Picard—Lindel6f theorem). Let f be a continuous
function defined on the strip D = {(u,v) | a < u < b, v € R},
where a,b are finite real numbers. Suppose that [satisfies a Lipschitz
condition on D. Then for every T € [a,b] and every £ € R there exists
ezactly one function y(x) such that

(i) y(z) is differentiable for x € [a,b],
(ii) v'(z) = f(z,y(x)) for x € [a,b],
(iii) y(r) = €.

1.1. SOME CONCEPTS AND RESULTS 13

From the mean value theorem it easily follows that the Lipschitz
condition is satisfied if the partial derivative df/dy exists on the strip
D and it is continuous and bounded there.

3. Explicit representation of solutions. It turnes out that given an
arbitrary differential equation, constructing a closed-form solution is
nearly always impossible. For example, the simple differential equation

y'(z) =2+ 2" + 3 ()
does not possess a closed-form solution in terms of elementary func-
tions, although its solutions can be expressed in a complicated way in
terms of Bessel functions of fractional order. We remark that Kamke’s
book [Ka| contains those special types of differential equations that
may be solved in terms of elementary functions using a finite num-
ber of arithmetic operations. Consequently, although mathematicians
were first concerned with finding closed-form solutions to differential
equations, after realizing that these type of solutions were usually im-
possible to construct, mathematicians have since (frequently) turned
their attention to addressing properties of the solution without actu-
ally finding them and seeking algorithms to approximate the solution.

e Systems of ordinary differential equations

Many problems in practice are modelled with more than one equa-
tion and involve more than one unknown functions. For example, if
we want to determine the population of two interacting populations
such as foxes and rabbits, we would have two functions to represent
the quantities of two populations where these populations depend on
one independent variable that represents time.

More precisely, one can formulate the following problem.

PROBLEM 1.3. Suppose n is a positive integer and f1, fo, ..., fn are
n real valued continuous functions defined on some strip D of the real
(n + 1)-dimensional Euclidean space. Find n differentiable functions
y1(z), y2(x), ..., yn(x) defined on a real interval J such that

1) (z,y1(x),...,yn(x)) € D (x € J),
(i) yi(x) = filz, (@), .. yulz)) (x € J).

This problem is called a system of n ordinary differential equations
of the first-order, and is denoted by

yi(z) = filz,y(z) .. ynl(2) ((=1,2,...,n). (1.9)
Correspondingly, if such an interval J and functions y(x),. .., y,(x)
exist, then the set of functions (y;(x), ..., yn(x)) is called a solution of

the system (1.9) on the interval .J.

14 1. INTRODUCTION

Let (7,&1,...,&,) € D. The initial value problem consists of finding
a solution (y1(x),...,yn(x)) of (1.9) on an interval J containing 7 such
that yZ(T) :fz (Z: 1,2,,n)

Such initial value problems can be written analogously to (1.7) in
vector form

Y(z) =f(z,y(=), y(r)=§ (1.10)
where
yi(z) fi &1
T Nl PR e B

and (7,€&) € D is a given point.
A system of n differentiable functions

yi(z,cr,09,...,0), (1=1,2,...,n) (1.11)

of the independent variable x, and n arbitrary constants ¢, cs, ..., ¢,
is said to be the general solution of the system (1.9) if

(i) for any values of ¢y, ¢o, ..., ¢, the system of functions (1.11) are
solutions of (1.9),

(ii) the solution of any initial value problem related to (1.9) can be
obtained from (1.11) by appropriately choosing c1, ¢s, .. ., ¢y.

It turns out that the basic questions and results for the case n = 1
can be carried over successfully to the system (1.10). In terms of the
definitions introduced above, the theorems 1.1 and 1.2 are valid for the
vector equation (1.10) if, in their statements y, f are replaced by the
vectors y, f and the magnitude is understood for vectors as:

n 1/2
wi= (k) wer),
i=1
A particularly interesting system is the linear system

y1(2) = an(2)y1(x) + -+ - + a1 (@) yn () + ha(2),
Yo () = a1 (2)y1(x) + -+ - + azn (T)yn () + ho(2),

(1.12)
y;z@) = anl@)yl(ﬁ) +oeee ann(x)yn(m) + hn(x),

where the functions a;; and h; are real valued continuous functions on
some bounded interval I C R.

1.1. SOME CONCEPTS AND RESULTS 15

Using the notations

y1 () an(z) ... ap(r) Zl (x)
y(x) = yg(:z:) Alr) = aglg(x) o agy(7) () = 2(:17)
Yn () a1 () ... Gpn(2) hp(x)

the system (1.12) can be written in vector form:

y'(x) = A(z)y(x) + h(z). (1.13)

From the above mentioned results it follows that for every initial
value (7,€&) € I x R" the equation (1.13) has exactly one solution y(z)
on the whole interval I satisfying the condition y(7) = €.

Let A(z) be independent of z, i.e. we have a linear system with con-
stant coefficients. In this case there is a general method (see, e.g. [CL])
to compute the solution of the corresponding initial value problem.

Fortunately many systems of linear differential equations with con-
stant coefficient can also be solved with the Maple’s dsolve procedure.
We illustrate this in the following examples.

EXAMPLE 1.8. Use Maple’s dsolve procedure to find the general
solution of the system

() = 9 (2) — ya(2),
Yo (x) = y2(x) — 1 ().
SOLUTION. First we define the system in Maple

yl(x) - y2(x),
y2(x) - 4*xyl(x);

(1.14)

> sysl := diff(y1(x), x)
diff(y2(x), x)

sysl = 8% yl(z) = yl(z) — y2(z),

2 va(e) = y2(r) ~ 4¥1(x)

For systems we have to use the dsolve function in this form:

> dsolve({sysl}, {y1(x), y2(x)});
1 1 1 1
{yl(z) = 3 _C1 el 4 5 _C1eBY — 1 _C2eB7 4 1 _C2e59),

1 1
y2(x) = —_C1eB 4 _C1el™ + 3 L0209 4 3 _C2e89)}

16 1. INTRODUCTION

By using the collect procedure we can collect together those
terms containing e * and e3*:

> collect(", {exp(-x), exp(3*x)});

1 1 1 1
1 = (Z C1 —=_ (3) 201+ (—x)
{y1(x) (2 C 1 C2)e +(2 C +4 C2)e™ ",

1 1
y2r) = (=-C1+;-C2) B 4 (LC1 + 5-C2) =2}

We leave it to the reader to verify that this is the general solution
of (1.14), indeed. O

ExAMPLE 1.9. Use Maple’s dsolve procedure to find the solution
of the initial value problem

Y (x) = =5y () + 3ya () + 7, y1(0) =1,
Yo (r) = 2y1(x) — 10y2(w) + 1, y2(0) = 3,

SOLUTION. Similarly to the previous example we have

(1.15)

> 8ys2 := diff(yl(x),x) = -5*yl(x)+3*y2(x)+exp(-2*x),
diff(y2(x),x) = 2xyl(x)-10*y2(x)+1;

0
sys1 = yl(z) = =5yl(x) + 3y2(x) 4+ 29,
T

0

—y2(x) =2yl(z) —10y2 1
5, V2(@) = 2y1(z) — 10y2(z) +
> init_cond := y1(0)=1, y2(0)=3;

init_cond :=y1(0) =1, y2(0) = 3
> funcs := {y1(x), y2(x)};
funes == {yl(x), y2(z)}

> dsolve({sys2, init_cond}, funcs);

1552 (g, 15 amy 5 1 (o)

2 - - _ _
{v2(z) 693 + o€ T e
45 776 3 4
1 P o) LN G §) BT TN)
yl(z) 58 ¢ 93 + T }

1.1. SOME CONCEPTS AND RESULTS 17

It is easy to verify that the obtained function is the unique solution of
the initial value problem (1.15). O

e Higher-order differential equations

Many physical situations exist that need to be modeled by higher-
order differential equations.
More precisely, one can formulate the following problem.

PROBLEM 1.4. Suppose f is a real valued continuous function de-
fined on some strip D of the real (n+ 1)-dimensional Euclidean space.
Find a function y(x) defined on a real interval J possessing n deriva-
tives there such that

(i) (z,y(x),y(2),...,y" () € D (xelJ),
(ii) y™(2) = f(z,y(@),y'(x),...,y" D (2)) (xeJ).

This problem is called the nth-order differential equation associated
with f, and is denoted by

y™ () = f(z,y(x),y'(@),...,y" (@), (1.16)
If such an interval J and a function y(x) exist, then y(x) is said to be
a solution of (1.16) on the interval J.

Let (7,&1,...,&,) € D. The initial value problem consists of finding
a solution y(z) of (1.16) on an interval J containing 7 such that

y(r) =&, y'(1) =6, ... y" (1) =&, (1.17)
The equation (1.16) can always be transformed into an equivalent

system of first-order differential equations. For this purpose one usually
sets

an(w) =y D (@),

so that equation (1.16) becomes

z1(7) 2(7)
2(1) 23(7)

Z(z) = : |= : (1.18)
21 (T) 2n ()

Z;z(x) f(ZU,Zl(ZU),,Zn(ZU))
This system is called the system associated with the nth-order equation
(1.16).

18 1. INTRODUCTION

From the above mentioned fact it follows that the theory of equa-
tion (1.16) can be reduced to the theory of a system of n first-order
differential equations. It is thus clear that all statements about the sys-
tem (1.18) carry over directly to the statements about the nth-order
equation (1.16).

The general solution of the nth-order differential equation (1.16) is
the set of all of its solutions defined by a formula y(x,cq,co,. .., cp)
containing n arbitrary constants cq, cs, ..., c, such that, if the initial
conditions (1.17) are given, values ¢, é, . .., &, can be found such that
y(x,¢1,Ca,. .., Cpn) is a solution of equation (1.16) satisfying these initial
conditions.

A particularly interesting higher-order differential equation is the
nth-order linear differential equation:

Y™ (@) + an (2)y" D (@) + - 4 an(2)y (2) + ao(2)y(x) = h(x),

where the functions a; (i = 0,1,...,n — 1) and h are real valued con-
tinuous functions on some interval I C R.

From the above mentioned results it follows that if the functions
ag, a1, ..., 0,_1,h are continuous on an interval I C R then for every
initial value 7 € I and &; € R (i = 1,2,...,n) the initial value problem

Y™ (@) + an-1 @)y V(@) + -+ a(2)y' (@) + ag(2)y(x) = h(z),

y(r) =&, y'(1) =&, ..., y" () = &uor.
has a unique solution on the interval I.
We can use the Maple’s dsolve procedure to compute solutions of
many higher-order differential equations. We illustrate the possibilities
on the following examples.

ExXAMPLE 1.10. Find the general solution of the equation
zy® (x) =y (z) = 0. (1.19)

SOLUTION. We use the diff function with $ to represent the higher-
order derivatives of y(x).

> dsolve(xxdiff (y(x), x$5)-diff(y(x), x$4) = 0, y(x));

y(z) =_Cl +_C2z+ -C32° + _Cj 2° + _C52°

Let us observe that the general solution of this fifth-order equation
contains five independent parameters _-C'1,..., _C5. O

ExXAMPLE 1.11. Solve the following initial value problem

wo Y(@) a? V2 V2
2y"(v) = —+ o Y =

1.1. SOME CONCEPTS AND RESULTS 19

SOLUTION. In Maple we can define a differential equation with the
procedure D, too.

> eq := 2x(D0@2) (y) (x) = D(y) (x)/x+ x~2/D(y) (x);

> init_cond := y(1) = sqrt(2)/5, D(y) (1)=sqrt(2)/2;

init_cond :=y(1) = é\/ﬁ, D(y)(1) = %\/5

> simplify(dsolve({eq, init_cond}, y(x)));

1 V22!
y(z) = EW

It is easy to show that this function is the unique solution on the
interval (0, +00). O

Besides initial value problems, boundary value problems also fre-
quently occur in practice. Here, the desired solution y(x) of the dif-
ferential equation (1.16) has to satisfy a boundary condition of the
form

r(y(a),y(b)) =0,

where a # b are two different point of the interval I and r is a given
two variable function.

We will discuss methods for the solution of initial value problems
only, since the class of the methods for boundary value problems is
different.

We only give a single example to illustrate that Maple’s dsolve
procedure can be used to solve boundary value problems, too.

EXAMPLE 1.12. Find the solution of the boundary value problem
y'(z) = 9y(x) =™, y(0) =1, y(1) =2.
SOLUTION. As in the previous examples we have

> eql := (DEO2) (y) (x) - 9*xy(x)=exp(2*x);

eql = (D(Z))(y)(x) _ 9y(x) _ 22)

20 1. INTRODUCTION

> bound_cond := y(0)=1, y(1)=2;
bound_cond :=y(0) =1, y(1) =2
> dsolve({eql,bound_cond}, y(x));

oo, 1 (6% —e? —10)eB®

e)
1 (—e? +6¢°—10)el3)
5 —e3 + el=3)
We leave it to the reader to verify that this function is the unique
solution on the whole real line. O

1.2. Necessity and a classification of the approximate
solutions of initial value problems

As we have already mentioned, explicit solutions of initial value
problems can only be found in relatively few cases. In Section 1.1 we
have seen some of these problems.

Even with quite simple differential equations it may happen that
their solutions cannot be expressed in closed form. For example, the
differential equation

y'(z) = 2” + () (1.20)
does not possess a closed form solution in terms of elementary functions.

In Maple the usual elementary functions like the exponential func-
tion, the natural logarithm, the trigonometric functions are present and
the program can solve many ordinary differential equations exactly in
explicit or in implicit form. Maple also includes all the commonly used
special functions of applied mathematics, for example orthogonal poly-
nomials, Bessel functions, Gamma function, etc. The complete list of
the available built-in mathematical functions can be obtained by the
command ?inifcns (help about initially known functions).

Maple’s dsolve procedure tries to find the solutions of a differential
equation in terms of built-in mathematical functions. For example, the
general solution of the differential equation (1.20) can be expressed in
terms of Bessel functions and Maple can find it.

> dsolve(diff(y(x), x) = x"2 + y(x)"°2, y(x));

-3 1 -3 1
z (-C1 BesselY(T, §x2) + BesselJ(T, 5:52))

y(z) = - 11 11
_C1 BesselY (=, = x2) 4+ BesselJ (=, = 22
C'1 Besse (4, 5 ¢) + Besse J(4, 5%)

1.2. NECESSITY AND A CLASSIFICATION 21

If we cannot construct an expression in a closed form for the solution
of an initial value problem, then we can give an approximation of the
exact solution. The methods providing approximations can be divided
into two groups according to the form of the representation of the
solution.

o Analytic methods which give an approximate solution of a dif-
ferential equation in the form of an analytic expression, like a
polynomial.

e Discrete methods or numerical methods which give an approxi-
mation of the exact solution only at discrete points of its domain.

We shall investigate numerical methods in later chapters. For the
first group of methods we mention the power series method (see, e.g.
[AB], Chapter 6) and the method of successive approzimations or Pi-
card’s method. This method was first used to prove the existence and
uniqueness of the solution of initial value problems (see Theorem 1.2).

Consider the initial value problem (1.7) and assume that the con-
dition of the Theorem 1.2 are satisfied. The method of successive ap-
proximations consists in that the solution of (1.7) is obtained as the
limit of a sequence of functions y, (), which are found by the recursive
formula

Yo() =

_67
y”“(x):gﬂL/mf(s,ynl(s)ds (n=0,1,2,...). (1.21)

It is proved (see, e.g. [CL]) that in a certain interval, which contains
the point 7 the sequence (1.21) converges uniformly to the unique so-
lution of the initial value problem (1.7). This method gives a global
approximation, i.e. gives an approximation on a suitable interval.

The next example illustrates how Maple can be used to calculate
the sequence of the successive approximations.

ExXAMPLE 1.13. Use Picard’s method to find the first few terms of
(1.21) for the initial value problem

y'(r) = 2%+ y*(z), y(0)=0.

SOLUTION. First we define the right-hand side of the differential
equation

> f = (x, y) > x72 +y7°2;

fim @) oty

22 1. INTRODUCTION
The initial condition is

> tau := 0;

A simple program which shall compute the recursive sequence (1.21) is
this

> y := proc(n)
local ww;
option remember;
ww := unapply(y(n-1), x);
xi + int(f(s, ww(s)), s=tau..x);
end:
y(0) := xi:

Note that in defining the recursively defined function y, we take advan-
tage of the option remember. This instructs Maple to remember the
values of y computed, and thus, when computing y(n), Maple need

not recompute y(n-1).
We obtain — for example — the first four terms of (1.21) in the

following way:

> for i from 0 to 3 do y(i) od;

0
%x3+61—3x7
%x3+ﬁ135x15+ﬁx11+;—3x7

The question how close these functions are to the exact solution will
not be treated here (cf. [CL]). O

1.3. BASIC PROBLEMS OF APPROXIMATE METHODS 23

1.3. Basic problems of approximate methods

As we mentioned in the previous sections it is often impossible to
find the exact solution of an initial value problem using standard tech-
niques. In fact, there are very few problems for which an exact solution
can be determined with elementary functions using a finite number of
arithmetic operations. Therefore, we need numerical methods to ap-
proximate the solutions.

Similar problems arise in other topics of mathematics, too. For
example, there are formulas for solving quadratic, cubic and quartic
polynomial equations but no such formula exists for polynomial equa-
tions of degree greater than four or even for a single equation such
as

r = tanz.

Let us consider another example from calculus. Suppose we want
to compute the definite integral

/abf(x)dx.

The Fundamental Theorem of Calculus states that if F'(z) is any anti-
derivative of f(x), then

/ F(@)dz = F(b) — Fla).

Therefore, to evaluate a definite integral by means of this theorem
it is necessary to find an antiderivative of the function f(x). If an
antiderivative cannot be found, then numerical methods may be used
to approximate the integral to any degree of accuracy.

Even if an exact solution of a given problem can be found it may be
of more theoretical than practical use. For example, it is well known
that there exists a complicated explicit formula for the roots of a third
degree polynomial equation which is not used in practice.

The objective of numerical analysis is to construct and analyze nu-
merical methods and algorithms for the solution of problems in science
and technology.

The goal of the rest of this section is to present some general prob-
lems which arise in the process of a numerical solution. For further
reading on general principles and problems of numerical analysis we
suggest the Chapters 1 and 2 of the book of G. Dahlquist and A. Bjork
[DB].

24 1. INTRODUCTION

e Numerical algorithm

A numerical algorithm consists of a sequence of arithmetic and log-
ical operations which produces an approximate solution to within any
prescribed accuracy. An algorithm can be described loosely or in great
detail. A comprehensive description is obtained when an algorithm is
formulated using a programming language.

For a given problem one can consider different algorithms. These
may give approximate answers which have widely varying accuracy.

e Sources of error

Numerical results are influenced by many types of errors. Some
sources of error are difficult to influence; others can be reduced or even
eliminated. Errors propagate from their source to quantities computed
later, sometimes with a considerable amplification or damping.

We distinguish the following types of errors.

A. FErrors in given input data. The input data can be the result
of measurements. Rounding errors occur, for example whenever an
irrational number is rounded to a fixed number of decimals.

B. Round-off errors during the computations. The limited word-
length in a calculating device leads to a loss of information.

C. Truncation errors. Such errors result from replacing a desired
mathematical operation by a realizable computation. These errors are
committed when a limiting process is truncated. For example, if an
infinite series is broken off after a finite number of terms.

D. Simplification in the mathematical model. In most of the appli-
cations of mathematics, one makes idealizations. For a calculation in
economics, for example, one might assume that the rate of interest is
constant over a given period of time.

E. "Human” errors and machine errors. When one uses computers,
one can expect errors in the program itself, typing errors in entering
data, operator errors and (more seldom) machine errors.

The effects of the errors are usually difficult to estimate. If we do
not proceed carefully it may well happen that the computed approxi-
mations have very little to do with the desired solution, or may even
be meaningless.

Errors of type A. and D. are usually to be considered uncontrollable
in the numerical treatment. Errors of type B. and C. are controllable.

Whereas round-off error and its properties are somewhat indepen-
dent of application area, truncation error can only be analyzed in the
context in which it occurs.

1.3. BASIC PROBLEMS OF APPROXIMATE METHODS 25

We illustrate the effect of these errors by the next simple example.
Recall from calculus that the derivative of a function f(z) at a point
Zp is defined by the formula

flzo+h)— flwo)

We can approximate the derivative f'(xy) by

fzo+h) — fl=zo
D) = LN =T i)
for a given h. The truncation error associated with using the ”real-
izable” arithmetic formula Df(h) for approximating an unrealizable
limiting operation, of the derivative is

f'(xo) = Df(h).

Such an error would occur even if f(x) and Df(h) could be evaluated
exactly. This error, then, is of mathematical origin. It is clear that
if the magnitude of h is "large”, D f(h) is inaccurate because h is not
sufficiently close to the limit. For reasons to be discussed later, as h
becomes small, inaccuracies due to round-off error dominate. The error
in computing the difference f(xy + h) — f(xy) is large relative to the
actual value of this difference.

We can demonstrate errors in numerical approximation of the de-
rivative of the function f(z) = exp x at the point 25 = 1 using Maple.
First we calculate the exact value f’(z)

lim

h—0

)

> exact_value := D(exp) (1);

exact_value 1= e

Now we define an approximation d10f of D f(h) as a function of h
> d10f := h -> (evalf(exp(1+h)) - evalf(exp(1)))/h;

evalf (e +") — evalf(e)

h
Therefore d10f (h) gives D f(h) calculated with 10-digits precision (see
below).

The errors for h = 0.5+ 107* (i = 0,1,...,10) can be calculated in
the following way

d10f == h —

> error := h -> exact_value - d10f(h);

error := h — ezxact_value — d10f(h)

26 1. INTRODUCTION

> for i from 0 to 10 do evalf(error(0.5%10°(-1i))) od;

—.808532656
—.069103972
—.006807172
—.000680172
—.000078172
—.000118172
—.001718172
—.001718172
—.081718172
—3.281718172
2.718281828

The obtained results suggest that there is an optimal value of A with
which the derivative of exp(z) at o = 1 can be approximated by the
finite difference formula D f(h).

e Round-off errors

Round-off errors have their origins in computer operations regard-
less of problem area. Here we describe these origins and examine some
frequently encountered settings.

Regardless of its source, error is usually quantified in two different
but related ways. Let x denote an exact value and z* its computer
approximation. Then the value |z — 2*| is known as the absolute error.
In many cases, the absolute error does not properly reflect its influence.
For instance, an error of 0.01 m in measuring the distance to the moon
would seem negligible, but it might be disastrous in designing a piston
to fit into cylinder of a car motor. In view of the effect of scale, the
concept of relative error, that is |x — x*|/|x|, is helpful. Any number
d(z*) satisfying the inequality

| — 2" < 6(x7)

is called an absolute error bound for the error of z* as an approximation
of z. Similarly, any number Rel (z*) satisfying

|z — "]

< Rel (z¥)
|

is called a relative error bound. If §(z*) is a small number compared to
|z*|, then §(z*)/|z*| is a good approximation for Rel (z*), i.e.

Rel (z¥) ~ 6(x*)

e

1.3. BASIC PROBLEMS OF APPROXIMATE METHODS 27

Toward understanding the source and magnitude of round-off error
we recall that computers store numbers in floating-point representation,
i.e. in the form

r=f-10%,
where z # 0 is any real number,
1
o S =1
and F is an integer. For example,
113.25 = 0.11325 - 107,
—0.0546712 = —0.546712 - 10~ 1.

In floating-point arithmetic, it is correct to suppose that given any
two floating point numbers, the arithmetical operation is performed
perfectly, and then the result is rounded, as necessary, so that the
result fits into a floating point computer word. Roughly speaking,
significant figures are preserved in addition, multiplication and division.
But subtraction can induce a special phenomenon known as subtractive
cancellation. This arises when two nearly equal floating point numbers
are subtracted from one another. We illustrate this phenomenon by
the help of Maple.

Let us consider the positive number

> A := ((sqrt(5)-1)/2)"100;

1 1
A= (= _ 2\100
(5V5-3)

Expanding we have

> A := expand(A);

354224848179261915075 792070839848372253127
- V5 +
2 2
First we show that the number A is the difference of two nearly
equal numbers. Extracting components of A with the procedure op

and then evaluating these terms — for example — in 50-digits floating-
point arithmetic we get

> op(A)[1];

A=

354224848179261915075
_ : V5

28 1. INTRODUCTION

> evalf(",50);
—.396035419924186126563499999999999999999998 73748666 10*!

> op(A)[2];

792070839848372253127
2

> evalf(", 50);

:39603541992418612656350000000000000000000000000000 10**

The true value of A lies in the interval [0, 1072°] which follows from

NN i1\ :
5511 1\

Now let us investigate what happens if we perform the operations
in floating-point arithmetic. The precision of floating-point arithmetic
can be defined by setting different values to the Maple variable Digits,
whose default value is equal to ten. There are several functions that
make Maple compute in floating-point arithmetic, the most important
being evalf (evaluate using floating-point arithmetic). This procedure
approximates its first argument, the number of digits used is equal to
the value of its second argument. If there is no second argument to
evalf, then Maple takes the value of Digits as the number of digits to
be used in floating-point arithmetic.

An approximate value of A in 10-digits floating-point arithmetic is

> evalf(A);

—.110"

which is very inaccurate because the true value of A lies in the interval
[0,10720].

We can obtain better result if we increase the precision of the
floating-point arithmetic:

1.3. BASIC PROBLEMS OF APPROXIMATE METHODS 29
> for n from 1 to 6 do evalf(A, 10%n) od;
—.110"2
—10.
0
—.1107'®
1262513341072
.1262513338063842942 10~ 2°

In numerical methods subtractive cancellation is to be avoided if
at all possible. Such loss of accuracy can often be avoided by a refor-
mulation of the expression into a mathematically equivalent form, for
example

2x

Tt7-vVI-z=
VIdo—Vi-w Vitz+V1-=x
lnb—lna:ln% (a,b>0).

(z € (0,1)),

If it is difficult to find a suitable reformulation of an expression of the
form f(x +¢) — f(z), then subtractive cancellation can be avoided by
using the Taylor expansion.

e Problem of stability

In most situations the effect of errors of a numerical method does
not significantly affect the final results. However, in certain cases it
can lead to a serious loss of accuracy so that computed results are very
different from those obtained. The term of instability is used to describe
this phenomenon. There are two fundamental types of instability in
numerical analysis — inherent and induced. The first of these is a fault
of the problem, the second one is that of the method of solution.

A problem is said to be inherently unstable (or ill-conditioned) if
small changes in the input data of the problem cause large changes in
its solution.

We illustrate this phenomenon in the following example.

EXAMPLE 1.14. Show that the initial value problem
y"(x) = 10y'(z) — 11y(z) =0, y(0)=1, ¢'(0) = -1

18 wll-conditioned.

30 1. INTRODUCTION
SOLUTION. We can solve this problem with Maple
> eql := (DEE2) (y) (x)-10%(D) (y) (x)-11xy(x)=0;

eql = (D®)(y) () — 10D(y)(x) — 11 y(x) = 0
> in_vall := y(0)=1, (D) (y)(0)=-1;

in-vall :=y(0) =1, D(y)(0) = —1

> s0ll := dsolve({eql, in_vall}, y(x));

1

l1 .= = —

solt = y(a) = -

Now suppose that the initial conditions are replaced by
y(0) =1+, y'(0)=—-1+¢

for some small numbers 6 and €. The particular solution satisfying
these conditions is

> in_val2 := y(0)=1+delta, (D) (y)(0)=-1+epsilon;
in-val2 :=y(0) =146, D(y)(0) = —1+¢
> 8012 := dsolve({eql, in_val2}, y(x));

11 1 11
RN S — 1 — 5+ = (11z) Lz
TR A UL TR A

sol2 = y(x) g

and therefore the change in the solution is

> collect(rhs(soll) - rhs(sol2), exp(x));

11 5+ 1
1 1 TR0 T 19¢
TR T A
The term (6+¢)e!'® /12 is large compared with e~* for z > 0, indicating
that this problem is ill-conditioned. O

If the problem is ill-conditioned then any numerical results, irre-
spective of the method used to obtain them, will be highly inaccurate
and may be worthless. Nevertheless, it may happen that the original
ill-conditioned problem can be transformed into a well-conditioned one
with the same (or approximately same) solution.

1.3. BASIC PROBLEMS OF APPROXIMATE METHODS 31

We now consider a different type of instability which is the conse-
quence of the method of solution rather than the problem itself.

A method is said to suffer from induced instability (or numerical
instability) if small errors present at one stage of the method adversely
affect the calculations in subsequent stages to such an extent that the
final results are totally inaccurate.

This is illustrated by the following example.

EXAMPLE 1.15. Let us consider the definite integrals
L n
En::/ dx (n=0,1,2,...).
o T+5

(a) Show that the sequence E,, (n € N) satisfies the recursion for-
mula

FEy=In6—1Inb
1 1.22
E,=—-—-5E,; (n=1,2,3,...), (1.22)
n
and monotone decreasingly tends to zero.
(b) Compute some terms of these sequence with (1.22) using—for
example—16-digits floating-point arithmetic. Let us observe the effect
produced by round-off errors.

SOLUTION. (a) It is clear that

1
1
Ey :/0 x+5dm = [In(x + 5)]; =In6 — In5.

The recursion formula follows from
1 —1 1
"4+ 5 1
E,+5E, 1 = / udzlc = / " e = =
0 T+5 0 n

Since 2" < z™ on the interval (0,1) thus

1 n+1 1 n
E, :/ v d:z:</ T de = E,,
o0 T+5D o T+5D

i.e. the sequence E, (n € N) is monotone decreasing. Finally from the
inequalities

bogn ! 1
0<En:/ d$</x"d:17:— (neN)
o T+5D 0 n

we obtain that

lim FE, = 0.

n—o0

(b) Below we use the formula (1.22) to compute E,, using 16 dec-
imals throughout. The precision of floating-point arithmetic can be

32 1. INTRODUCTION

defined by setting a value to the Maple variable Digits, whose default
value is equal to ten.

> Digits := 16:

We can define the recursion formula (1.22) in the following way

> a := evalf(1n(6)) - evalf(ln(5));

a = .182321556793955

v
tm
n

proc(n)
option remember;

if n=0 then a
else 1/n-5*E(n-1)
fi
end:

Using this simple program we get

> for n from 0 to 11 do
sprintf (‘E(%E)=V/f‘, 2*n+1, E(2*n+1))od;

E(1) = .088392
E(3) = .043138
E(5) = .028468
E(7) = .021232
E(9) = .016926
E(11) = .014071
E(13) = .012039
E(15) = .010509
E(17) = .009056
E(19) = .001265
E(21) = —.170732
E(23) = —4.452110

It is absurd that Fs;, Es3 < 0! The reason for the absurd result is that
the round-off error ¢ in Ey, whose magnitude can be as high as 5-10716
is multiplied by —5 in the calculation of F;, which then has an error
of —5e. That error produces an error in Fy of 25¢, etc. Therefore the

1.4. EXERCISES 33

error in the calculated value of Fs3, caused by the inaccuracy in Ey, is
523.5-1071% ~ 5.96.

If we use more decimal places of accuracy, the absurd result will
show up at a later stage.

We propose the reader to redo the calculations with other values of
Digits and observe the changes. In practical problems this possibility
of changing accuracy may be enough to get rid of this problem. O

The induced instability can be avoided either by modifying the
existing method or by using a more suitable algorithm.

1.4. Exercises

1. Verify that the given function is a solution to the corresponding
differential equation:

(a) y(z) =sin(l +log(l +2?), (z€R),
2z4/1 —y2(2) =y (2)(1 + 2?),
(b) y(z) = (z — 4)e™*" + 2,
y'(x)
-
2. Show that the system of functions

zy"(z) = y'(z) log

yi(z) = —% (x >0), yo(z)=—xlogz (z>0)

is a solution of the system of differential equations

) = 2g2a). ypla) = 2Dy

3. Show that y(x) = 2+ ¢v/1 — a2 (z € (—1,1)), where ¢ an ar-
bitrary real parameter, is the general solution of the differential
equation (1 — z%)y/(x) + zy(z) = 2z.

4. Show that y(z) = cjz+cy (z € R), where ¢; and ¢, arbitrary real
parameters, is the general solution of the differential equation

y"(z) =0.
5. Find the coinciding solutions of the two equations:
y'(z) = y*(v) + 2z — a¥,
y'(x) = —y*(z) — y(z) + 2z + 2° + 2.
6. Determine domains in which the given equations have unique
solutions:

(a) ¥'(7) = /1 —y2(2),

gy V@) 1
(b) ¥'()—*x_y(x),

34

7.

10.

11.

12.

1. INTRODUCTION

() ¥'(z) = V/a? —y(z) — .

Sketch the direction field associated with the equations

(a) y'(x) = ™ — 2y(x),
(b) y/'(x) = sin(z + y(z)),
(c) ¥'(z) = y(z) —2® + 22 — 2
using the Maple’s DEplot procedure. (It is contained in the

DEtools package, which can be loaded by entering the command
with(DEtools).)

. Solve the following differential equations with Maple. Try to find

the solutions in their simplest form, and check if Maple finds all
solution.

(a) 3y*(2)y'(x) + 162 = 1229 (),
(x

(b) y'(z) = 2242 (M)

T T

(© /(5) = y(o) = o tan 120

T

. Write the differential equation

3y" (x) + dxy" (x) + siny(z) = f(x)
as a system of first-order differential equations.
Find the general solution of the following equations
(a) y"(z) + 4y'(x) + 13y(z) = 2 cos? 3,
(b) ¥'(2) = 2z —y(x),
(c) ¥'(x) = wy?(x).

Solve the following initial value problems with Maple and check
the results

(a) y'(z) =y(x), y(0)=1,

(b) () = 2z —y(z), y(0)=1,

(c) ¥'(x) = xy*(x), y(0)=1.
Define

a := 7,555,555, 555,555,555 — 7,553, 555, 555, 555, 554.

Compute this difference with Maple in integer and different digits
floating-point arithmetic and compare the results.

13.

14.

15.

16.

17.

18.

1.4, EXERCISES 35
Define
a(n) := 10" — (10" — 1),

with n =1,2,..., and use Maple to evaluate a(n) as a floating-
point variable. Explain what is happening when the computed
solution differs from 1.

(a) Find a root of the equation az?+bx+c = 0 using the formula

B —b + Vb? — 4ac

2a

with values b = 1 and @ = ¢ = 107". Assess the accuracy of
the results by seeing how closely the equation is satisfied for
n = 2,...,10. Show that going to high precision does not count.
(b) Think of a clever way to avoid subtractive cancellation, and
improve the results.

Use Taylor expansion to avoid subtractive cancellation in the
expression e — e~ ", when x is close to 0.

Derive absolute and relative error bounds for arithmetic opera-
tions on inexact data.

Assume that the real valued function f is continuously differen-
tiable in a neighborhood of the point x := (z1,...,2,) € R".

Let zf be an approximation of z; (i = 1,...,n) and z* :=
(x3,...,2%). Denote by d(xf) an absolute error bound for the
error of xf (i =1,...,n). Explain why the number

of "

2 (a)] r2)

may be considered as an upper bound for the absolute error
|f(z) = f(z)].

Derive error-bound formulas and absolute error bounds for the
following expressions:

(a)w+y+fv2—wy+y2,

(b) VT 7

(c) 2cosx - cosy +sinx - siny,
) —

d s1nx 2,
cosy

(e) (& — y)e v,

36

19.

20.

1. INTRODUCTION

The following (decimal) numbers are approximated within a rel-
ative error bound 1%. In each case, give the smallest intervals
that can be assured to contain the exact values.
(a) 111.1,
(b) 0.01111,
(c) 43.1234,
(d) 0.0431234.
The exact value of the number
=1
k2
k=1
is 72/6. Approximate this number by summing for 1 to n, and
alternatively, from n to 1. Let k£ be a floating-point number.
Which direction of summation gives the more accurate answer?

Bibliography

Abel, M.L. and Braselton, J.P., Differential Equations with Maple V. AP
Professional, Boston, 1994.

Birkhoff, G. and Gian-Carlo, Rota, Ordinary Differential Equations. John
Wiley and Sons, Inc., New York, 1989.

Boyce, W.E. and DiPrima R.C., Elementary Differential Equations and
Boundary Value Problems. John Wiley and Sons, Inc., New York, (5th ed.),
1992.

Butcher, J.C. The Numerical Analysis of Ordinary Differential Equations.
John Wiley and Sons, Inc., New York, 1987.

Coddington, E.A. and Levinson, N., Theory of Ordinary Differential Equa-
tions. McGraw-Hill Book Company, Inc., New York, 1955.

Collatz, L., The Numerical Treatment of Differential Equations. Springer-
Verlag, Berlin-Heidelberg-New York, 1966.

Conte, S.D. and de Boor, C., Elementary Numerical Analysis: An Algorith-
mic Aproach. McGraw-Hill Kégakusha, Tokyo, (3rd ed.). 1980.

Dahlquist, G. and Bjork, A., Numerical Methods. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey, 1994.

Eldén, L. and Wittmeyer-Koch, L., Numerical Analysis, An Introduction.
Academic Press, Inc., Boston, 1990.

Gear, C.W., Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1971.

Hairer, E., Ngrsett, S.P. and Wanner, G., Solving Ordinary Differential
Equations I. Nonstiff Problems. Springer Verlag, Berlin, (2nd ed.), 1991.
Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff
Problems and Differential-algebraic Equations. Springer Verlag, Berlin,
1991.

Hall, G. and Watt, J.M. (Eds.), Modern Numerical Methods for Ordinary
Differential Equations. Clarendon Press, Oxford. 1976.

Hamming, R.W., Numerical Methods for Scientists and Engineers. McGraw-
Hill Book Company, Inc., New York, (2nd ed.) 1973.

Hartman, Ph., Ordinary Differential Equations. John Wiley and Sons, Inc.,
New York, 1964.

Hammerlin, G. and Hoffmann, K-H., Numerical Mathematics. Springer-
Verlag, New York Inc., 1991.

Heck, A., Introduction to Maple. Springer-Verlag, New York, 1993.
Henrici, P., Discrete Variable Methods in Ordinary Differential Equations.
John Wiley and Sons, Inc., New York, 1962.

Higham, N. J., Accuracy and Stability of Numrical Algorithms, SIAM,
Philadelphia, 1996.

37

[St]

[SB]

[YS]

BIBLIOGRAPHY

Hildebrand, F.B., Introduction to Numerical Analysis. McGraw-Hill Book
Company, New York, 1974.

Isaacson, E. and Keller, H.B., Analysis of Numerical Methods. John Wiley
and Sons, Inc., New York, 1966.

Iserles, A., A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge Text in Applied Mathematics. Cambridge Univ. Press.,
1996.

Kamke, E., Differentialgleichungen, Lésungsmethoden und Lésungen, Vol.
1. Leipzig, 1959.

Kopchenova, N.V. and Maron, I.A., Computational Mathematics, Worked
Ezamples and Problems with Elements of Theory. Mir Publishers, Moscow,
1975.

Lambert, J.D., Numerical Methods for Ordinary Differential Systems. John
Wiley and Sons, Ltd., Chichester, 1991.

Press, W.H., Teukolsky, S.A., Vatterling, W.T. and Flannery, B.P., Numer-
ical Recipes in C. The Art of Scientific Computing. Second Ed., Cambridge
Univ. Press, 1992.

Ralston, A. and Rabinowitz, P., A First Course in Numerical Analysis.
McGraw-Hill Book Company, New York, 1978.

Schwarz, H.R., Numerical Analysis, A Comprehensive Introduction. John
Wiley and Sons, Ltd., Chichester, 1989.

Shampine, L.F. and Gordon, M.K., Computer Solution of Ordinary Differ-
ential Fquations. W.H. Freeman, San Francisco, 1975.

Stetter, H.J., Analysis of Discretization Methods for Ordinary Differential
Equations. Springer Tracts in Natural Philosophy. Vol. 23, Springer Verlag,
Berlin, 1973.

Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis. Springer
Verlag, Berlin, 1980

Yakowitz, S. and Szidarovszky, F., An Introduction to Numerical Computa-
tions. Macmillan Publ. Comp., New York, 1986.

CHAPTER 2

Single Step Methods

2.1. Basic concepts

We consider the first-order scalar initial value problem

y'(x) = fzy(@), yla)=q, (2.1)
where a and « are prescribed real values. We shall suppose that the
problem (2.1) has a unique solution on the bounded interval I :=
[a,b] C R (see Theorem 1.2). Denote by y(z) (z € I) the exact so-
lution of (2.1).

If we cannot construct an expression in a closed-form for the so-
lution y(x) (x € I), then we can give an approximation of the exact
solution. As we have already mentioned in Section 1.2, there are two
fundamental types of approximate methods—analytic and discrete.

In the next part of this book we study only discrete methods which
are also called numerical methods. These are based on the following
idea: fix a positive integer N and try to determine an approximate
value y; of the exact value y(z) for some discrete abscissae zj in the
interval I, where

To:=a<T) <Tr<- - <xy_p <zxpy:=Db

The points zx (k= 0,1,...,N) are also called mesh points. They are
often equidistant, i.e.

Ty = a+ kh (k=0,1,...,N),

where
- b—a
N
is the step size of the method. Thus, starting with the given initial
values xg, 1o := «, we can successively compute ¥y, 9o, ..., yny which
are the approximations of y(x1), y(z2),...,y(xy).

The discrete methods can be divided into two groups according to
the form of the representation of the solution:

e single step methods determine the approximation y,,; at the ab-
scissa w11 = xp + h solely on the basis of the approximation
point (xy, yx); whereas

37

38 2. SINGLE STEP METHODS

e multistep methods use the information at more than one previous
support abscissae to determine the approximation at the next
point.

In this chapter we investigate the first group of numerical methods
and the second one will be discussed in the next chapter.
In general, any single step method can be written in the form:

To = a, Yo =

Tgy1: =T+ h, h:=(b—a)/N,

Yes1 : = Yp + h®(zp, yp, h)
(k=0,1,...,N —1),

(2.2)

where @ (the increment function) is a real valued function defined on
I x R x Rt. Then ®(xy,yg, h) describes how the new approximate
value yyy1 is computed from (xy,y;) and the step size h. Therefore,
starting with the initial values a and « of the initial value problem
(2.1), one now obtains approximate values y, for the exact quantities
y(xg) (k=0,1,2,...,N).

REMARK. Therefore to define a single step method it is necessary
to prescribe the values g, 49, h and the increment function . Then
yr can be computed recursively. The single step method (2.2) is also
called a difference equation for the unknown values y;. In some cases
(for example if ® is linear) y may be simply expressed explicitly by
k and then we say that we solve the difference equation (see Section
2.8). O

For different choices of the function & different single step methods
may be obtained.

Single step methods (2.2) can be directly generalized to systems
of differential equations and therefore also to higher-order differential
equations. The methods and results for initial value problems for sys-
tems of ordinary differential equations of first-order are essentially in-
dependent of the number of unknown functions. In the following we
therefore limit ourselves for simplicity and clarity to the case of only
one ordinary differential equation of first-order for a single unknown
function.

Before continuing, we would like to introduce the ”"big O” concept,
which will be used in the following chapters. The function f(h) is said
to be O(h?) (read ”big oh of h?”) at h = 0 if there are positive numbers
K and hg such that |f(h)| < KhP for all h with |h| < hg. We usually

2.2. EULER’S METHOD 39

write just

f(h) = O(hP),

with h = 0 understood.
For example sin h is O(h) at h = 0 because |sin h| < |h| for every
number h. From the Taylor’ series expansion we have

1
lcosh — 1] < =h* (]h] < 1),
2

and thus cosh — 1 is O(h?) at h = 0. Similarly, sinh — h is O(h?) at
h = 0. It is customary to express statements such as these in the form

sinh = O(h),
cosh =1+ O(h?),
sinh = h + O(h?).

2.2. Euler’s method

A first numerical method for the solution of the initial value problem
(2.1) is suggested by the following simple observation. Since f(z,y(z))
is just the slope, y'(x), of the desired exact solution of (2.1), one has
for h # 0 approximately (see Figure 2.1)

y(x + h})l — y(x) ~ y'(I) = f(fﬂ, y(ﬁ))

or

y(o +h) = y(x) +hf(z,y(r)).

Figure 2.1. Approximation of the derivative

40 2. SINGLE STEP METHODS

Once a step size h = (b — a) /N has been chosen, starting with the
given initial values xg, yo := y(a) = «a, one thus obtains at equidistant
points

xp = xo + kh (k=0,1,...,N)

approximations y, (k = 0,1,...,N) to the values y(xy) of the exact
solution y(z) (x € I) as follows:

To: = a, Yo 1= «
Tpy1 =Tk + N, h:=(b—a)/N,
Yes1 = Yr + hf Tk, yr)

(k=0,1,...,N—1).

(2.3)

This is the oldest and the simplest method for the numerical solution of
initial value problems. It was proposed by Euler in 1768 and is called
FEuler’s method or the polygon method of FEuler.

Euler’s method has a geometric interpretation. We start at the
point (zg,yo), and approximate the solution curve by the tangent at
the point (xg,yo). We compute the slope y'(x) of the tangent directly
from the differential equation. We continue along this tangent until we
reach x1 = xp+ h. The corresponding y-value is y;. Through the point
(x1,y1), there is a solution curve (which, however, does not correspond
to the given initial value). Similarly, we approximate this curve by a
tangent through the point (z,y;) and continue along this tangent until
we reach s, and so on.

|
| |
} Yo } n
| |

Figure 2.2 Euler’s method

2.2. EULER’S METHOD 41

We want to emphasize that Euler’s method is hardly ever used in
practice, as there are more accurate and more efficient (but, at the
same time, more complicated) methods. Euler’s method is simple, and
that is why we use it for introducing the basic concepts in numerical
solution of initial value problems.

We will illustrate Euler’s method by numerically solving the initial
value problem

y'(v) = —20y%(x), y(0) =L (2.4)

We will also show that how Maple can be used to perform the
calculations encountered when solving a differential equation.

This problem has a closed-form solution, and we will use it to check
the accuracy of the numerical solution.

EXAMPLE 2.1. Use the Maple’s dsolve procedure to find the exact
solution of the initial value problem (2.4).

SoLUTION. We define eql to be the equation and in_cond to be
the initial condition in (2.4).

> eql := diff(y(x), x) = -2*xx*xy(x)"2;

> in_cond := y(0) = 1;

in-cond :=y(0) =1

The dsolve procedure can exactly solve this problem:
> dsolve({eql, in_cond}, y(x));

1
24+ 1

y(z) =

This answer can easily be checked. First, by using the subs procedure
we substitute the obtained function in the equation itself we have
> subs(", ode);
o 1 5 x
or 22 +1 (224 1)2

42 2. SINGLE STEP METHODS

Evaluating the difference of the two sides of this equation we get

> expand(lhs(") - rhs("));

0
Therefore, the function
1
= - €eR
is the exact solution of (2.4). It is easy to prove that this problem has
no other solution on the whole real line. O

EXAMPLE 2.2. Write a short Maple program to compute the ap-
proximate values yi of the solution of (2.4) at the points xp := 0.1k
(k =0,1,...,6) by means of Euler’s method with the step size h =
0.001.

SOLUTION. First we define the right hand side of the given differ-
ential equation, the initial values and the step size

> f = (x,y) —> -2%x*y~2:
> a ::=0: yO :=1: h := 0.001:

A Maple program of the algorithm (2.3) is

> y:=proc (k)
option remember;
if k=0 then yO
else y(k-1)+hx*f (a+(k-1)*h,y(k-1))
fi
end:

Note that in defining the recursively defined function y, we take advan-
tage of the option remember. This instructs Maple to remember the
values of y computed, and thus, when computing y(n), Maple need
not recompute y(n-1).

We obtain the approximate values at the prescribed points in the
following way:

> for k from 0 to 6 do y(100%k) od;

1
9901957693
9617138409
9176551110
.8623085107
8002271764
7354898746

2.2. EULER’S METHOD 43

In this case Maple used 10 digits in floating-point arithmetic, so we
had the result with round-off errors. The precision of the floating-
point arithmetic can be defined by setting different values to the Maple
variable Digits. If we want to obtain more accuracy we have to set
this variable to a higher value at the beginning.

We remark that we can obtain results without round-off errors if
we give h=1/1000 instead of h=0.001 since Maple will then use exact
arithmetic. 0J

The above program may be modified to obtain a more complete and
convenient procedure. Fortunately this is unnecessary because Maple
contains such a procedure. Using Maple help

> ?dsolvel[classicall;

we can see that the program can solve a problem by means of Euler’s
method if we invoke the dsolve function with the options

type=numeric and method=classical[foreuler]

In this function the step size may be modified.
Let us consider how EXAMPLE 2.2 may be solved using the Euler’s
method of Maple.

ExXAMPLE 2.3. Compute the approximate values yi of the solution
of (2.4) at the points xy, := 0.1k (k =0,1,...,6) by means of the built-
in Euler’s method of Maple with the step sizes h = 0.1, 0.01, 0.001.
Give also the errors

Ey ::y(xk)_yk (k:071176)
SOLUTION. First we define the initial value problem (2.4):
> InValPr := {diff(y(x), x)=-2*x*y(x)"2, y(0)=1}:

Now, we invoke the dsolve function with the above option and with
the step size 0.001, say.

> es0 := dsolve(InValPr, y(x), type=numeric,
method=classical[foreuler], stepsize=0.001);

es0 := proc(z_classical) ... end

The output shows that at this point the program only remembers the
name of the procedure which will be executed if we invoke our function
es0. The approximate value for example at the mesh point x = 0.4
may be obtained in this manner:

44 2. SINGLE STEP METHODS

> es0(0.4);

[z = 4, y(z) = .8623085097414066]

Note the form in which Maple gives the result. The value of the ap-
proximation may be selected from this answer in the following way:

> rhs(es0(0.4)[2]);

.8623085097414066

In this case the dsolve function used 16 digits in floating-point arith-
metic. There are several functions that make Maple compute in floating-
point arithmetic, the most important being evalf. This procedure ap-
proximates its first argument; the number of digits used is equal to the
value of its second argument. For example

> evalf(", 10);
.8623085097

Our aim is to compute the approximate values at different mesh
points with different step sizes. Thus we define the following Maple
functions:

> x :=k -> kx0.1: # for the mesh points

> esl :=h -> dsolve(InValPr, y(x), type=numeric,
method=classical [foreuler], stepsize=h):

The function es1 has a new variable, the step size. Thus, es1(h) (x)
gives an approximate value of the exact solution of our problem at the
point x using the Euler’s method with the step size h. For example

> es81(0.001) (x(4));

[z = 4, y(z) = .8623085097414066]

Let us collect everything into a new Maple function which has two
arguments. The first argument is the mesh point and the second one
is the step size.

> EulerSol := (x, h) —> rhs(esi(h) (x)[2]):

Thus EulerSol(x, h) gives the same result as es1(h) (x) but in a
different form:

2.2. EULER’S METHOD 45

> EulerSol(x(4), 0.001);

.8623085097414066

We can quickly make several numerical experiments using this func-
tion and not only for problem (2.4). We illustrate these possibilities by
making a table which contains the mesh points, approximate values of
the exact solution and the values obtained by means of Euler’s method
with step sizes h = 0.1,0.01,0.001.

From the previous example we know the exact solution

> ExactSol := x->1/(x"2+1);

EzactSol .= 2 —

2 +1

To create a table we use the array procedure with corresponding head-
ings.

> mm := array(1..8, 1..5):
mm[1,1]:=x(k) ‘: mm[1,2]:=Exact sol.*‘:
mm[1,3]:=° h=0.1 ¢:
mm[1,4]:=¢ h=0.01 ¢: mm[1,5]:=° h=0.001 ¢:
for i from 2 to 8 do
mm[i,1]:=0.1%(i-2):
mm[i,2] :=evalf(ExactSol(x(i-2)),5):
for j from 3 to 5 do
mm[i,j]:=evalf (EulerSol(x(i-2),10"(-j+2)), 5)
od:
od:
> eval(mm);

[z(k) Ezact sol. h=20.1 h = 0.01 h=0.001 |

0 1. 1. 1. 1.

1 99010 1. 99107 99020

2 96154 .98000 196330 96171

3 91743 94158 91969 91766

4 .86207 .88839 .86448 .86231

5 .80000 82525 .80229 .80023
|6 73529 79715 13727 73549 |

46 2. SINGLE STEP METHODS

Since we know the exact solution of (2.4), the accuracy of the nu-
merical method can be checked very easily and quickly using Maple.

> err := (x, h) -> ExactSol(x) - EulerSol(x, h):

Therefore, err(x, h) gives the error at the point x if we use Euler’s
method with step size h. To observe the accuracy more conveniently
we compile a table.

> tt := array(1..8,1..4):
tt[1,1]:=x(k)‘: tt[1,2]:=‘h=0.1¢:
tt[1,3]:=‘h=0.01¢: +tt[1,4]:=‘h=0.001°¢:
for i from 2 to 8 do
tt[i,1]:=0.1%(i-2);
for j from 2 to 4 do
tt[i,jl:=evalf(err(x(i-2),10"(-j+1)),5);
od:
od:
> eval(tt);

o(k) h=0.1 h=0.00 h=0.001
0 0 0 0
1 —.00990 —.00097 —.00010
2 _.01846 —.00176 —.00017
3 —.02415 —.00226 —.00023
4 —.02632 —.00241 —.00024
5 —.02525 —.00229 —.00023
6 —.02186 —.00198 —.00020

e The evaluation of the results

1.) From the above table it can be seen that if the step size is
fixed, the error of the numerical solution will grow as the number of
steps is increasing. There are two main reasons for this phenomena.
The first is the so-called truncation (or discretization) error which is
related to the discretized equation that we solved instead of the exact
equation. The second is the round-off error which is related to the
finite representations of the numbers on the computer.

2.2. EULER’S METHOD 47

2.) Tt appears that with decreasing step size h the accuracy of the
approximate solutions is increasing. This leads to the following issue:
whether any desired degree of accuracy can be achieved for any prob-
lem by picking a small enough hA. This suggests the definition of the
convergence which will be made more precise when specific classes of
methods are discussed. Since as h decreases the number of steps and
hence the amount of calculation increases, we would expect the effect of
round-off errors is to increase because there are more of them. Thus,
in the definition of the convergence, we must require that the com-
putations indicated in the method be performed exactly. In practice,
this means that additional digits are carried in the computations as h
decreases.

In general, we may ask how can we evaluate the error of a numer-
ical method on the whole interval uniformly, if we have in hand the
numerical results only at discrete points? The answer to this question
is not simple. We want to stress that the basic problem of numerical
analysis is the estimation of errors which occur in numerical processes.

3.) To calculate the errors in EXAMPLE 2.3, we had to know the
exact solution at every grid point. But, how can we estimate the error
of an approximate solution if we do not know the exact solution of
the original problem? One possibility is as follows: to compute the
approximate solution twice, first by a given step size and after this,
with a smaller step size for which the set of grid points contains the
grid points of the first calculation. Thus, we may compare the two
computational results in the common grid points: their differences give
us information on the error committed in the calculation.

Every discrete method for the solution of an initial value problem
determines the approximate values y;. of the exact values y(xy) only at
the mesh points 2 (k =0, 1,..., N) of an interval [a, b]. But in practice
we also need to approximate the exact solution at further points of the
interval.

A natural way to treat this problem is the following: try to fit a
smooth curve through the points (z¢, yo), (x1,%1), ..., (zn,yn). There
are more possibilities to do this, for example with polynomials or with
spline functions. These formulas will be not reviewed here.

We only remark that fortunately Maple can help also in this type
of case because it contains a built-in algorithm to fit smooth curves
through discrete points using spline functions. The program automati-
cally calls these algorithms when we invoke the dsolve procedure with
the option numeric=true. To illustrate this let us consider the previous
example. Entering

48 2. SINGLE STEP METHODS

> es81(0.1)(0.235);

[z = 235, y(x) = .9665544000000000]

we see that Maple is able to compute the approximate values not only
at the mesh points. To graph the calculated approximate function we
use the procedure odeplot contained in the plots package. We load
the plots package and then graph the result given in es1(0.1):

> with(plots):
> odeplot(es1(0.1), [x, y(x)], 0..0.6);

0.75

Euler’s method is readily applied to systems of differential equations
as well as to differential equations of high-orders. For illustration we
consider the system of two equations of first-order (see Section 1.1)

vi(x) = fi(z,y1(2), v2(7)),
vs(7) = faw,y1(2), y2())

with the initial conditions
yl(a) = oy, y2(a) = Q.

Here f; and fo are given real valued functions and (a,aq,as) is an
arbitrarily fixed point in the intersection of the domain of definition of
f1 and fs.

Suppose that this problem has a unique solution y; (), y2(x) on the
interval [a,b]. Denote by ygk} and ygk] an approximate value of y; ()
and ys(zy) respectively. If the mesh points x; are equidistant (i.e.

2.2. EULER’S METHOD

49

xr = x9 + hk, h = (b— a)/N), then Euler’s method has the following

form:

o o o] ._
0I=a Y man gy = as
Ths1 i =T +h, h:=(b—a)/N,
k k oy
?JE = y£ Ly hf1($k’y£],y£ })’
it = oMy (g, o,),
(k:o,]_,,N_]‘)

The next example illustrates that Maple can also solve systems of

differential equations by means of Euler’s method.

EXAMPLE 2.4. Using FEuler’s method, find a numerical solution of

the following system

with the initial conditions
yi1(0) =1, 92(0) =1
on the interval [0,0.6] with the step size h = 0.1.

SOLUTION. As in the EXAMPLE 2.3 we have

> 81 :
s2 :

diff (y1(x),x)=x*(y2(x)-y1(x));
diff (y2(x),x)=x*(y2(x)+y1(x));

st = L y1(e) = 2 (v2(0) y1(0)

2 1= 2 y2(a) = 2 (y2(a) +y1(a)

> in_condsl := y1(0) = 1, y2(0) = 1;

in_condsl :=y1(0) =1, y2(0) =1

50 2. SINGLE STEP METHODS

> num_soll := dsolve({sl,s2,in_condsl}, {y1(x),y2(x)},
type=numeric, method=classicall[foreuler],
stepsize=0.1):

> for n from O to 6 do num_s0l11(0.1*n) od;

[t =0, yl(z) =1., y2(z) = 1.]

[z =.1,yl(z) = 1., y2(z) = 1]

[z = .2, yl(z) = 1., y2(x) = 1.020000000000000]

[z = .3, y1(z) = 1.000400000000000, y2(x) = 1.060400000000000]
[z = .4, yl(z) = 1.002200000000000, y2(x) = 1.122224000000000]
[z = .5, y1(z) = 1.007000960000000, y2(x) = 1.207200960000000]
[z = .6, yl(z) = 1.017010960000000, y2(x) = 1.317911056000000]

O

Euler’s method can also be used to solve higher-order differential
equations, as illustrated in the following example.

EXAMPLE 2.5. Use the Fuler’s method of Maple to solve the initial
value problem

" y'(z) _ _ "1 — _
y'(x) + s y(x) =0, y(1) =0.77, (1) =—0.44
on the interval [1,1.5] with the step size h = 0.1.

SOLUTION. Similarly to the previous example we get

> hoeq := (D0O2) (y) (x)+(D) (y) (x)/x+y(x)=0;

hoeg := (D?)(y)(x) +

> in_conds2 := y(1) = 0.77, (D) (y) (1) = -0.44;

in_conds2 :=y(1) = .77, D(y)(1) = —.44

2.3. CONVERGENCE AND CONSISTENCY 51

> num_sol2 := dsolve({hoeq, in_conds2}, y(x),
type=numeric, method=classicall[foreuler],
stepsize=0.1):

> for n from 0 to 5 do num_so0l2(1+0.1%n) od;

[z =1., y(z) = .77, % y(z) = —.44]

0
[z = 1.1, y(z) = .7260000000000000, 7 y(xz) = —.4730000000000000]
x

0
[v = 1.2, y(x) = .6787000000000001, = y(x) = —.5023999999999999)
X

0
[z = 1.3, y(z) = .6284400000000001, b y(z) = —.5285866666666666]
T

0
[z = 1.4, y(x) = .5755813333333335, 7 y(xz) = —.5507701538461538|
x

0
(v =15, y(x) = .5203043179487181, = y(z) = —.568987561904761)
X

O

2.3. Convergence and consistency of single step methods

Numerical results are influenced by many types of errors (see Sec-
tion 1.3), therefore we naturally are concerned with how close we can
make the numerical solution to the exact solution. When we pick a
method it may depend on one or more parameters, for example, the
step size h for Euler’s method. We would like to know how to pick these
parameters to achieve any desired accuracy. It is possible that there
is an error below which is not possible to go. At this point we loosely
define the concept of convergence to mean that any desired degree of
accuracy can be achieved by picking a small enough h. This definition
will be made more precise.

The numerical solutions of initial value problems contain two main
sources of error, truncation and round-off error.

We can ask the following: what is the accumulated error of a
method for a given step size h after one step and after several steps?
Does the numerical solution converge to the exact solution as h — 07
How fast is the convergence of a method? The answers to these ques-
tions are very important because if we do not proceed carefully it may
well happen that the computed approximations have very little to do
with the desired solution functions, or may even be meaningless. In
this section we deal with these problems.

52 2. SINGLE STEP METHODS

e Truncation errors

Now we suppose that the computations indicated in the method be
performed exactly, i.e. round-off errors are not taken into account.

We distinguish between local and global truncation error. First we
give a general definition of the local truncation error which characterizes
the error of a method committed in one step of calculation.

DEFINITION 2.1. The local truncation error at a point is the dif-
ference between the value given by the method and the value of the
solution of the differential equation which passes through the value at
the beginning of the step.

We reformulate it for a single step method.

DEFINITION 2.2. The local truncation error or the local discretiza-
tion error ey atl the point xy 1 is defined by the expression

ekr1 = €(Tpy1, h) =
y(@e1) — ylae) — h@(zp, y(@p), h) =t y(zp+1) — §(Te1)-

Therefore, the quantity e;,; indicates how well the exact solution
y(x) fulfills the formula (2.6).

(2.6)

Y(Tht1)

y(zr)

Figure 2.3. The local truncation error

Sometimes the local truncation error (2.6) is defined by the differ-
ence between the exact value y(x,,1) and the computed approximation
yr+1 after one step, if the exact value y(xy) at the point zy is considered.

When we solve a problem with Euler’s method numerically, at each
step we usually cross over onto another member of the family of so-
lutions, as displayed graphically in Figure 2.1. Thus, in practice, in

2.3. CONVERGENCE AND CONSISTENCY 53

every step of calculation we have to solve a new initial value problem.
The local truncation error in Euler’s method is the deviation after each
step between a solution curve and its tangent. It is easy to estimate
the local truncation error of this method.

EXAMPLE 2.6. Show that if the solution of the initial value problem
(2.1) is twice continuously differentiable, then in Fuler’s method the
local truncation error ey at the mesh point xp,, satisfies the inequality

|ek+1|§0h2 (kzoalaaN_l)a
where C > 0 is a suitable real number, i.e. ey, is O(h?).

SOLUTION. According to the definition (2.6), the local truncation
error of Euler’s method is given by

ert1 = Y(Tri1) — y(zr) — hf(zr, y(o)).

Replacing y (x4 1) by the Taylor’s series expansion with remainder term
at the point x; we get

erar = y(a) + o' @h + L () — by (),

2
where & € (x,zry1) and y'(xr) = f(xg, y(xg)). Therefore the local
truncation error is

" 2
e = 0 < 0 e) = 0002,

2 ro<é<zn

O

After several steps the total error between the computed approxi-
mation and the exact solution is of interest.

DEFINITION 2.3. The global (truncation) error Ey, at the point xy,
15 given by the difference

By, .= y(xk) — Yk (2.7)

This quantity measures the error that accumulated after k steps
(see Figure 2.4).

The global error may be estimated from above by the help of the
local truncation error. Therefore, it plays the central role in the qual-
itative judgement of a single step method. The following theorem for
the general single step method can be proved.

54 2. SINGLE STEP METHODS

Y2
U1
€1 I
| |
% €o I I \ / | | u
ylao) T | S |
: : exact solutions: : y(rN)
Zo T T2 ce IN—-1 TN

Figure 2.4. The global truncation error

THEOREM 2.1. Suppose that the local truncation error satisfies

max |egyi| < ChPH
0<k<N—1

and suppose that the increment function ® satisfies the Lipschitz condi-
tion with respect to its second variable with constant L. Then the global
truncation error En at the fized abscissa xn = xg + Nh is bounded by

C
x| < PP (M = 1), (2.8)
The theorem remains valid if the method is applied with variable

step sizes. In this case h = maxo<i<n h;.

e Round-off errors

In practice, when we apply a numerical method, for example Euler’s
method, round-off errors occur in the calculation because of the finite
digits we used. So, in every step an additional term ry is added to the
Euler formula

Yk+1 = Y + hf (@k, yk) + 75,

where 7, acts in the same way as an additional local truncation error.
It may be proved that the total error is
7|

tp = O(F + h),

where |r| is independent on A if the precision (the number of digits)
is kept fixed in the calculation. Thus, the total error ¢, will initially
decrease as the step size h decreases and the truncation error decreases,

2.3. CONVERGENCE AND CONSISTENCY 55

and then will increase as the round-off error becomes significant. This
effect is illustrated in Figure 2.5.

Error

\\ total error

minimum
error

Figure 2.5. Total error as a function of h.

The situation is similar in the general single step methods. There-
fore, we can conclude that if the step size h decreases we have to in-
crease the decimal digits of precision to avoid the effect of round-off
errors.

e Convergence

From the ExaAMPLE 2.6 it follows that the local truncation error is
O(h?) for Euler’s method. Thus, the inequality (2.8) shows that the
error bound decreases proportionally to the step size h. So, the value
Yn converges to the exact value y(x,) at the fixed abscissa x, as h — 0,
at least if rounding errors do not accour. The convergence is linear,
with respect to the step size h, and we say that Euler’s method is of
order one. This implies the notion of the convergence.

For given x and h such that (z — x¢)/h = n is an integer, we
introduce the following notation for the numerical solution:

yn(z) = yy if & —xy=nh. (2.9)

A method is expected to be "good” in the sense that the numerical
solution yp(z) converges to the exact solution y(z) as h — 0. Further-
more, we expect rapid convergence.

DEFINITION 2.4. A single step method (2.2) is said to be conver-
gent, if, for all initial value problems satisfying the hypotheses stated
in the existence theorem, we have

lim gy, (z) = y(z), € [0,] (2.10)

56 2. SINGLE STEP METHODS

whenever the starting value satisfy
li = .
lim Yy (o)
A method which is not convergent is said to be divergent.

DEFINITION 2.5. The single step method (2.2) is convergent of
order p, if to any problem (2.1) with f sufficiently differentiable, there
exrists a positive hy such that

ly(z) — yn(x)| < ChP for h < hg (2.11)
whenever the starting value satisfy

[y (o) — yo| < Coh? for h < hy.

We say also that the single step method is of order p.
Hence the convergence means that the numerical solution tends to
the exact solution as the grid becomes increasingly fine. Therefore,
convergence is related to the behavior of the solution of the difference
equations.
We note that errors are permitted in the starting value y, since in
practice we cannot represent y(zo) exactly in finite precision.
From the above definition it follows that a single step method is of
order p if and only if its local truncation error e, satisfies
max |ex| = O(h**1)
0<k<N

so that for the global truncation error Ey we have
max |Eyx| = O(hP).
0<k<N

We now turn to the question of what conditions a numerical method
must satisfy if it is to be convergent.

As from the EXAMPLE 2.6 may be shown, for a reasonable single
step method we have to require that the local truncation error tend to
zero as h — 0, which is equivalent to

lim (z,y,h) = f(z,y), forall (z,y). (2.12)
—
This implies the following

DEFINITION 2.6. A single step method (2.2) is called consistent
with the problem (2.1) if (2.12) holds.

In other words, consistency means that the difference equation formally
converges to the differential equation as h — 0.

It can be proved (see e.g. [He] Theorem 2.1) that a single step
method (2.2) is convergent if and only if it is consistent, whenever the
increment function ® is continuous with respect to its variables and

2.4. A FIRST IMPROVEMENT OF EULER’S METHOD 57

satisfies a Lipschitz condition with respect to its second variable. It is
easy to see that the Euler’s method is consistent and so convergent.

2.4. A first improvement of Euler’s method

There are several ways to derive more accurate methods for the
approximate solution of the initial value problem (2.1). In this section
we shall show some of the ideas from which higher-order methods can
be obtained.

e Taylor series method
We derived the Euler’s method from the relation
y(x +h) = y(z) +y'(2)h,

which can be viewed as an approximation of y(x + h) by the first
two terms of the Taylor expansion of the function y about the fixed
point x. It is well known that a more accurate approximation may be
obtained in a small neighborhood of the point x if the function y has
sufficiently many derivatives and we preserve some higher order terms
of the expansion.

More precisely, suppose that the solution y of the initial value prob-
lem (2.1) is (p+1) times continuously differentiable on the interval [a, b]
and consider a mesh point x;. Then by Taylor formula we have

! " (p)
y(wp +h) = y(ay) + 7 (lrf’“)h+ Y (:f’“)iﬂ TR Al p(f”’“)hp + R,
(2.13)
where the remainder term R, has the following form:
(p+1)
= y(pr)gt)th (z, < & < mp+ h). (2.14)

The condition is satisfied with respect to the solution y if the two
variable function f is p times continuously differentiable on the strip
[a,b] x R. In this case we can compute the higher derivatives of the
function y at the point x directly from the given differential equation
y'(x) = flz,y(x)).

In order to perform this first introduce the shorthand notations

0
f:: f(xay)a fx = f(az_,y)a
P f(x,y) _ L 9 f(y) (2.15)

58 2. SINGLE STEP METHODS

etc. all evaluated at the point (xg, y(xy)). By differentiating both sides
of the differential equation y'(z) = f(z,y(x)) in accordance with the
chain rule of elementary calculus, we find the relations

Yy (o) = f = (Dof)(xkay(xk))
y'(zx) = fo + ffy = (Df)(zr, y(2p)),
y" (2) = (foe + 2f faoy + foyy) + (fo + ffy)fy = (DQf)(xk, y(7r))

(2.16)
Therefore from (2.13) we have

Yok +h) =y(o) + Y <D“f><;ck, y(a1))

=1

h'+R,.

If we replace y(x) by the approximate value y; and neglect the re-
mainder term R, then for a fixed positive integer p (> 1) and for
equidistant mesh points we obtain the following p-term Taylor series
method:

Top: = a, Yy : =«
Trpri=ap+h, hi=(b—a)/N,
DO f)(zy,, DP=1 f)(xy,, 217
Porr s =y DIy (DO (2.17)
! .

(k=0,1,...,N —1),

The increment function ® of this method is

ﬂmwhm:§:uwvf?w@m

i=1
From (2.13) and (2.14) it follows that under the supposed condition
the local truncation error of this procedure is

€1 = O(hp+1)

and thus the order of p-term Taylor series method is p.

We remark that the one term Taylor series method is the Euler’s
method.

Taylor series methods have the merit that they are self-starting and
allow easy changes of step size. They have the disadvantage that they
require successive derivatives of the two variable function f to be calcu-
lated. The coefficients (D7 f)(z, yx) may be obtained by successively

Bt

2.4. A FIRST IMPROVEMENT OF EULER’S METHOD 59

differentiation of the given differential equation. Since the resulting
expression becomes complicated, hand computation of these deriva-
tives is tedious. Fortunately Maple can help us because of its symbolic
differentiation facility.

Let us illustrate this by the following example.

ExAMPLE 2.7. Use the three term Taylor series method to obtain
approzimations yi of the initial value problem (2.4) at the points xy :=
0.1k (k=0,1,...,6) using the step size h = 0.01. Give also the errors

Er =y(rk) — Yk (k=0,1,...,6),
where y(x) denotes the exact solution of (2.4).
SOLUTION. From the EXAMPLE 2.1 we know that the function
> ExactSol := x->1/(1+x"2);

EzactSol .=z —

1+ 22

is the unique solution of (2.4) on the whole real line.
We define the functions (D7 f)(z,y) (j =0,1,2,...) — see (2.16) —
in Maple as a three variable function Df (x,y, j) in the following way:

> f 1= (x,y) => -2*x*xy~2;
f:: (.CL', y)—>—2xy2

> tt =
proc(x,y,j)
option remember;
if j=0 then f(x,y)
else subs(diff(y(x),x)=f(x,y), yx)=y,
diff (tt(x,y(x),j-1),x))
fi
end:

> Df := (x,y,j) —-> subs(t=x, s=y, tt(t,s,j)):

60 2. SINGLE STEP METHODS

Let us test this function:

> for j from 0 to 2 do Df(x,y,j) od;
—2zy?
—2y% + 827 y?
249 x — 48 23 ¢*

(We can check the results by using hand calculations.)
We write a Maple program for the algorithm (2.17). First we give
the initial values and the step size

> a :=0: yO :=1: h:=0.01:

Now, we define the two variable function TaSeM in such a way that
TaSeM(k,p) gives the approximate value of the solution of (2.4) at the
point x; = a+ kh by means p-term Taylor series method with the step
size h.

> TaSeM :=
proc(k,p)
option remember;
if k=0 then yo0
else TaSeM(k-1,p) +
sum(’ (subs (x=a+(k-1)*h, y=TaSeM(k-1,p),

Df (x,y,i-1))*h"i)/i!’, ’i’=1..p)
fi
end:
The approximate values at the points 0.1, 0.2, ..., 0.6 can be obtained

in the following way

> for k from 0 to 6 do TaSeM(10xk, 3) od;

1
9900989154
9615383044
9174310208
.8620688206
7999999047
7352940754

2.4. A FIRST IMPROVEMENT OF EULER’S METHOD 61

Since we know the exact solution of (2.4) thus we can calculate the
(total) error of the applied method:

> for k from O to 6 do
ExactSol(a+10*k*h) - TaSeM(10%*k,3) od;

0
9451077
1571107
1719107°
.1449107°
9531077
4221077

This results illustrate that a better approximation can be attained
by means a p-term (p > 1) Taylor series method than by the Euler’s
method (see EXAMPLE 2.3). O

The p-term Taylor series method can be approached in another way.
The algorithm (2.17) gives an approximate value ;1 at the point x5
by the following formula

Yk+1 7= Yk + cgk)h + cék)h2 R cz(,k)h”,

where y; is a given approximate value at the point z; = x 1 —h. Here
the coefficients ¢\ (¢ = 1,2,...,p) may be calculated by successive

differentiation of the given differential equation.
The basic idea of the new approach is to determine the coefficients
) (1 =1,2,...,p) in another way. Let us denote by y(z) the exact

solution of (2.4) and consider the formula

y(@) = y(aw) + 6”@ —m) + &)@ = m)’ + oo+ P —) + T,

where cz(k) (1=1,2,...,p) are unknown numbers. Substitute this into
the differential equation of (2.1) and take x = x; + h. Now use the
fact that the left- and right-hand sides are equal if and only if the
coefficients of the same powers of h are equal. Then comparing the
corresponding coefficients results in a set of nonlinear equation from
which the unknown coefficients cgk) (i=1,2,...,p) can be determined
recursively.

This approach has the disadvantage that the set of recursion for-
mulae must be found for each new differential equation. However, this
task can be done by the computer. Moreover, this method allows us to
get a relatively simple control of step size and to control the number
of terms which must be considered in order to keep the approximation
errors within a prescribed bounds.

62 2. SINGLE STEP METHODS

The dsolve function of Maple contains such a method if we invoke
it with the optional equations

type = numeric and method = taylorseries

This method can be used for solutions with high accuracy. This method
will usually take more time than other methods with low accuracy
results, therefore it is suggested that it is better to use this method
only when a very high degree of accuracy is desired.

EXAMPLE 2.8. Applying the dsolve procedure of Maple with the
option method=taylorseries, find an approrimate value of the solu-
tion of the initial value problem (2.4) and compute the global truncation
error at the point 0.4.

SOLUTION. Let us consider the function

> ns := dsolve({D(y) (x)=-2*x*y(x)"2, y(0)=1}, y(x),
type=numeric, method=taylorseries):

If x is a number then ns(x) gives an approximate value of the solution
of (2.4), for example at 0.4 we have

> ns(0.4);

[z = 4, y(z) = .8620689655297506]

The global truncation error is defined by Ej := y(zx) — yg. The
exact solution of (2.4) is y(z) = 1/(2*+1) (z € R), thus for the global
truncation error Maple gives

> 1/(1+0.472) - rhs(ns(0.4)[2]);

—.125092 1010

e An extrapolation method

The idea of this powerful method is as follows. Suppose that we
have calculated an approximate value ¥, of the exact solution of the
initial value problem (2.1) at the point =y, € [a,b]. We solve (2.1) by
means of Euler’s method with the step size h and obtain the value

Yoor = Uk + hf (i,). (2.18)

2.4. A FIRST IMPROVEMENT OF EULER’S METHOD 63

Then the same problem is solved with the step size h/2. A double step
with the step size h/2 produce the values

h
u =+ > (@),
: (2.19)
h h
2 2 2
o=, + B+ Ba®)).

Therefore, we obtain two approximate values y,&:l and y,(ﬁl at the point

Zry1- Eliminating ¢; from the asymptotic expansions

y;(clle = y(zrs1) + cth + O(h?),

h
vh = y(re) + g+ O(R).
we get

y(wrsr) = 2070, — i), + O(h?), (2.20)

and we can define a new approximate value y;; of the exact solution
at the point x,; by the formula

Yk+1 = 2y1(c2421 - yl(clle' (2.21)

Using (2.18) and (2.19) yx,1 can be written in more convenient form:

h h
Yk+1 = Y + hf(x, + §,yk + §f(xkayk))'

We formulate the result as an algorithm:

To:=a, Yo = qQ,
Tpt1 =+ h, h:=(b—a)/N,
kl L= f(xkayk)a

1 1 2.22
k2 : :f(xk+;h7yk+;hkl)a ()

Yk+1 : = Yi + hks,
(k=0,1,...,N —1).

This procedure is called the modified Euler’s method or the improved
polynomial method. Using the asymptotic expansion (2.20) it may be
proved that this method is of second order.

The geometric interpretation of this method is given in Figure 2.6.
Namely, a simple step requires the evaluation of the function f for
two different pairs of values. The quantity k; is equal to the slope of
the directional field at the point (xy,y). It serves to determine the

64 2. SINGLE STEP METHODS

auxiliary point (zj + h/2, ?J;(j:;) and the corresponding slope k. The
2

approximation yi,; is computed by means of this slope, so that the
change in the directional field is taken into account.

A
~ |
-~ [
-
- |
- |
- |
- |
~
ky —~ /77//‘32 I Yk
—— +1
—r | |
| Y | y(z) |
I Yk | 1 |
| | s |
\ \ \ >
X
T Tpyh Tk+1

Figure 2.6. Modified Euler’s method

Maple’s dsolve function with the option

method = classical[impoly]

allows us to implement the modified Euler’s method. More information
can be obtained by the command

> 7dsolve[classicall
Only the available possibilities will be illustrated.

EXAMPLE 2.9. Solve the initial value problem (2.4) on the interval
[0,1] by the modified Euler’s method of Maple. Choose the step sizes
h =0.1, 0.01. Verify the order of convergence of the method by means
of the computed global truncation errors at the points x := 0.2k (k =
0,1,...,5).

SOLUTION. First we define vv as a function of the step size h so that
vv(h) gives an approximate solution of (2.4) by means of the modified
Euler’s method.

> vv := h->dsolve({D(y) (x)=-2*x*y(x)"2, y(0)=1}, y(x),

type=numeric, output=listprocedure,
method=classical[impoly], stepsize=h):
Now we define the two variable function ModEuM in such a way that

ModEuM(mp, h) gives an approximate value of the solution at the point
mp using step size h:

2.4. A FIRST IMPROVEMENT OF EULER’S METHOD 65
> ModEuM := (mp, h)-> subs(vv(h), y(x)) (mp):

We can quickly compute the numerical values at the mesh points us-
ing different step sizes. For example, if h = 0.1 then at the points
0,0.2,0.4,...,1. we have

> for k from 0 to 5 do ModEuM(k*0.2, 0.1) od;

1.
9611762976119700
.8611044498912499
7341796574958591
.6089524203772536
4996377478773945

For the global truncation error we obtain

> for k from 0 to 5 do
1/((kx0.2)"2+1) - ModEuM(k*0.2, 0.1) od;

0
0003621639
0009645156
.0011144601
0008036772
0003622521

Now we compute only the global truncation errors at the required
mesh points using step size h = 0.01.

> for k from 0 to 5 do
1/((kx0.2)"2+1) - ModEuM(k*0.2, 0.01) od;

0
.34337107°
87766 10°°
.98154107°
.68547107°
29068 10°

66 2. SINGLE STEP METHODS

The obtained results suggest that the order of the modified Euler’s
method is two. O

e The idea of Runge

It was Runge who, in 1895, first pointed out a possibility of evading
successive differentiations and of preserving at the same time the in-
creased accuracy afforded by Taylor series. His idea can be formulated
as follows.

Consider the initial value problem (2.1) and let us start from the
geometrical interpretation of Euler’s method. In Figure 2.1, we see that
the error of this procedure is large due to the fact that we go along the
direction of tangent at the point (zy,yx) for a whole step, while the
solution curve starts to deviate from this direction by a considerable
amount during the step.

We hope that we should be able to make a correction for the bend-
ing of the curve if we make a weighted average of the tangent direction
at the points (7, yx) and (g1, y,(i)l), where y,(i)l denotes the approx-
imate value obtained by means of Euler’s method at the point x.
More generally, we can also average using a smaller step size (say ch,
where 0 < ¢ < 1) to compute the approximate value yx,1 at the point
Zry1- 1f we introduce the parameters by, by and d for the corresponding
weights then we obtain the following class of methods:

To:=a, Yo' '= Q,
Tpy1:=x+h, h:=(b—a)/N,
kl = f(xkayk)a

2.23
ky : = f(xp + ch,yx + dhky), ()

Yk+1 * = Yk + h(blkl + kag),
(k=0,1,...,N —1).
The central principle of the Runge approach is to choose the parameters
b1, be, ¢ and d in such a way that the method (2.23) has as high an order
as possible.
For the solution of this problem we have to consider the local trun-

cation error of the method (2.23) at the point zx 1 = xp + h. It is
defined by

Cr+1 = y(xk + h) - y(xk) - h(blifl + 52/;2% (2-24)
where

kv = f (o, y(w),s kg == f(xp + ch,y(xi) + dhiky)

2.4. A FIRST IMPROVEMENT OF EULER’S METHOD 67

and y(x) (z € I) denotes the exact solution of (2.1).
We expand the function y(x) (r € I) into Taylor series about xj

and the two variable function f about (zy,y(zx)). Using notations
(2.15) we have

i+) = ylo) + o/ @oh + LR 4 o) =
(2.25)
fo+fhy
2

= y(zx) + fh+ + O(h?).

Expanding the function f in a Taylor series about the point (xg, y(xy))
gives

ko = f 4 (cfo +df f,)h + O(h?). (2.26)

Substituting (2.25) and (2.26) into (2.24), we obtain the following ex-
pansion for the local truncation error:

1 1
€pt+1 = (1 - bl - bZ)fh + (5 - bZC)fmh2 + (5 - b2d)ffzh2 + O(hg)
We see that order 2 can be achieved by choosing
1 1
b1+b2:17 b2C:§7 bZdzi

resulting in a family of solutions

1
bl)\, bg A & d % (7)

where A # 0 is a free parameter. A natural question arises: is it possible
to get a method of order 3 or not? However, this is not the case because
it may be shown that the coefficient of h® of the Taylor series for e,
contains a term that is independent of the four parameters. Thus the
mazximal attainable order is 2 for the methods (2.23).

By taking A =1, i.e.

1
[)1:0, b2:1 C:d:§,
we get the modified Euler’s method. For A =1/2, i.e.
1
b1:[)2:§ C:dzl,

we obtain the so called improved Euler method or Heun’s method.

The dsolve function computes an approximate solution of an initial
value problem by means of this method if we invoke it with the following
options

type = numeric and method = classical|heunform]

68 2. SINGLE STEP METHODS

EXAMPLE 2.10. Solve the initial value problem (2.4) on the interval
[0,0.6] by means of the built-in Heun’s method of Maple with the step
size h = 0.1. Print out the computed values at each step, and the error
as calculated with respect to the exact solution.

SOLUTION. Similarly to the previous example we get

> h :=0.1

> ExactSol := x —> 1/(x72+1):

> vv:= dsolve({D(y) (x)=-2*xxy(x) "2, y(0)=1}, y(x),
type=numeric, output=listprocedure,
method=classical[heunform], stepsize=h):

> HeunSol := mp -> subs(vv, y(x)) (mp):

Therefore HeunSol (mp) represents an approximate value of the solution
at the mesh point mp.

Now we define an error function and compile a table which contains
the mesh points, the values of the exact solution, of the Heun’s solution
and of the errors.

> Err := t -> ExactSol(t) - HeunSol(t):

> mm:=array(l..8,1..4):

mm[1,1]:=‘point‘: mm[1,2]:=‘exact sol.‘:
mm[1,3]:=‘Heun sol.‘: mm[1,4]:=‘error‘:

for i from 2 to 8 do
mm[i,1]:=0.1%(i-2):
mm[i,2] :=evalf (ExactSol(0.1%(i-2)),7):
mm[i,3]:=evalf (HeunSol(0.1x(i-2)),7):
mm[i,4] :=evalf(Err(0.1%(i-2)),7):

od:

> eval(mm);

2.4. A FIRST IMPROVEMENT OF EULER’S METHOD 69

point exact sol. Heun sol. error

0 1. 1. 0

1 9900990 .9900000 .0000990

2 9615385 .9613656 .0001729

3 9174312 9172458 .0001854
A4 8620690 .8619543 .0001147

5 .8000000 .8000340 —.0000340
6 7352941 7355270 —.0002329 |

Compare the errors of Heun’s method and those of the Euler’s method
(see EXAMPLE 2.3). O

e An implicit method

Another single step method can be obtained with the aid of a defi-
nite integration of the differential equation y'(z) = f(x,y(z)) over the
interval [xy, £x41]. Thus we obtain the integral equation

k) — ulon) = [" (o)),

Tk

where y(z) is the unknown function. The value of the integral can be
approximated by means of a quadrature formula. For example, using
the simple trapezoidal rule we get

den = v+ S (Pl) + P yen) . (229
If (zk, yx) is known this is an implicit equation for the unknown value
Yr+1. Therefore we call (2.28) an implicit method. Each step requires
the solution of a nonlinear equation. (We remark that in the special
case of a first order linear differential equation, (2.28) is also a linear
equation from which an explicit recursion formula can be obtained.)
For a nonlinear differential equation the implicit equation (2.28) al-
ready has the convenient fixed point form. We can use the Banach fixed
point theorem (see, e.g. [Sc]) which in this case states the following.
If the function f satisfies a Lipschitz condition, where the Lipschitz

70 2. SINGLE STEP METHODS

constant L satisfies (hL/2) < 1, then the sequence of successive ap-
proximation

yl[coj-l = Yk + hf(mka yk)a

n h n
wih = v gl G+ Fae)] (0=1,23,00).

(2.29)

converges to the unique solution of (2.28) which is denoted by yx .
Since the value yj is only an approximation of y(xyy1) we may
restrict the fixed point iteration (2.29) to a single step. Thus, by slightly
changing the notation, we obtain Heun’s method:
P
yl[g+]1 = Yk + hf(mka yk)a ()
h P 2.30
Yk+1 = Yk + §[f($k, Ye + f (@1, y;[cjl)]

In this case the explicit first order Euler’s method is used to determine a
so-called predicted value y,(ci)l, which is subsequently corrected by means
of the implicit method (2.28) to obtain yy1. The explicit method (2.30)
is therefore called a predictor-corrector method. We formulate this as

an algorithm:

To:i=a, Y =q,
Tpy1:=xk+h, h:=(b—a)/N,

ki = f(2k, yr),

ky o = f(ak + b,y + hky), (2.31)

1
Yk1 : = Yr + ;h(kl + ks),
(k=0,1,...,N —1).

In order to determine y;,; the average of the two slope ky and ks of

the direction field are used at the points (x,yx) and (xkﬂ,y,[fjl). It
may be proved that the Heun’s method is of second order.

2.5. Runge—Kutta methods

In the previous section we explained the Runge’s idea to obtain
a numerical solution of initial value problem (2.1). His method was
subsequently improved by K. Heun, in 1900, and W. Kutta, in 1901.

2.5. RUNGE-KUTTA METHODS 71

Kutta’s proposal (somewhat more general than a similar one made
by Heun) consists in considering the following class of single step meth-
ods:

To:=a, Yo:i=«
Tpy1: =+ h, h:=(b—a)/N,

ki := f(zg +crh, ye + hzaljkj)

j=1
s (2.32)
kot = flae+cshoyn +h Y agk))
j=1
S
Yk+1 + = Yk + hz bzkl
j=1
(k=0,1,...,N —1),
where s is a given positive integer and a;;, b;, ¢; (i = 1,2,...,s; j =
1,2,...,s) are undetermined parameters. This procedure is called an
s-stage Runge—Kutta method for the solution of initial value problem

(2.1).
The increment function in this case is given by

d = i bzkl,
=1

where b; (i = 1,2,...,s) are real numbers and the functions k; : I x
RxR—R(i=1,2,...,s) satisfy the following equations

ki(xaya h) = f(ZU + Cihay + Zaijkj(xaya h))

j=1
(i=1,2,...,s)

It is convenient to display the coefficients occurring in (2.32) in the
following form, known as a Butcher array

Ci|air aiz -+ Qg
Co | Q21 Qg2 *+* Q2
Cs | Qg1 Qg2 - Qg

b, by -+ b

72 2. SINGLE STEP METHODS

As we have mentioned in the previous section, the idea behind the
Runge approach is to choose the parameters in such a way that the
method (2.32) has as high an order as possible. This means that we
try to determine the above parameters in such a way that the Taylor
expansion of the local truncation error

e(z, h) :==y(z+h) —y(z) — h®(z,y(z), h)

in powers of h starts with the largest possible power. That is for a
given positive integer s and a fixed point z € [a, b] we must determine
the constants a;;, b;, ¢; (i =1,2,...,s; 7 =1,2,...,s) (which do not
depend on f) and the largest possible positive integer p such that

{%} o v () i Pilq}fgrlngl(x)’ h)] Y (2

and

oPtle(x, h)
o] 70

More detailed calculations show that the p equalities in (2.33) are
equivalent to a system of, in general, nonlinear implicit equations for
the parameters a;j, b;, ¢;. In many cases the number of the equations
obtained is smaller than the number of unknowns. It may be shown
that for each s, there will be a largest value of p for which these equa-
tions are solvable if the following (the row-sum condition) holds:

=Y ay (i=12...5) (2.34)
7=1

which we shall always assume.

We see that the idea behind this approach is simple and natural.
The actual derivation, however, is lengthy, and the corresponding cal-
culations become rapidly more complicated as s is further increased.
For example, if s = 5, Kutta obtains 16 equations in 15 unknowns, and
it appears as yet uncertain whether these equations are dependent.

It may also be proved that the general s-stage Runge-Kutta method
is consistent (it is a necessary condition for the convergence of a nu-
merical method) if and only if

2.5. RUNGE-KUTTA METHODS 73

1=1

which we shall always assume.

If in (2.32) we have that a;; = 0 for j > i (i = 1,2,...,s) then
each of the k; is given explicitly in terms of previously computed k;
(j = 1,2,...,i — 1), and the method is then an ezplicit or classical
Runge—Kutta method. If this is not the case then the method is implicit
and, in general, it is necessary to solve at each step of the computation
an implicit system for the k;. Runge—-Kutta methods first appeared in
1895, and up to the 1960s only explicit methods were considered.

e Special cases

Now, we consider some special cases of explicit Runge—Kutta meth-
ods.

For one-stage rules (s = 1), in view of (2.32) and (2.34), the Runge—
Kutta methods take the form

Yk+1 = Yk + oy f(xg, yr)-

From (2.35) we see that the necessary and sufficient condition for these
methods to be consistent is b = 1. Therefore the consistent one-
stage Runge-Kutta method coincides with Euler’s method which was
examined in Section 2.2. We remark that the order of one-stage Runge—
Kutta method is 1.

As we have seen in the previous section the maximal attainable
order is 2 for the two-stage explicit Runge-Kutta methods and there
exists a singly infinite family of these methods of order 2.

We illustrate these types of methods solving the initial value prob-
lem in (2.1).

EXAMPLE 2.11. Solve the initial value problem (2.4) by means of
the two-stage explicit Runge—Kutta method built-in into Maple. Let the
step size be—for example— h = 0.1.

SoruTIiOoN. Using Maple help

> 7?dsolve[classicall

we can see that the program can solve an initial value problem by
means of the two-stage classical Runge-Kutta method if we invoke the
dsolve procedure with the options

type = numeric and method = classical[rk2]

74 2. SINGLE STEP METHODS

First we define the step size, the exact solution of (2.4) and then
invoke the dsolve procedure with the above options

> h :=0.1:
> ExactSol := x -> 1/(x"2+1):

> vv2 := dsolve({diff(y(x),x)=-2*xx(y(x))"2, y(0)=1},
{y(x)}, type=numeric, output=listprocedure,
method=classical[rk2], stepsize=0.1):

The value of the approximate solution at a mesh point can be obtained
by the following function

> RK2_Sol := mp -> subs(vv2, y(x)) (mp):
For example

> RK2_S01(0.4);

.8619543198099594

We calculate only the errors at the points 0.,0.1,...,0.6.
> RK2_Err := t -> ExactSol(t) - RK2_Sol(t):

> for k from 0 to 6 do RK2_Err(0.1xk) od;

0
0000990099
0001729071
0001853854
0001146457

—.0000340251
—.0002329011

Compare these errors with the errors obtained by Euler’s method in
EXAMPLE 2.3. 0

2.5. RUNGE-KUTTA METHODS 75

By (2.32) and (2.34) the three-stage explicit Runge-Kutta methods
can be written as

To:i=a, YYo=«
Tpy1 :=xk+h, h:=(b—a)/N,

kit = f(or, yr),

ko : = f(xg + heg, yr + heoky), (2.36)

ks : = f(xg + hes, yp + h[(cs — ag2) ki + as2ks])
Yk+1 + = Yk + h(blkl + kaQ + b3k3)
(k=0,1,...,N —1)
or in a Butcher array form
0 0 0 0
Co Co 0 0
c3 | c3g—az az 0

b b b

EXAMPLE 2.12. Derive the three-stage explicit Runge—Kutta meth-
ods.

SOLUTION. In this case we can use Maple to obtain the system of
equations (2.33).

The local truncation error of the method (2.36) at the fixed point
x is defined by

e(x,h) :=y(x+h) —y(x) — h(bi k1 + baka + b3ks), (2.37)

where
ki:= f(z,y(x)), ko:= f(x+ hea,y(x) + heoky),

ks == f(x + hes, y(x) + h(cs — azo)kr + asaka)) (2.38)

and y(x) (z € [a,b]) denotes the exact solution of (2.1).

Our aim is to give the Taylor’s series expansion of e(z, h) as a func-
tion of A about the point h = 0. To do this we use the Maple’s taylor
procedure, which gives the Taylor’s series expansion of a function, with
respect to its variable, about a given point, up to an also a given order.
Then the convert function with the option polynom may be used to
convert the series expansion to a polynomial.

Consider y(z+h)—y(x) as a function of h (x is a fixed point). Then
the third-degree Taylor’s polynomial of this function about A = 0 can
be obtained in the following way:

> tay_pol_3 :=
convert (taylor (y(x+h)-y(x), h=0, 4), polynom);

76 2. SINGLE STEP METHODS

tay ol 3 := D(y)() h+ 5 (DP)(u) @) 1 + = (DO) () (2) H*

Since the function y is a solution of (2.1) thus its derivatives satisfy
the relations (2.16). We calculate the derivatives using the following

procedure:

> tt =
proc(x,y,j)
option remember;
if j=0 then f(x,y)
else subs(diff(y(x),x)=f(x,y), y&x)=y,
diff (tt(x,y(x),j-1),x))
fi
end:
Now we define the functions D’ f(z,y) (see (2.16))

> Df := (x, y, j) -> subs(t=x, s=y, tt(t,s,j)):
For 7 =0,1,2 we have
> for j from O to 2 do simplify(Df(x, y, j)) od;
f(z, y)
Di(f)(=, y) + Da(f)(x, y) f(=, y)
Dy ()@, y) +2 D12 (f)(x, y) (2, y) + Da2(f) (2, y) £z, y)*+
+D2(f)(@, y) Di(f)(z, y) + Da(f)(z, y)* f(z, y)

Substituting these formulas into the polynomial tay_pol-3 we ob-
tain
> convert (taylor(y(x+h)-y(x), h=0, 4), polynom):
> for j from 1 to 3 do
subs((D@Qj) (y) (x)=Df(x, y, j-1), ") od:

> tay_.1l :=";

tay-1 :=f(x, y) h + % (D1(f)(z, y) + Dao(f)(z, y) f(, y)) B*+
S (D))+ Dua() (e,) 2, 1) + (Do),)+
D2,2(f)(xa y) f(xa y)) f(xa y) + DZ(f)(xa y) (Dl(f)(xa y)+

DZ(f)(xa y) f(xa y)))h’3

2.5. RUNGE-KUTTA METHODS "

We define the shorthand notation introduced in (2.15)

> sn := {f(x,y)=f, D[1]1(f) (x,y)=fx, D[2](f) (x,y)=fy,
D[1,11(f) (x,y)=fxx, D[2,2](f) (x,y)=fyy,
D[1,2] (f) (x,y)=fxy}:

Thus the expression tay_-1 can be written in the following form

> Tywsn:= subs(sn, tay_1);

Tywsn := f h+ % (fr + fy f) B>+
£ oy £+ Gy oy) £+ o G+ Jy D)

Let us consider the remainder term of (2.37). First define the quantities

> kl:=f(x,y):
k2:=f (x+h*c2,y+h*c2xkl) :
k3:=f (x+h*c3,y+h* ((c3-a32)*xk1+a32*k2)) :

The third-degree Taylor’s polynomial of the remainder term of (2.37)
can be calculated in the following way

> tf := convert(taylor (h*(blxk1+b2xk2+b3xk3), h=0, 4),
polynom) :

We do not display the output.) Substituting sn into tf we get
(8 g
> Tfwsn := (subs(sn, tf));
Tfwsn == (b1 f + b2 f + b3 f) h+
(b3 (fr c8 + fy fc3) + b2 (fr c2 + fy c2 f)) h*+

1 1
+(b3 (5 fox 8% + fry f 3% + 3 f2e32 fyy + fy? a32 c2 f + fy a32 fr c2)
1 1
+02 (5 frx 2% + fry c22 f + 5 c2? 2 fyy))h?

We save the Taylor’s expansion of the local truncation error in the new
variable

> 1lte := collect(Tywsn - Tfwsn, h):
Collecting the coefficients of h, h? in the local truncation error we get

> eq_h := factor(coeff(lte, h));

eq-h == —f (=14 b1 + b2 + b3)

78 2. SINGLE STEP METHODS

> eq_h2 := factor(coeff(lte, h, 2));

eq-h2 = —% (—14+2b3¢3+2b2c2)(fr+fyf)
In order to simplify the coefficient of h* we introduce the notations F
and G defined below
> expand(coeff(lte, h, 3)):
> collect (expand(algsubs (fxx+2xfxy*f+fyy*f~2=G,")),G):
> eq_h3:= collect(algsubs (fy*fx+fy~2*xf=F,% "),{F,G});

11 1 1
eq-h3 := (6 - 502 c2? — 503 c8*) G+ (—b3 a32 c2 + 6) F

The obtained results mean that if the six parameters by, by, b3, 1, o, c3,
aso satisfy the system of four nonlinear equations

bl + b2 + bg — 1,
1
bacy + bzcs = 2
1 2.39
bgC% + bgC% = g, ()
1
aszbszcy = 6

then the coefficients of h, h?, h3 in the Taylor series expansion of (2.37)
are zeros, i.e. the order of the corresponding methods is at least 3.
The obvious question arises of whether a method of order 4 is pos-
sible. However, this is not the case because the coefficient of h* of the
Taylor series for e(z, h) contains a term that is independent of the six
parameters. Thus the mazximal attainable order for explicit three-stage
Runge-Kutta methods is 3. O

The above example shows that there exists a doubly infinite family
of explicit three-stage Runge-Kutta methods. A well-known particu-
lar case is the classical three-stage Runge—Kutta method with Butcher
array

N —
N —

wiN

[
[

2.5. RUNGE-KUTTA METHODS 79

It is clear that the order of this method is 3.

In a similar way it is possible to show that there exists a doubly
infinite family of explicit four-stage Runge-Kutta methods of order 4,
none of which has order greater than 4. The best known of these is the
classical four-stage Runge—Kutta method which has Butcher array

0 0 0 0 0
o0 o0 o0
o0 2 0 0
1L 0 0 1 0

505 3 @

Maple also contains the algorithms of the three- and four-stage
classical Runge-Kutta methods. We illustrate these methods on the
following example.

EXAMPLE 2.13. Apply the classical three- and four-stage Runge—
Kutta methods of Maple to the solution of the initial value problem
(2.4), over the interval [0,0.6]. Let the step size be h = 0.1. Compare
the computed values with the values of the exact solution at the mesh
points 0,0.1,...,0.6.

SOLUTION. First we define the step size and the exact solution
> h :=0.1:
> ExactSol := x -> 1/(x"2+1):

To obtain the approximate values of the exact solution by means
of the three-stage classical Runge-Kutta method we have to use the
option method=classical [rk2].

> vv3 := dsolve({diff (y(x),x)=-2*xx(y(x))"2, y(0)=1},
{y(x)}, type=numeric, output=listprocedure,
method=classical[rk3], stepsize=0.1):

> RK3_Sol := mp -> subs(vv3, y(x)) (mp):
The computed errors at the points 0,0.1,...,0.6 are
> RK3_Err := t -> ExactSol(t) - RK3_Sol(t):

80 2. SINGLE STEP METHODS

> for k from 0 to 6 do RK3_Err(0.1xk) od;

0
—.0000329901
—.0000617933
—.0000817271
—.0000904622
—.0000883845
—.0000779894

For the four-stage classical Runge-Kutta method we use the option
method=classical [rk4] and then we have

> vvd := dsolve({diff(y(x),x)=-2*xx(y(x))"2, y(0)=1},
{y(x)}, type=numeric, output=listprocedure,
method=classical[rk4], stepsize=0.1):

> RK4_Sol :

> RK4_Err :

mp -> subs(vv4, y(x)) (mp):
t —-> ExactSol(t) - RK4_Sol(t):
> for k from 0 to 6 do RK4_Err(0.1%k) od;

0
849107
3178107
59521076
7820107
7910107
6173107

These results show that the four-stage Runge-Kutta method is more
accurate than the three-stage Runge-Kutta method. O

We have mentioned before that there exists a single explicit one-
stage Runge-Kutta method of order 1, a singly-infinite family of two-
stage methods of order 2, a doubly-infinite family of three-stage meth-
ods of order 3 and a doubly-infinite family of four-stage methods of
order 4. In 1987, J.C. Butcher showed that there exist no p-stage ex-
plicit Runge—Kutta methods of order p for p > 5. The question of what
order can be achieved by an explicit s-stage method is still an open one.
For example the following is known: Maximal attainable orders of ex-
plicit s = 5,6, 7,8, 9-stage Runge-Kutta method s are p = 4,5,6,6,7
respectively.

2.6. ADVANCED METHODS 81

e Implicit Runge-Kutta methods

The numerical solution of differential equations with certain proper-
ties, for example stiff equations, require special methods. The implicit
Runge-Kutta methods belong to this class, that is characterized by
the fact that the slopes kq, ko, ... are defined by an implicit system of
equations. Heun’s method (2.30) is a special case of an implicit Runge—
Kutta method. Much of our discussion of implicit methods will be left
to Chapter 4, where the problem of stiffness is addressed.

2.6. Advanced methods

Up to this point we have not discussed how the step size h of the
previous methods is to be chosen. Obviously, there is trade-off to be
made: If the step size is too small, then computer time is needlessly
wasted and accumulation of round-off errors can become a hazard. A
large step size invites large truncation error. Therefore the practical
use of a numerical method requires convenient techniques for estimating
errors. These techniques are used in adaptive implementations of the
methods for assessing the appropriateness of the step size being used
in the light of the accuracy requirements being imposed.

We examine principles for step size selection. Techniques for auto-
matic step size selection are based on estimating the local truncation
error at each step and then choosing the step size to keep this estimated
error within some tolerance bound.

e Error control

Ideally a numerical method should use the minimum step size to
ensure that the global error |yx — y(xx)| remains within a specified
tolerance § > 0 for £ = 0,1,..., N. This requirement is inconsistent
with using a constant step size h. Now it is impossible, in general,
to control the global error. However controlling the local truncation
error will, under certain conditions on the initial value problem and
numerical method, serve to control the global truncation error.

There are two commonly used techniques for error control with
single step methods.

A possible procedure for obtaining error estimates was proposed by
Richardson (1927) and called the deferred approach to the limit or the
Richardson extrapolation method. It is an old technique, and one which
is applicable to any numerical method. Richardson’s extrapolation
method consists in repeating the integration from x to x5, but with
two half-size steps instead of a single full-size step. A comparison of the
results obtained furnishes the error estimate. These types of estimates

82 2. SINGLE STEP METHODS

work well in practice, and can be successfully used to monitor the step
size.

To illustrate this technique of controlling the local truncation error
suppose that we have used a Runge-Kutta method of order p to obtain
the numerical solution ., at xp,;. Let us now compute a second
numerical solution at xj,; by applying the same method with step size
h/2; denote the solution so obtained by 1. Then using the asymp-
totic expansion of the local truncation error the following convenient
indicator of local truncation error can be obtained
Yk+1 — Ykt1

€p41 =~ optl — 1

This formula can be used for automatic step size selection. The above
idea has been developed by C.W. Gear, J. Stoer and R. Bulirsch.

An other modern approach is to devise special methods which are
actually two methods built into one. One of the constituent methods
has an order p, say, and the second has an order p + 1. The difference
of the results computed by these methods provides an error estimate
for the order p method.

To illustrate the technique of controlling the local truncation error
consider Euler’s method

Yk+1 = Yk + hf (2, Yk),

which has local truncation error
er+1 = Y(@pr1) — y(@r) — hf(zk, y(x))-
Now the modified Euler’s method (2.22)
. - 1 1 N
Jrt1 = Uk + hf(zp + M Uk + §hf($k,)
has local truncation error é;; of order O(h?). Suppose that

Uk =~ Yy ~ y(zg).

Then
y(karl) — Y1 = y($k+1) — Yk — hf(ﬁvk, yk)
~ y(karl) - y(xk) - hf(xm y(kn))
= Ckt1-
Thus
Cp+1 = ?J(mkﬂ) — Yk+1

= [W(@rs1) = Uer1] = [Pes1 — Yrs1]

= €rp1 + [Trt1 — Ykt1)-

2.6. ADVANCED METHODS 83

But e; 11 is O(h) while € is O(h?), and so the most significant portion
of exy1 must be attributed to [Jri1 — yry1]. Consequently the local
truncation error can be approximated by

k1 A [Jr1 — Yr1] (2.40)
and this formula can be used for the selection of the step size.

Methods of this type have been devised by E. Fehlberg and by a
number of other authors.

e Runge-Kutta—Fehlberg method

Now suppose that two discrete methods are available, one with a
local truncation error ey of order O(h?) and the second has a local
truncation error €;y; of order O(h?*1). By a similar analysis to that
above equation (2.40) will still apply. However since ey, is of order
O(hP) a constant ¢ exists such that

€ri1 ~ chP.
Thus
ch? 2 [Fk+1 — Yrt1].

Now since our intention is to vary the step size to control the local
truncation error consider a stepsize gh where ¢ > 0. Then

ert1(qh) = c(qh)? = ¢ (ch?) = ¢" (Jr+1 — Yr41)-

To bound the truncation error by d, choose ¢ so that

¢" (Ykt1 — Ykt1) = exy1(gh) < 0.

Thus

g < (L]% (2.41)

|?3k+1 - yk+1|

One technique which utilizes (2.41) for error control is the Runge—
Kutta—Fehlberg method (or RKF45 method) which consists of the order

84

2. SINGLE STEP METHODS

four explicit method, in Butcher notation

0

1 1

4 4

3 3 9

8 | 32 32

12 | 1932 7200 7296

13 | 2197 2197 2197

1| 439 _3 3680 845
216 513 4104

1| _ 8 9 _ 3544 1859 11

2 27 2565 4104 40
25 1408 2197 _1
216 2565 4104 5

to advance the solution and the order five explicit method

0

1 1

1 7]

3 3 9

8 | 32 32

12 | 1932 7200 7296

13 | 2197 2197 2197

1| 439 3 3680 845
216 513 4104

1| 8 9 3544 1859 11

2 27 2565 4104 10
16 0 6565 28561 9 2
135 12825 56430 50 55

to estimate the error. This process is known as embedding. In practice
to avoid too many step size changes ¢ is chosen conservatively as

-

J

2|?3k+1 - yk+1|

)" = s

J

1
] 1
|gk+1 - yk+1|

Another possibility, as we have seen earlier, to estimate the error

control is based on step-doubling (i.e. on Richardson extrapolation),
however experience has shown that the above error control is roughly
a factor of two more efficient than one based on step doubling . The

2.6. ADVANCED METHODS 85

RKF45 method seem to be efficient and suitable for tolerances down
to about 1077,

The Maple’s dsolve procedure uses the above Runge-Kutta—Fehl-
berg method if we invoke it with the options

type = numeric and method = rkf45 ‘

(Note the default value of the method option is just rkf45.)
We refer to the on-line help system for immediate help on how to
change the various parameters of this method.

ExXAMPLE 2.14. Compute the approximate value vy, of the solution
of (2.4) at the point xy := 0.4 by means of the built-in Runge—Kutta—
Fehlberg method of Maple. Give also the errors

SOLUTION. First we compute the exact solution of the initial value
problem (2.4):

> eq := diff(y(x), x) = -2*x*y(x)~2;

0
eq i= = y(r) = —2wy(w)”

in-cond :=y(0) =1

> es:=dsolve({eq, in_cond}, y(x));

1
es i =vy(x) = ——
y() 2 +1

> Exact_Sol:= t -> subs(x=t, rhs(e)):
At the point z = 0.4 we have

> Exact_S01(0.4);

8620689655

Obtaining the solution by means of RKF45 method we get

> RKF45_Meth := dsolve({eq,in_cond},y(x),
type=numeric, method=rkf45);

RKF/5_Meth := proc(rkf]5_z) ... end

86 2. SINGLE STEP METHODS

> RKF45_Meth(0.4);
[r = 4, y(x) = .8620689574901867
> RKF45_S0l := x-> rhs(op(2,RKF45_Meth(x)));
RKF/5_Sol :== x — rhs(op(2, RKF45_Meth(x)))

> RKF45_S01(0.4);

.8620689574901867
The errors can be computed in the following way:
> Error := x -> Exact_Sol(x) - RKF45_Sol(x):
> for k from 0 to 6 do Error(0.1%k) od;
0

1581077

1641077

1481077

1271077

105107

.85107°

e Gear method

C.W. Gear developed a polynomial extrapolation method which can
be used for the numerical solution of stiff problems (see Chapter 4).
The Maple’s dsolve procedure uses this method if we invoke it with
the options

type = numeric and method = gear[polyextr|

R. Bulirsch and J. Stoer worked out a rational extrapolation method to
obtain high-accuracy solutions to initial value problems with minimal
computational effort. Maple also contains this method in its options

type = numeric and method = gear[bstoer]

2.7. STABILITY OF SINGLE STEP METHODS 87

e Continuous Runge-Kutta methods: DVERKT78

DVERKTS8 is another well-known high-order continuous Runge—
Kutta method with step size control. This method is based on a 13
stage 7th order formula with 8th order error estimate by Fehlberg. It
has been much used for high precision computation, for example in as-
tronomy and it is preferable for tolerances between approximately 10~7
and 10713

Invoking the dsolve function in Maple with the

type = numeric and method = dverk78

options causes dsolve to find a numerical solution with the seven-eight
order continuous Runge-Kutta method.

2.7. Stability of single step methods

Any numerical method applied to the initial value problem (2.1) will
introduce errors due to discretization and round-off. In most situations
the effect of errors in a numerical method does not significantly affect
the final results. However, in certain cases it can lead to a serious loss
of accuracy. The terms stability and instability are used to describe
this phenomenon. As we have mentioned in Section 1.3 there are two
types of instability — inherent and numerical.

In this section we suppose that the conditions of the Theorem 1.2
are satisfied. From it follows that the initial value problem (2.1) has a
unique solution on the interval [a,b]. We also suppose that the prob-
lem (2.1) is well-conditioned. Roughly speaking this means that small
perturbations in the stated problem will only lead to small changes in
the solutions.

There are several types of numerical stability. Here we consider only
two fundamental types of them: zero-stability and absolute stability.
We shall also investigate the stability properties of some of the single
step methods.

e Zero-stability

We have already seen that for fixed positive values of h, the errors
produced by a convergent method increase as x increase, when applied
to the initial value problem (2.1). Even when the local error at each
step is small, the global error may become large due to accumulation
and amplification of the local errors.

We supposed that our problem (2.1) is well-conditioned. We can
ask what conditions must be imposed on the method in order that
the numerical solution displays a stability property analogous to that

88 2. SINGLE STEP METHODS

displayed by the exact solution. This leads to the concept of zero-
stability, which controls the manner in which error accumulate, but
only in the limit as h — 0.

DEFINITION 2.7. We say that a single step method of class (2.2) is
zero stable if, for sufficiently small stepsizes h, small perturbations in
the starting values produce small perturbations in subsequent values.

Therefore a single step method (2.2) is zero-stable if for each dif-
ferential equation satisfies a Lipschitz condition there exist positive
constants hy and K such that the difference between two different nu-
merical solution y; and yj of (2.1) satisfies

v — vl < Klyo — g

forall0 < h<hgand k=0,1,...,N.

Several comments can be made about the definition.

1. Zero-stability is concerned with what happens in the limit as
h — 0.

2. Well-posed is a property of differential equation, zero-stability is
a property of numerical method, respectively.

3. Zero-stability does not require convergence, although we will
show that the converse is true. The method yx41 = yx, (K =0,1,..., N—
1) is zero-stable, but not convergent for any but the trivial problem
y' =0.

4. Computers can calculate only with finite precision, so that in-
evitably round-off errors arise. When we perform calculations by the
method using two different rounding procedures—for example using
two different computers—this could result two numerical results which
being infinitely far apart, no matter how fine the precision. Thus, if
the method zero-unstable, the sequence y, is essentially uncomputable.

Stability is nearly automatic for single step methods as the following
theorem shows. (In Chapter 3 we shall see that the situation changes
in the case of multistep methods.)

THEOREM 2.2. If ®(x,y, h) satisfies a Lipschitz condition, then the
single step method given by (2.2) is zero-stable.

It can be seen that for all of the methods discussed earlier, ® will
also satisfy a Lipschitz condition for 0 < h < hg, therefore they are
zero-stable.

EXAMPLE 2.15. Show that the modified Fuler’s method (2.22) for
the numerical solution of the initial value problem (2.1) is zero-stable.

2.7. STABILITY OF SINGLE STEP METHODS 89

SOLUTION. The increment function is

Ba,y,h) = flz + 5,9+ 2 1@),

which is continuous in x and y because f is. Since f satisfies a Lipschitz
condition with respect to its second variable (see Theorem 1.2) thus we
have

|(I>(l’,y, h) - @(xvy*a h)| =

h h h h
= 1f @+ S+ 30 @) — [+ 50"+ 3@y <

h h
< Lly + §f(fr,y) -y - §f(fv,y*)| <
h
< Lly —y| +L§|f(fr,y) — fz,y")] <

Lh .
< L(1+ 7)|y—y .

Thus ® satisfies a Lipschitz condition in y for 0 < A < hg and by the
last theorem the modified Euler’s method is zero-stable. O

e Absolute stability (Linear stability theory)

The concept of zero-stability, and also convergence are concerned
with the limiting process as h — 0. In practice, we must compute
with a finite number of steps, i.e. with finite, nonzero step size h. In
particular we want to know if the errors we introduced at each step
(truncation and round-off) have a small or large effect on the answer.
What is needed is a stability theory which applies when A takes a fixed
non-zero value.

We attempt to define absolute stability as follows: A method is
absolute stable for a given step size h and a given differential equation
if the change due to a perturbation of size § in one of the mesh value
Yr is no larger than § in all subsequent values y,,, m > n.

But, unfortunately, this definition is strongly dependent on the
problem, so we utilize the idea of a test equation. The simplest such
test equation is the linear scalar differential equation

y'(z) = Ay(x), A eC, (2.42)
with the initial condition y(z9) = yo, which is simple enough to be

analyzed theoretically but still so general that it can present some
difficulty for a numerical method.

90 2. SINGLE STEP METHODS

REMARK. We can draw conclusions about how a method works on
the system dy/dxz = Ay, where A is a constant, diagonalizable matrix,

by checking its behavior on test equations with A\ = an eigenvalue of
A. O

Equation (2.42) has as its solution
y(x) = yo*),

which at x, = x¢ + kh becomes
y(xp) = yoe ™ = yo(eM). (2.43)

A single step method when applied to (2.42) will lead to a first
order difference equation

where R is a function determined by the coefficients in the method. The
function R is called the stability function of the method. For example
in the case of explicit Runge-Kutta methods the stability function R
is a polynomial and for implicit Runge-Kutta methods R is a rational
function.

It is clear that (2.44) has a solution of the form

Yn = c1(R(AR))™, (2.45)

where ¢; is a constant to be determined from the initial condition.

Let us first consider the simpler case of a real A\. For A > 0 we
have Ah > 0 and R(Ah) > 1. This means that the approximations,
Yk, are computed qualitatively in a correct way. The process of natural
and applied sciences that are described by differential equations usually
contain exponentially decreasing components. This is the case for A <
0. Now vy, decreases like the exact solution y(xy) if and only if the
condition |R(Ah)| < 1 is satisfied.

If R(Ah) is a polynomial in Ah, this condition cannot be satisfied
for all negative values of Ah. Systems of differential equations often
have solutions consisting of components that decay exponentially but
in an oscillating way. Such components correspond to complex values
A. Now the solution y(z) is complex, and again we have the equation
y(zry1) = eMy(x;). The complex multiplier e’ has, in the only case
of real interest Re(A\) < 0, a modulus less than one. The necessary and
sufficient condition for the numerical approximations ¥, to decrease in
absolute value like y(xy) is therefore given by |R(Ah)| < 1. This gives
a motivation for the next definition

DEFINITION 2.8. A single step method (2.2) is said to be absolutely
stable for given Ah, if for that \h, |R(Ah)| < 1, when the method is

2.7. STABILITY OF SINGLE STEP METHODS 91

applied for the test initial value problem (2.42), and to be absolutely
unstable for that A\h otherwise. The set

B:={2e€C:|R(z)| <1}

15 called the region of absolute stability. The intersection of B with
the real azis is called the interval of absolute stability.

Consequently, the step size h > 0 must be chosen in such a way that
for Re()\) < 0 we have Ah € B. In the case of systems of differential
equations the step size h must be chosen in such a way that for all
decay constants \; with Re();) < 0 the conditions \;h € B are all
simultaneous satisfied. If the condition Ah € B is violated the method
produces meaningless results, that is the method is unstable.

EXAMPLE 2.16. Find and sketch the region of absolute stability for
a) Euler’s method,
b) trapezoidal method (2.30).

SOLUTION. (a) If Euler’s method is used for the test equation (2.42),
we get

Yet1 = Yr + DAy, = (1 + Ah)ye =2 R(AR)yy.
Thus the stability function of Euler’s method has the form
R(z) =1+ 2.
Consequently, Euler’s method is absolutely stable in the region
11+ 2] <1,

which is a unit circle in the complex z-plane centered at (—1,0).
We can draw the region of absolute stability using Maple. First we
define the stability function R:

> z :=x + Ixy:

> R :

(x, y) —> simplify(evalc(abs(1+z)));
> R(x,y);

V1422 + a2 + 92

Now we use the Maple’s implicitplot procedure—which is in the plots
package to draw the region of absolute stability:

> with(plots):

> implicitplot(R(x,y)=1, x=-3..1, y=-2..2,
filled=true, scaling=CONSTRAINED) ;

92 2. SINGLE STEP METHODS

(b) The trapezoidal method (2.30) applied to the test equation
(2.42) leads us to the explicit computational scheme

h
Ykl = Yk + 5()\?/1@ + AYkt1)-

Thus
1+ $Ah
= ——=—yr =: R(A\h)yx.
Yk+1 1_ %)\hyk (AR)ys
The stability function of trapezoidal method is
14z
2

We draw the region of absolute stability as below

R(z)

> z :=x + Ixy:
> R := (x, y) -> simplify(evalc(abs(1+z+z~2/2))):
> R(x,y);

1
5\/4+8x—|—8x2+4x3+4xy2+x4+2x2y2—|—y4

> with(plots):

> implicitplot(R(x,y)=1, x=-3..1, y=-2..2,
filled=true, scaling=CONSTRAINED) ;

2.7. STABILITY OF SINGLE STEP METHODS 93

Experiments with different regions of the plot suggests that the region
of absolute stability of the trapezoidal method is the open left half
complex plane. It is easy to prove that

|R(z)] <1 iff Re(z) <0.

Thus for the trapezoidal method there is no bound on the step size
which has to be taken into account in order to obtain a stable integra-
tion. The problem of the choice of h will be treated in connection with
systems of stiff differential equations. O

EXAMPLE 2.17. Find and sketch the absolute stability region for
the following second-order Runge—Kutta method:

1
Yk+1 = Yk T §(k1 + k2), (2.46)

where

kl = f(mknyk:))
kz = f(.’lfk; + h,, Yn + hkl)

SOLUTION. The right-hand side of the equation (2.42) is f(z,y) =
Ay. Applying the above method for (2.42) we have

h A2h?
Yk+1 :yk+§()\yk+)\(yk+)\hyk)) =1+ X+ 5) Yk

Thus the stability function of (2.46) has the form

22
R(Z):1+Z+E

94 2. SINGLE STEP METHODS

and the region of absolute stability of the method (2.46) is given by
2
B={zeC: ‘1+z+5‘ <1}
which is shown below:

> z :=x + Ixy:

> R :

(x, y) -> simplify(evalc(abs(1+z+z"2/2))):

> R(x,y);

1
5\/4+8:E+8x2+4x3+4xy2+x4+2x2y2+y4

> with(plots):

> implicitplot(R(x,y)=1, x=-3..1, y=-2..2,
filled=true, scaling=CONSTRAINED);

2.8. Exercises

1. Use the Taylor’s series expansion to find the order p in O(h?) at
h = 0 for the function " — cos h.
2. Give the solution of the following difference equation

Yo:=1, ypy1 =3y (k=0,1,...).

10.

2.8. EXERCISES 95

Show that the solution of the difference equation yo = 0, y; =
L, Y1 =ur+yr— (k=0,1,...)1s

ykzqﬁg((l#;vg)k——(l_évg)k) (k=0,1,2,...).

Try to solve the above difference equation using Maple.

. Obtain the local truncation error for

(a) Heun’s method,
(b) the modified Euler’s method.

. Examine the consistency of the methods of Q4.

. Determine an upper bound for the global truncation error of

Euler’s method in solving the initial value problem

y() = ~1000y(x), y(0) = 1.

. Use the second order Taylor series method to find a numerical

solution of the differential equation
y'(z) =1+ zsinzy(x), y(0)=0, 0<z<1

using a stepsize h = 0.1.

. Use the fourth order Taylor series method to find a numerical

solution of the differential equation
y'(2) =—yl@)+o+1, y0)=2, 0<r<2

using a stepsize h = 0.2.

. By choosing a suitable value for A in (2.27) obtain the method

h 2 2
Yer1 = Yk + [f(fﬂk, Yi) + 3f (ox + gh, Y + ;f(fka yk))]

and the mid-point method
1 1
i1 = Y + hf (zr + ;h, Yr + ;hf(xk, Ur))-
Use the methods of Q9 together with the modified Euler’s method

Ye+1 = Yr + g [f(xk, Yk) + f(aﬁk + h, yr + hf (2, yk))]

to find a numerical solution of
Y (7) = —y(x) + 2% + 1, y(0)=1, 0<z<1

using a stepsize h = 0.1. Which method is most accurate?

96

11.

12.

13.

14.

15.

2. SINGLE STEP METHODS

Explain why all the above methods would give the same solution
for the differential equation

y'(z) =—y@)+x+1, y(0)=1
Use Maple’s dsolve procedure to find the exact solution of the
following initial value problem

y(e)=z+ay(x), y0)=1
Solve this problem also by means of a) Euler’s method, b) four-
stage Runge-Kutta method, ¢) Heun’s method, d) RKF45
method.
Experiment with different step sizes h. Compare the results with
the exact solution. Compare also the answers obtained by the
above methods.

Write Maple programs to solve the system of ordinary differential
equations

Y'(2) =f(z,y(x)), y(@0)=1yo
by a) Huen’s method and b) the classical 4th order Runge-Kutta
method. Test your programs on the systems

i) Y1 () = yi(z) — y1(2)y2(), y1(0) = 0.5,

iz
ys(x) = —y2(2) + y1(2)y2(z), y2(0) = 0.5;
ii) Y1 () = ya(z), y1(0) =0,
Yo(r) = —y1(7) + (1 — yi(2))ya(x), ¥2(0) = 0.5;
where ¢ is a parameter. (Try e = 0.5, 1,5, 10).
i) yi(2) = —(ya(z) + ys3(2)), »1(0) =1,
ya(x) = y1(x) + 0.2y2(2), y2(0) =1
y3(v) = 0.2 = 8ys(x) + yi (v)ys(w), y3(0) = 1.

Examine the zero-stability of the three-stage classical Runge-
Kutta method.

Find and sketch the region of absolute stability for the following
methods

(a) Yre1 = ye +hf(zr, yrs1) (backward Euler’s method),

(b)

h
Y1 = Yr + —

1 f(@r, yi) + 3f (zp + zha Yk + zf(xka Uk))

(c) three-stage classical Runge-Kutta method.

[AB]
[BeCo]
[BG]

[BD]

[Bu]
[CL]
[Co]
[CB]
[DB]
[Dri]
[EW]
[Gel]
[Ge2]

[Ge3]

[Ged]
[H1]

[H2]

[HW]

Bibliography

Abel, M.L. and Braselton, J.P., Differential Equations with Maple V. AP
Professional, Boston, 1994.

Bellmann, R. and Cooke, K.L., Differential-Difference Equations, Academic
Press, 1963.

Birkhoff, G. and Gian-Carlo, Rota, Ordinary Differential Equations. John
Wiley and Sons, Inc., New York, 1989.

Boyce, W.E. and DiPrima R.C., Elementary Differential Equations and
Boundary Value Problems. John Wiley and Sons, Inc., New York, (5th ed.),
1992.

Butcher, J.C. The Numerical Analysis of Ordinary Differential Equations.
John Wiley and Sons, Inc., New York, 1987.

Coddington, E.A. and Levinson, N., Theory of Ordinary Differential Equa-
tions. McGraw-Hill Book Company, Inc., New York, 1955.

Collatz, L., The Numerical Treatment of Differential Equations. Springer-
Verlag, Berlin-Heidelberg-New York, 1966.

Conte, S.D. and de Boor, C., Elementary Numerical Analysis: An Algorith-
mic Aproach. McGraw-Hill Kégakusha, Tokyo, (3rd ed.). 1980.

Dahlquist, G. and Bjork, A., Numerical Methods. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey, 1994.

Driver, R.D., Ordinary and delay differential equations, Applied Math. Sci-
ences 20, Springer Verlag, 1977.

Eldén, L. and Wittmeyer-Koch, L., Numerical Analysis, An Introduction.
Academic Press, Inc., Boston, 1990.

Gear, C.W., Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1971.

Gear, C.W., The automatic integration of ordinary differential equations.
Comm. ACM 14 (Mar. 1971), pp. 176-179.

Gear, C.W., The automatic integration of stiff ordinary differential equa-
tions, Information Processing 68, A.J.H. Morrell, Ed., North Holland, Am-
sterdam, 1969, pp. 187-193.

Gear, C.W., The numerical integration of ordinary differential equations,
Math. Comp. 21, 2 (Apr. 1967), pp. 146-156.

Hairer, E., Ngrsett, S.P. and Wanner, G., Solving Ordinary Differential
Equations I. Nonstiff Problems. Springer Verlag, Berlin, (2nd ed.), 1991.
Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff
Problems and Differential-algebraic Equations. Springer Verlag, Berlin,
1991.

Hall, G. and Watt, J.M. (Eds.), Modern Numerical Methods for Ordinary
Differential Equations. Clarendon Press, Oxford. 1976.

97

[RR]

BIBLIOGRAPHY

Hamming, R.W., Numerical Methods for Scientists and Engineers. McGraw-
Hill Book Company, Inc., New York, (2nd ed.) 1973.

Hartman, Ph., Ordinary Differential Equations. John Wiley and Sons, Inc.,
New York, 1964.

Hammerlin, G. and Hoffmann, K-H., Numerical Mathematics. Springer-
Verlag, New York Inc., 1991.

Heck, A., Introduction to Maple. Springer-Verlag, New York, 1993.
Henrici, P., Discrete Variable Methods in Ordinary Differential Equations.
John Wiley and Sons, Inc., New York, 1962.

Higham, N. J., Accuracy and Stability of Numrical Algorithms, SIAM,
Philadelphia, 1996.

Hildebrand, F.B., Introduction to Numerical Analysis. McGraw-Hill Book
Company, New York, 1974.

Hindmarsh, A.C., LSODE and LSODI, two new initial value ordinary dif-
ferential equation solvers, ACM-SIGNUM Newsletter 15, 1980, pp. 10-11.
Hindmarsh, A.C., GEAR: ordinary differential equation system solver,
UCID-30001, Rev. 2, LLL, Livermore, Calif. 1972.

Hindmarsh, A.C., ODEPACK, a Systemized Collection of ODE Solvers, In:
Scientific Computing, R.S. Stepleman et al. (eds.) North-Holland, Amster-
dam, 1983.

Isaacson, E. and Keller, H.B., Analysis of Numerical Methods. John Wiley
and Sons, Inc., New York, 1966.

Iserles, A., A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge Text in Applied Mathematics. Cambridge Univ. Press.,
1996.

Kamke, E., Differentialgleichungen, Lésungsmethoden und Losungen, Vol.
1. Leipzig, 1959.

Kopchenova, N.V. and Maron, I.A., Computational Mathematics, Worked
Ezamples and Problems with Elements of Theory. Mir Publishers, Moscow,
1975.

Lambert, J.D.; Numerical Methods for Ordinary Differential Systems. John
Wiley and Sons, Ltd., Chichester, 1991.

Nordsieck, A., On numerical integration of ordinary differential equations,
Math. Comp. 16, 1 (Jan. 1962), pp. 22-49.

Press, W.H., Teukolsky, S.A., Vatterling, W.T. and Flannery, B.P., Numer-
ical Recipes in C. The Art of Scientific Computing. Second Ed., Cambridge
Univ. Press, 1992.

Ralston, A. and Rabinowitz, P., A First Course in Numerical Analysis.
McGraw-Hill Book Company, New York, 1978.

Schwarz, H.R., Numerical Analysis, A Comprehensive Introduction. John
Wiley and Sons, Ltd., Chichester, 1989.

Shampine, L.F. and Gordon, M.K., Computer Solution of Ordinary Differ-
ential Equations. W.H. Freeman, San Francisco, 1975.

Stetter, H.J., Analysis of Discretization Methods for Ordinary Differential
Equations. Springer Tracts in Natural Philosophy. Vol. 23, Springer Verlag,
Berlin, 1973.

Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis. Springer
Verlag, Berlin, 1980

BIBLIOGRAPHY 99

[YS] Yakowitz, S. and Szidarovszky, F., An Introduction to Numerical Computa-
tions. Macmillan Publ. Comp., New York, 1986.

CHAPTER 3

Linear Multistep Methods

3.1. Basic concepts

Consider the first-order scalar initial value problem

V() =flzy(@), yla)=a (3.1)

where a and « are given real values and suppose that it has a unique
solution y(z) on the bounded interval I := [a,b] C R.

In this chapter our aim is to determine approximate values y; of
the exact value y(xy) using multistep methods at the equidistant mesh
points of the interval I

Ty = a+ kh (k=0,1,2,...,N),

where h := (b — a)/N is the step size.

As we have seen in Chapter 2 a single step method determines an
approximation of the exact solution of (3.1) at a mesh point solely on
the basis of the approximation at the previous mesh point. In contrast
multistep methods utilize the approximation at more then one previous
mesh points to calculate the approximation at the next point.

Here we study only linear multistep methods (these are also called
m-step linear methods) which have the following general form:

Jj=0

ZajykJrj - hZﬁjf(xk+j7yk+j)7 (k:071127---7N_m)7 (32)
§=0

where m < N is a given positive integer, a; and 3; (j = 0,1,...,m;
oy, 7 0) are given real numbers (the parameters of the method). Thus
the approximate value y,, depends on m previous values yg, Yg1+1,- - -,
Yr+m—1- In order to generate the sequence of approximations (yi, k €
N) it is first necessary to obtain starting values yo, 41, ..,Ym 1. Lhey
may be determined, for example, by a single step method. Using the
shorthand notations

fi=f(ziy) (i=0,1,2,...)
97

98 3. LINEAR MULTISTEP METHODS

the general m-step linear methods can be written in the form

Yo ‘= O, Y1y -3 Ym—1,

D iy =0 Bifuis, (3.3)
=0 =0

(k=0,1,2,...,N — m).

If 3,, = 0 the method is said to be explicit because y;,, can be ex-
pressed explicitly. If 3,, # 0 then the method is implicit and leads to
a nonlinear equation for ¥, .

REMARK. To define a linear multistep method it is necessary to
prescribe the parameters m, h, a;, 8; (= 0,1,...,m) and the starting
values Yo, Y1, - -+, Ym_1. Then y, (k =m, m+1,..., N) can be computed
using (3.3) which is also called a difference equation for the unknown
values y (k=m,m+1,...,N). O]

It is clear that the following single step methods

Yps1 = Y + hf (explicit Eulers’ method)

Yr+1 = Yk + hfrp (implicit Eulers’ method)
h

Ye+r1 = Ui + §(fk + fri1) (trapezoidal method)

are special cases of the class of 1-step linear methods.

Linear multistep methods (3.3) can be directly generalized to sys-
tems of differential equations and therefore also to higher-order differ-
ential equations. The methods and results for initial value problems for
systems of ordinary differential equations of first-order are essentially
independent of the number of unknown functions. In the following we
therefore limit ourselves for simplicity and clarity to the case of only
one ordinary differential equation of first-order for a single unknown
function.

3.2. Polynomial interpolation

To introduce linear multistep methods we need some fundamental
facts from the theory of polynomial interpolation.

Let 1, xa, . . ., 2, denote distinct real numbers (they are called nodal
points) and let yi,ys,...,y, be arbitrary real numbers. The points
(zj,y;) (=1,2,...,n) can be imagined to be data values to be con-

nected by a curve.

3.2. POLYNOMIAL INTERPOLATION 99

It is easy to prove that there exists a uniquely determined interpo-
lation polynomaial
Po_i(2) = ag + ayx + agx® + - 4 ap_ "
of degree at most (n — 1) satisfying the interpolation conditions
P,_1(z;) =y, (1=1,2,...,n).

This polynomial can be written in the Lagrangian form:

Pyi(z) = Zyjlj(w), (3.4)

where
() = (l‘—.CL‘I)...(;U—l‘j,l)(x—ijrl)...(x_xn)
l]() (xj — 1'1) . (.fL'j — l‘jfl)(l'j — xj+1) R (xj _ xn) (35)
(j=1,2,...,n)

are Lagrange’s fundamental polynomials with respect to the nodal points
T1yeweyTp.

Fortunately the Maple’s interp procedure helps us to compute in-
terpolation polynomials.

ExAMPLE 3.1. Using the interp function of Maple find the inter-
polating polynomial of degree < 4 for the data

(—=2,-9), (-1,-1), (0,1), (1,3), (2,11).
Also, check the result.

SOLUTION. First we define the data in Maple

> points := [-2, -1, 0, 1, 2]:
values := [-9, -1, 1, 3, 11]:
points == [—2, —1, 0, 1, 2]
values :=[—-9, —1, 1, 3, 11]

Now we invoke the interp procedure to obtain the required interpola-
tion polynomial:

> 1ip := interp(points, values, x);

ip:=2+zx+1

100 3. LINEAR MULTISTEP METHODS

The value of this expression, for example, at the point x = —2 can be
obtained using the substitution procedure subs

> subs(x=-2, ip);
-9
In order to compute the value of the above polynomial at any point in
a more convenient way we define the following function

> Int_Pol := proc(t)
local z;
subs(z=t, interp(points, values, z));
end:

The asked polynomial is
> Int_Pol(x);

2441

and, for example, at x = —1 we get

> Int_Pol(-1);
-1

The values of the polynomial Int_Pol at the points may be obtained
using the Maple’s map procedure

> points;
map (Int_Pol, points);
[_27 _17 07 17 2]
[-9, —1, 1, 3, 11]

The output shows that the polynomial Int_Pol satisfies the required
interpolation conditions.

Let us remark that the resulting polynomial is only of the degree 3.
O

ExXAMPLE 3.2. Find Lagrange’s fundamental polynomials with re-
spect to the nodal points —2,—1,0,1, 2.

SoLUTION. We define the nodal points in the Maple’s variable
points and take the values as parameters denoted by y(1),...,y(5).

3.2. POLYNOMIAL INTERPOLATION 101

(-2, -1, 0, 1, 21;
[y(1), y@, y@3), y&), y®B)];

> points :

values :
points == [—2, =1, 0, 1, 2]
values := [y(1), y(2), v(3), y(4), y(5)]

Now we construct the interpolation polynomial collecting its terms with
respect to y(1),...,y(5).
> pp := collect(interp(points, values, x),
{y(1), y(@, y@3), y&, y®};

2 1 2 1
+(—§x+éx3+§x2—éx4)y(2)

5 1
+(—Zx2+1+1x4)y(3)

1 1, 1, 1,
P — — 5
Hgrt e g v)0

The Lagrange’s fundamental polynomial with respect to the point x; =
—2 can be obtained using the coeff procedure

> coeff(pp, y(1));
1, 1 1 |

Finally we get

> for i from 1 to 5 do
sprintf (‘1(%f)=°, i), coeff(pp, y(i)) od;

1 1 1 1
I(1)= — — 2 - .3 - =4
(1) o Tt Tttt

2 1 2 1
1(2) = —§x+6x3+§x2—éx4

102 3. LINEAR MULTISTEP METHODS

3.3. Classical linear multistep methods

In this section we introduce the historically oldest variants of the
linear multistep methods.

e Adams—Bashforth methods

In 1883, Adams and Bashforth gave an improvement of the Euler’s
method. Their idea to obtain a numerical solution of initial value
problem (3.1) is based on integration of an interpolating polynomial.
Let us take a fixed number k£ and consider the equation

Thk+1

) =) = [Fle(o)i 3.6)
Tk

which is obtained by integrating the differential equation in (3.1) over

the interval [,z y1]. In general no primitive for the right-hand side

of (3.6) can be found, because y(z) is an unknown function. Therefore

the value of the integral has to be approximated.

Fix the positive integer m and suppose that £ > m. Denote by
P,,_1 k() the uniquely determined polynomial of degree < m—1 for the
following m support points: (xx, f(zk, y(zk))), (Tr_1, f(Tr_1,y(xK_1))),
Tkt 1—my [(@ks1-m> Y(Tkt1-m))). Now the integrand in (3.6) can be
replaced by the interpolating polynomial

Prc1 () =Y F @kt Y(@homi)) (),

7=1
where [;(z) (j = 1,2,...,m) are Lagrange’s fundamental polynomials
with respect to the nodal points xyy 1 s, ..., T, Thus, we obtain the

following approximate formula (see Figure 3.1)

Tr41
Y(rpy1) — y(zg) ~ / P, (t)dt =

Tk

" Th41 (3.7)
=D S (@hmg Y (@roms) / 1;(t)dt.

j=1 o

3.3. CLASSICAL LINEAR MULTISTEP METHODS 103

Observe that the coefficients of f(zg—m+j, ¥(Tk—m+;)) in (3.7) do not
depend on f. The importance of this fact is obvious. Therefore, replac-
ing in the above formula all exact values y(z;) by approximate values
vi, f(xi,y(z;)) by fi := f(zs,y;) and & by an equality sign, we obtain
the m-step Adams—Bashforth method

Yo = Y1, - -3 Ym—1,
Yk+1 = Yk + h (ﬁmlfk—i—l—m + ﬁm2fk:+2—m +e+ ﬁmmfk)) (38)
(k=m-—-1,mm+1,---),

where the coefficients 3,,; (j = 1,2,...,m) of the method are given by

Tk+41
hBy; :/ Li(t)dt
Tk

and they only depend on the mesh points.

These methods have the feature that they are explicit. The reader
may wish to check that the 1-step Adams—Bashforth method is the well
known explicit Fuler’s method.

Tk—2 Tg—1 Tk Lh+1
fr—j = f(xr—jy y(zr—j))
Figure 3.1 Approximation of the integral

In order to be able to use an m-step method (for m > 1), besides
the initial condition yq := «, (m—1) more initial values y1,yo, - - , Ym 1
are necessary. They must be determined by other methods, e.g. with
the aid of a single step method. The Runge—Kutta procedures are quite
suitable and possibly a smaller step size hg < h is adequate.

We recall that (see Section 2.3) the local truncation error of a
method at the point z, is the difference between the true solution

104 3. LINEAR MULTISTEP METHODS

and the solution provided by one step of the method starting from the
exact values, i.e. in the present case

e(wrin, h) = y(wesn) = y(@x) = h Y B f (@kmig Y(Tromis).
j=1

A simple calculation is enough to see that
e(Tr+1,h) = O(A™)

and this means that each type of m-step Adams—Bashforth methods has
the order p = m.

The order can simply be increased whereby the property that each
integration step requires only one function evaluation is maintained.
This minimal amount of effort, explains why Adams—Bashforth meth-
ods are often used.

The next example illustrates how the coefficients of Adams-Bash-
forth methods can be determined.

ExXAMPLE 3.3. Find the coefficients of the m-step Adams—Bash-
forth method for m = 2,3,4,5.

SoLUTION. Consider the case m = 2 and introduce the notation

fk—l = f(@k-1,y(Te-1)), fk = f(zr, y(zr)).
The interpolation polynomial through the points (zp_1, fr—1), (Zk, fx)
can be written in the form

Pl,k (ZL‘) =

T — Tp—1 = r— T =

fe + fr—1-

Tk — Tg—1 Tp—1 — Tk

Thus (3.7) gives

Tt 1. 3.

y(ka) — y(xk) ~ / Pl’k(t)dt = h <—§fk1 + §fk> . (39)
Tk,

If in (3.9) we replace y(z;) by the approximate values y;, f; by f; =

f(zs,y;) and = by an equality sign, then for £ =1,2,--- we obtain

h
Yk+1 = Ui + 5(_fk—1 +3f%),

i.e. ﬁgl = —% and /822 = %

In order to obtain a numerical method for the solution of the initial
value problem (3.1) we have to provide two starting values yo and y;.
Taking yo := « and y; := yo + hfo, where fo := f(a,yo), we get the
two-step Adams—Bashforth method

3.3. CLASSICAL LINEAR MULTISTEP METHODS 105

To:=a, Y:=q,
Tpt1 1=+ h, h:=(b—a)/N,

fO L= f(x()ayﬂ)a

Y1+ =yo + hfo, (3.10)

1 3
Yk41 P = Yr + h(_;fk—l + ;fk),
Jr41 1= f(xkﬂ, yk+1),
(k=1,2,...,N —1).

In order to derive the coefficients in the case of m = 3,4,5 let us
investigate the right-hand side of (3.7) using Maple.

First we define a function which gives the array of the fundamental
points

(Thaims** " The1, Tk)
of the interpolation. (In the following commands x denotes the mesh
point zy.)
> fpoints := proc(m)
local i, vv:
vv:=array(l..m):
for i to m do vv[i]:=x-(m-i)*h od:
eval (vv)
end:

For example if m = 4 we have

> fpoints(4);
[t —3h,x—2h, x — h, x|

Using the notation f (i) for f(zgii, y(2k4i)) we define the array of
the function values in a similar way

> fvalues := proc(m)
local i, vv:
vv:=array(l..m):
for i to m do vv[i]:=f(i-m) od:
eval (vv)
end:

106 3. LINEAR MULTISTEP METHODS

For m = 4 we obtain

> fvalues(4);
[£(=3), £(=2), £(=1), £(0)]

For m = 4 the integral in (3.7) can be computed in the following
way

> 1ip := interp(fpoints(4), fvalues(4), z):
int(ip, z=x..x+h):

simplify(");

21—4 h (—9f(—3) +55£(0) — 59 f(—1) + 37f(—-2))

Now we determine the integral in (3.7) for m = 1,2, 3,4, 5.

> for i to 5 do simplify(

int (interp(fpoints(i) ,,fvalues(i),z) ,z=x..x+h)) od;
f(0) h

%h(?)f(o) — f(~1))
11_2 h(23£(0) — 16 f(—1) + 5£(—2))

21_4 h (=9 (—3) + 55 £(0) — 59f(—1) + 37f(—2))

h

~720 (—2616f(—2) + 2774 f(—1) — 251 f(—4) — 1901 £(0) + 1274 f(-3))

From the results one can see that the coefficients of £(i) do not
depend on x, i.e. on the index k. The importance of this fact is
obvious. In order to use a method of such type we have to store only
those coefficients which are collected in Table 3.1.]

3.3. CLASSICAL LINEAR MULTISTEP METHODS 107

m ﬂml ﬂm2 ﬁm?) ﬁm4 ﬂmf)
1 1
O
2 2
s | 2 16 »
12 12 12
AT A B
24 24 24 24
5 251 1274 2616 2774 1901
720 720 720 720 720

Table 3.1 Coefficients for Adams—Bashforth methods

Maple includes an Adams-Bashforth method procedure as illus-
trated in the following example.

EXAMPLE 3.4. Solve the initial value problem
Y (z) = —2zy%(x), y(0)=1 (3.11)
by means of the built-in Adams—Bashforth method of Maple. Take the

step size h = 0.1, and print the difference between 1y, and the exact
value y(zx) at the mesh points vy, = kh, k =0,1,...,6.

SOLUTION. Invoking the dsolve procedure with the options

type = numeric and method = classical[adambash)]

and using 16-digits floating-point arithmetic we get
> Digits := 16:

> AB_1 := dsolve({diff(y(x),x)=-2*x*(y(x))"2, y(0)=1},
{y(x)}, type=numeric,
method=classical [adambash], stepsize=0.1);

AB_1 := proc(z_classical) ... end
> AB_1(0.4);

[z = 4, y(z) = .8623885930937653)

108 3. LINEAR MULTISTEP METHODS

Now we define the function AB_Sol which gives the value of the approx-
imate solution at an arbitrary mesh point.

> AB_Sol := x -> rhs(op(2, AB_1(x))): AB_S01(0.4);

.8623885930937653
The exact solution of (3.11) is

> es := dsolve({diff (y(x),x)=-2xx*(y(x))"2, y(0)=1},
y(x));
1
es:=y(x) = o]

In order to compute the value of this expression at different points we
need the following function

> Exact_Sol := proc(t)
subs(x=t, rhs(es));
end:

> Exact_Sol(x);

2 +1
> Exact_S01(0.4);

.8620689655172414

Therefore the differences between the approximate and the exact values
at the required mesh points are

> Error := x -> Exact_Sol(x) - AB_Sol(x):
> for k from 0 to 6 do Error(0.1xk) od;

0
10050941 10
.35444935 10
63116676 10
78879904 10
74913027 10
52147567 10

8
8
-8
-8
-8
8

3.3. CLASSICAL LINEAR MULTISTEP METHODS 109
e Adams—Moulton methods

In 1926, Moulton modified the Adams-Bashforth methods as fol-
lows. To obtain a better approximation of the integral in (3.6), the
value f(zxi1,y(xry1)) at the new abscissa x5, is also used in addition
to the values f(z,y(x)) at the abscissae

Thkt1—m> """ s Tk—2, Tk—1, Tk-

As (m + 1) support ordinates are available, we can construct an inter-
polation polynomial P, x(x) of degree < m (see Figure 3.2). Therefore
we get

Th41
y(@ss) — ylae) ~ / Pos(t)dt =

Tk
et (3.12)
= Z f(xk—m+jay($k—m+j))/ l;(t)dt.
i=1 ok

foj = floej,y(@ej))
Figure 3.2 Approximation of the integral
Replacing in (3.12) all exact values y(z;) by approximate values y;,

[z, y(x;)) by fi == f(x;,y;) and = by equality sign, we obtain the
m-step Adams—Moulton method

Yo =0, Y1,Y2y - -+ s Ym—1,
Yesr1 = Yk + DBt fra1-m + -+ Bmsr f (Ths Yry1), (3.13)
(k=m-—-1mm+1,---),

110 3. LINEAR MULTISTEP METHODS

where the coefficients B (7 = 1,2,...,m+1) of the method are given
by

Tr41
hBmi = / 1 (t)dt

Tk
and they only depend on the mesh points.

In order to be able to use an m-step method (for m > 1), besides
the initial condition yq := «, (m—1) more initial values y1, yo, - - , Ym 1
are necessary. They must be determined by other methods, e.g. with
the aid of a single step method. The Runge-Kutta procedures are quite
suitable and possibly a smaller step size hg < h is adequate.

These methods have the feature that they are implicit in the sense
that right side of (3.13) will depend on the unknown y;, ;. In order
to use an implicit method we have to solve a nonlinear equation. We
shall see later how we can do it.

It may be shown that the local truncation error of the method (3.13)
satisfies

e(l‘k-l-la h) = O(hm+2)v

therefore the order of the m-step Adams—Moulton method is p = m+1.

It is interesting to compare a m-step Adams-Bashforth (explicit)
method to the (m — 1)-step Adams—Moulton (implicit) method. Both
methods require m evaluation of f per step and both have the terms
O(h™) in their local truncation error, as we have seen above. In gen-
eral, the local truncation errors are smaller for the Adams-Moulton
methods. This leads to greater stability for the implicit methods and
smaller rounding errors. The price for this higher accuracy is that in
general a nonlinear equation has to be solved at each step.

The next example illustrates how the coefficients of Adams-Bash-
forth methods can be determined.

EXAMPLE 3.5. Compute the coefficients of the m-step Adams—Moul-
ton method for m = 0,1, 2, 3, 4.

SOLUTION. If m = 0 then (3.6) yields

own) — (o) = | " e y(@)de hf (@, y(@es).

Tk

Replacing y(z;) by its approximate value y; and ~ by =, we obtain

Ykt1 = Yk + A S (Thg1, Yogr)

which is the implicit Fuler’s method. } 5
In the case of m =1 we have two points (zx, fi) and (Tg11, fet1),
where we used notation f; := f(z;,y(x;)). It is easy to see that the

3.3. CLASSICAL LINEAR MULTISTEP METHODS 111

minimal degree interpolating polynomial through these points has the
form

r— T =
Jr+1-

T — Tk41 7
Py () = fe +
Tk — Th+1 Tk+1 — Tk

Integrating gives

y(@et1) — y(aw) = /mk+1 f(z,y(x))de ~

Tk

Tk41 h - -
%/ P, y(z)dx = E(fk+fk+1)-

k
This leads to the following numerical method

h
Yer1 = Yr T 5 (f (i, ye) + f(@hg1, Yrs1)) - (3.14)

This is the well-known trapezoidal method which is also an implicit
procedure.

Now, suppose that m is an arbitrary nonnegative integer and con-
sider again the general approximate formula

/mk+1 flz,y(x))de =~ /mk+1 P i(x)d.

Tk Tk

The integral on the right-hand side can be computed using Maple.

> fpoints := proc(m)
local i, vv:
vv:=array(l..m+1):
for i to m+1 do vv[i]:=x-(m-i)*h od:
eval (vv)
end:

> fpoints(4);
[t —3h,x—2h, x — h, z, © + h]

> fvalues := proc(m)
local i, vv:
vv:=array(l..m+1):
for i to m+1 do vv[i]:=f(i-m) od:
eval (vv)
end:

112 3. LINEAR MULTISTEP METHODS

> fvalues(4);
[£(=3), f(=2), f(=1), £(0), £(1)]

> for i from 0 to 4 do simplify(
int (interp(fpoints(i),fvalues(i),z),z=x..x+h)) od;

f(1) h
%h (F(1) + £(0))
_1_12 h(=51£(1) — 8£(0) + f(—1))
2_14 h(f(=2) +19£(0) + 9£(1) — 5£(—1))

(251 6(1) — 2645(—1) + 646 £(0) — 19£(—3) + 106 £(—2))

720
We collect the coefficients in Table 3.2. O
m ﬂml ﬁmZ ﬁm?) ﬂmél ﬂm5
0 1
1
1 il il
2 2
1
5o |1 8 5
12 12 12
s | L 2 B9
24 24 24 24
4 19 106 264 646 251
720 720 720 720 720

Table 3.2 Coefficients for Adams—Moulton methods

e Predictor-corrector methods

As we have mentioned above, in order to use an implicit method
we have to solve a nonlinear equation of the form

r = F(x), (3.15)

3.3. CLASSICAL LINEAR MULTISTEP METHODS 113

where F'is a real valued function of one real variable. An approximate
solution of (3.15) may be found by means of fized point iteration, i.e.
we take some initial value 2%, insert it into the right-hand side of (3.15)
to get an updated value of the solution, insert this updated value back
into the right-hand side, and continue iterating

g = Flhy (i=0,1,2,...).
EXAMPLE 3.6. Use the fixed point iteration to find an approxrimate

solution of the real root of the equation x = e~*. Perform the compu-
tation using Maple.

SOLUTION. It is easy to see that our equation has exactly one real
root.

> plot({x, exp(-x)}, x=-1..4, -1..3);

Using the graph we choose the following initial value

> x0 := 0.5:

The sequence of iteration can be defined as follows
> ItSeq := proc(i)
option remember:

if i=0 then xO0
else exp(-ItSeq(i-1))
fi
end:

Now, we give the results for 7 = 0, 10, 20, ..., 60.

114 3. LINEAR MULTISTEP METHODS

> for i from 0 to 6 do ItSeq(10*i) od;

D
.5669072129
5671424776
5671432876
5671432904
5671432904
5671432904

It can be shown that this method converges to the unique root. O

Let us consider the implicit trapezoidal method

h
Ykt1 = yk'+'§(f($k,yk)*‘f(xk+1,yk+1)) (3.16)

for the solution of the initial value problem (3.1). Suppose that we
know the approximate values g, y1,...,yr. The next approximation
Yr+1 can be computed from the implicit equation (3.16). We normally
do this by the fixed point iteration

[0]

yk;+17
vt = v+ 5P) + F@ens i), (3.17)
(i=0,1,2,...).

It can be shown that the sequence will converge to the unique solution
of (3.16) provided that f satisfies the Lipschitz condition and h is
small enough. Although (3.17) will converge for arbitrary y,[cojrl, each
iteration calls for one evaluation of the function f, and computation can
obviously be minimised if we can provide as good a guess as possible

for y,[COJ]rl. This is conveniently done by using a separate explicit method

to provide the initial guess, ylgojrl. We call this explicit method the
predictor and the implicit method (3.16) the corrector; the two together
comprise a predictor-corrector pair.

Let the predictor be the two-step Adams—Bashforth method

Ykt1 ==yk'+'g(3f($k,yk)'—.f(xk—l,yk—l))- (3.18)

There are various ways, or modes, in which the pair (3.18), (3.16) can
be implemented.

Firstly, we could use the predictor to give the first guess y,[cojrl, then
allow the iteration (3.17) to proceed until we achieve convergence. This

is called the mode of correcting to convergence. This method is rarely

3.3. CLASSICAL LINEAR MULTISTEP METHODS 115

used since the inherent accuracy of the implicit formula does not war-
rant more than a couple of iterations.

A much more acceptable procedure is to fix in advance just how
many iterations of the corrector are to be permitted at each step. In
practice, only a fixed number, say M, of iterations are carried out.
Normally this number is small, usually 1 or 2. A useful mnemonic for
describing modes of this sort can be constructed by using P and C to
indicate one application of the predictor or the corrector respectively,
and E to indicate one evaluation of the function f.

Suppose we apply the predictor to evaluate y,[cojrl, evaluate fﬂl =

f(:z:kﬂ,y,[coll), and then apply (3.16) just once to obtain y,[clJ]rl. The
mode is then described as PEC. If we call the iteration a second

time to obtain y,[fjrl, which obviously involves the further evaluation

f,wrl = f(:z:kﬂ,y,[ﬂrl), then the mode is described as P(EC)2. There
is one further decision we have to make. At the end of P(EC)? step
we have a value y,[i]rl for yr,1 and a value f,ﬂl = f(xkﬂ,y,[il). We
may choose to update the value of f by making a further evaluation
f,ﬂl = f(@ks1, y,[fil); the mode would then be described as P(EC)?E.
There is some evidence that final E is superior, so the strategy usually
recommended is either PECE or P(EC)?E.

By varying the predictor and the corrector different predictor-correc-
tor methods can be derived. Almost all modern predictor-corrector
codes for the solutions of initial value problems use Adams-Bashforth
methods as predictors and Adams-Moulton methods as correctors.
Such methods are consequently sometimes called Adams—Bashforth—
Moulton methods.

In our case the algorithms of the corresponding Adams-Bashforth—
Moulton methods in PEC mode and in PECE mode can be formulated
as follows

Ty @ = a, Yo ‘= Q,
xk+1::xk+k; h:(b_a’)/N’
Y1 - = "Yo + hf(x()a yO)
h
yl =yl S8 (@, o) = Fler, g), (3.19)
FE flgﬂl L= f(xk+17 yl[c(]«]kl)a

1 1 h 0 0
C: oy = () + i)

116 3. LINEAR MULTISTEP METHODS

To = a, Yo ‘= Q,
Tpy1 : = T+ K, h:=(b—a)/N,
Y1 = yo + hf(zo, y0),
h
yl[coJ]A - = ?JIEH + ;(3f($k, y,&”) — fzp-, y,Elll),
0 0
F = Flaruh),
1 1 h 1 0
vl o= v+ () + 1),
E: fﬂl = f(Tpyr, y;[clJ]rl)-

ExXAMPLE 3.7. Compare the PECE and the PEC methods abowve,
used to find approximations to y(0.1k) (k = 0,1,---,6) for the initial
value problem

(3.20)

Q &m 9

y'(@) = —2zy’(x), y(0)=1 (3.21)

using a step size h = 0.01.

SOLUTION. First we define the parameters and the exact solution
of the initial value problem (3.21)

> a :=0: y0o:=1: h :=0.01:
> f

(x,y) -> -2*xx*xy(x)"2;
fo=(z,y) = —2zy(x)’

> ExactSol := x ->1/(x"2+1);

EzactSol .=z —

2 +1
The PECE method (3.20) can be coded in Maple in the following way
> PECE :=
proc (k)

local ykO, fkO;
option remember;
if k=0 then yO0;
elif k=1 then yO+hx*f(a,y0)
else ykO := PECE(k-1)+
0.5xh* (3*f (a+(k-1) *h ,PECE(k-1)) -
f (a+(k-2) *h ,PECE (k-2))) :

3.3. CLASSICAL LINEAR MULTISTEP METHODS 117

fk0 := f(atkxh,ykO0):
PECE (k-1)+0.5%h* (f (a+ (k-1) *h ,PECE (k-1)) +fk0)
fi
end:

The results follow

> for i from O to 6 do PECE(10%i) od;

1
9901980130
9616344576
9175221568
8621530233
8000756972
7353606287

> for i from 0 to 6 do ExactSol(0.1%i)-PECE(10%*i) od;

0
—.0000990031
—.0000959961
—.0000909641
—.0000840578
—.0000756972
—.0000665111

Now we give a code of the PEC algorithm (3.19)
> PEC :=
proc (k)
local ykO, yi;
option remember;
if k=0 then f£(0) := f(a,y0): yO0;
elif k=1 then y1:=y0+hxff(0):
ff(1):=f(a+h,y1): yil
else yk0:=PEC(k-1)+0.5xh* (3*ff (k-1)-ff (k-2)):
ff (k) :=f (a+k*h,ykO0) ;

PEC(k-1)+0.5%h* (ff (k-1)+ff(k))
fi
end:

118 3. LINEAR MULTISTEP METHODS

In this case the results are

> for i from O to 6 do ExactSol(0.1%i)-PEC(10%*i) od;

0
—.0000990087
—.0000960431
—.0000911008
—.0000843117
—.0000760594
—.0000669443

O

Maple also contains an Adams—Bashforth-Moulton method. Using
Maple help

> 7?dsolve[classicall

we can see that Maple can solve a problem by means of an Adams—
Bashforth—Moulton method if we invoke the dsolve function with the
option

type = numeric and method = classical[abmoulton]

In this function the step size and the number of corrections may be
modified.

EXAMPLE 3.8. Solve the initial value problem (3.21) by means of
the built-in Adams—Bashforth—Moulton method of Maple. Take the step
size h = 0.1, and obtain the difference between yi and the exact value
y(xy) at the mesh points x;, = kh, k =0,1,...,6.

SoLuTION. Using 16-digits floating-point arithmetic we get
> Digits := 16:

> ABM_1 := dsolve({diff(y(x),x)=-2*xx(y(x))"~2, y(0)=1},
{y(x)}, type=numeric,
method=classical[abmoulton], stepsize=0.1):

> ABM_1(0.4);

[z = 4, y(z) = .8620271439244532)

3.3. CLASSICAL LINEAR MULTISTEP METHODS 119

> ABM_Sol := x -> rhs(op(2, ABM_1(x))):
ABM_S01(0.4);

.8620271439244532

> es := dsolve({diff (y(x),x)=-2xx*(y(x))"2, y(0)=1},
y(x)):
> Exact_Sol := proc(t)

subs(x=t, rhs(es));
end:

> Exact_Sol(x);

2 +1
> Exact_S01(0.4);

.8620689655172414

> Error := x -> Exact_Sol(x) - ABM_Sol(x):
> for k from 0 to 6 do Error(0.1xk) od;

0
10050941108
.35444935 1078
63116676 10®
78879904 1078
74913027108
521475671078

e Backward differentiation methods

The multistep methods introduced above, are all based on numeri-
cal integration. Now we consider multistep formulas based on numeri-
cal differentiation.

Assume that the approximations yx, Ygi1, ---, Yerm—1 t0 the exact so-
lution of (3.1) at the equidistant points xy, Txi1, . . ., Tkrm 1 are known.

120 3. LINEAR MULTISTEP METHODS

To derive a formula for yi,, let us consider the minimal degree poly-
nomial P, ;(z) which interpolates the data

{(@isy) : 1=k, k+1,....k+m}. (3.22)

The unknown value yi,, will be determined in such a way that the
polynomial P, x(z) satisfies the differential equation (3.1) at least one
mesh point:

;nyk(xk+mfr) - f(xk+mfra yk+mfr)- (323)

For r =1 we get explicit formulas, which are equivalent to the explicit
FEuler method and the mid-point rule if m = 1 and m = 2, respectively.

We obtain much more interesting formulas when (3.23) is taken
at r = 0. Expanding the polynomial P , in terms of yx; (j =
0,1,...,m) we get the implicit (m-step backward differentiation) for-
mulas

Yo := &, Y1, Y25 - - - Ym—1,

> Ok = D (Tesms Yesm), (3.24)
=0

(k=0,1,2,...,N —m),

where a,,; (j =0,1,...,m) are constants, independent on h, k and f.

The coefficients «,; can be determined using Maple. By slightly
changing the notation of indices, first we define the data (3.22) as a
function of m.

> fpoints := proc(m)
local i, vv:
vv:=array(l..m+1):
for i to m+1 do vv[i]:=x-(m-i)*h od:
eval (vv)
end:

> fpoints(4);

[t —3h,x—2h, x — h, z, © + h]

> yvalues := proc(m)
local i, vv:
vv:=array(l..m+1):
for i to m+1 do vv[i]:=y(i-m) od:

3.3. CLASSICAL LINEAR MULTISTEP METHODS 121

eval (vv)
end:

> yvalues(4);
[y(=3), y(=2), y(=1), ¥(0), y(1)]

Now we define the interpolation polynomials P, x(x) as a function of
m.

> ip := m -> interp(fpoints(m), yvalues(m), z):

The left-hand side of the equation in (3.24) for m = 1,2,3,4,5 can be
obtained in the following way:

> bdf :=m -> h*simplify(subs(z=x+h, diff(ip(m), z))):

> for m to 5 do bdf(m) od;

y(1) —y(0)

2 2
Ty = 32 = 35(0) + 5 ¥(-1)
33(=1) + =2 y(1) + 7 ¥(=3) - 5 ¥(=2) — 43(0)
~5¥(0) ~ 2 y(~4) 4 5 y(=3) 4 5y(-1) + o y(1) - 2 y(-2)
— 2 (=) = 63(0) & 2 ¥(~1) & = ¥(=3) + £ ¥(=5) — 3 ¥(=2) + 50 ¥(1)

We collect the obtained coefficients in Table 3.3.

It may be shown that the order of the m-step backward differenti-
ation method is m. The important feature of these methods is the size
of their regions of absolute stability. These properties are significant in
the context of stiffness.

122 3. LINEAR MULTISTEP METHODS

m Ao i A2 Om3 A4 s e
1 —1 1
1
2 - 2 2
2 2
5 1 5 11
3 2 6
1 4 2
4 T T -
4 3 12
5 10 137
5 | —= S —— 5 -5 -
5 4 3 60
1 6 15 20 15 49
6 - - = 22 6 —
6 5 4 3 2 20

Table 3.3 Coefficients for backward differentiation methods

3.4. General linear multistep methods

All of the numerical methods for the solution of the initial value
problem (3.1) studied in the previous section can be written in the
general form

Yo '= Y1y -« -y Ym—1,
z:=a+kh, h:=(b—a)/N,

m m
Z jYeyj = h Z Bif (ks Ytd)

(k=0,1,2,...,N —m),

(3.25)

where m is a given positive integer, «; and §; (j = 0,1,...,m) are given
constants, independent on h, k£ and the underlying differential equation.
We also assume that a,, = 1. Therefore if values yi, Yei1,- -+ Ykrm_1
are known at the points zy, Tri1, ..., Trim_1 then the new approximate
value yi ., at the point x;,,, can be calculated from the equation
m—1 m—1
Yk+m + Z Ykt = "Omf (Trgm, Yksm) + D Z Bif Tk Ynrs)-
j=0 J=0

(3.26)

3.4. GENERAL LINEAR MULTISTEP METHODS 123

This class of methods is referred to as m-step linear methods because
the numerical approximations y; as well as the values f(z;,y;) appear
linearly in the formula. The starting values vy, ¥s,...,%mn_1 may be
determined by a single step method. When ,, = 0 (for example,
as in the Adams-Bashforth methods) the methods are called ezplicit,
otherwise implicit (e.g. Adams-Bashforth-Moulton methods). For an
explicit method, the sequence (yx) can be computed directly, provided
the necessary additional starting values have been obtained, whereas
for an implicit method it is necessary to solve a nonlinear equation at
each step.

When we solve an initial value problem by means of (3.25) then it
is necessary to analyze:

e what happens when the step size tends to zero (convergence),

e how well the difference equation in (3.25) approximates the dif-
ferential equation (3.1) (truncation errors),

e how sensitive the difference equation is to perturbations in the
data (stability).

e Convergence

When we use a numerical method for the solution of the initial
value problem (3.1) the main question is: whether any desired degree
of accuracy can be achieved by picking a small enough step size. This
suggests the definition of convergence, which expresses the property
that by using a sufficiently small step size and accurate computation the
numerical solution can be made arbitrarily close to the true solution.

If we apply the multistep method (3.25) with step size h to the
problem (3.1) we obtain a sequence (y;). For given x and h such that
(x — x9)/h = n is an integer, we introduce the following notations for
the numerical solution:

Yn(T) = Yn if x—xy=nh. (3.27)

A method is expected to be "good” in the sense that the numerical
solution yp(z) converges to the exact solution y(z) as h — 0. Further-
more, we expect rapid convergence.

DEFINITION 3.1. The linear multistep method (3.25) is said to be
convergent if, for all initial value problems (3.1) satisfying the hypothe-
ses of Theorem 1.2, we have

lim yy,(2) = y(z), € la,b] (3.28)

124 3. LINEAR MULTISTEP METHODS

whenever the starting values satisfy
lim yp,(a + ih) = y(a) (i=0,1,..,m—1).
h—0

A method which is not convergent is said to be divergent.

DEFINITION 3.2. Method (3.25) is convergent of order p if, to any
problem (3.1) with sufficiently differentiable f, there exists a positive
real number hy such that

ly(x) — yn(z)| < CHP for h < hg (3.29)
whenever the starting values satisfy

ly(a+ ih) —yp(a+ ih)| < Coh? for h < hy, (i=0,1,...,m—1).

We also say that the linear multistep method is of order p.
It turns out that the problem of convergence in the cases of multi-
step methods is more complicated than for single-step cases.

e Truncation errors

Suppose that the computations indicated in the method are per-
formed exactly, i.e. round-off errors are not taken into account.

Let us denote by y(x) the exact solution of (3.1) and by y; the
approximate value of y(z;) obtained by the method (3.25).

As we have seen in Section 2.3 the local truncation error is a good
measure for accuracy in the case of single step methods. Reformulating
Definition 2.1 for linear multistep methods we get

DEFINITION 3.3. Let u(x) be the exact solution of the initial value

problem
ul(x) = f(l', U(ZC)), U(ZUker,l) = Yk+m—1-
Then the local truncation error of the multistep method (3.25) at Tgim
15 defined by
ektm = €(Tkym, h) = U(Thym) = Trrm, (3.30)

where Ypym 1S the numerical solution obtained from (3.25) using the
exact starting values y; = u(x;) fori =k, k+1,.. . k+m — 1.

Using (3.26) the local truncation error ey, can be written in the
form

€k+m = u(karm) - gk+m —

m—1 m
u(xy, +mh) + Z aju(zy, + jh) — hZﬁjf(:Ek + jh,u(xy + jh)).
=0 =0

(3.31)

3.4. GENERAL LINEAR MULTISTEP METHODS 125

The difference between the exact and the numerical solution is the
accumulated or global error.

DEFINITION 3.4. The global truncation error of a linear multistep
method (3.25) at xyy,, denoted by Eyi., is defined by

Epim = y($k+m) — Yk+m,)

where y(x) is the exact solution of (3.1) and Yxym is the approrimate
value of y(Tgim) obtained by the method (3.25).

The local truncation error and the starting errors accumulate to
produce the global truncation error, but this accumulation process is
very complicated, and we cannot hope to obtain any usable general
expression for the global truncation error. In this respect the situation
here is different from the single step methods. Figure 2.4 illustrates
the relationships between the local and the global truncation errors.

e Consistency

We now turn to the question of what conditions a numerical method
must satisfy if it is to be convergent.

We know that the local truncation error indicates how well the
exact solution of the initial value problem (3.1) satisfies the recurrence
formula (3.25). A first thought on the appropriate level of accuracy
that might be needed for convergence is that we should ask that the
local truncation error eg,,, — 0 as h — 0. Further thought shows that
this is not going to be enough. The appropriate level of accuracy is to
demand that ej,,/h — 0 as h — 0.

DEFINITION 3.5. A method of class (3.25) is said to be consistent
if

€k
max‘—‘—>0 as h—0.
0<k<N' h

It is consistent of order p if

€L .)
Orgr}ea%v‘ﬁ = O(#").

It may be proved (see, e.g. [SB], Theorem 7.2.11.4) that consistency
is necessary for convergence, i.e. a linear multistep method (3.25) which
15 convergent is also consistent. This result shows that it is important
to determine the consistency of a linear multistep method.

It is appropriate at this stage to introduce the first and the second
characteristic polynomials o and o associated with the method (3.25),

126 3. LINEAR MULTISTEP METHODS

defined by
oQ)=> ;% ()= 8¢ (C€C. (3.32)
=0 i=0

Dahlquist was the first to observe the fundamental role of these poly-
nomials in the theory of multistep methods.

Fortunately for linear multistep methods a simple sufficient condi-
tion may be given to ensure that the method is consistent. To obtain
such a condition one has to examine the behavior of the expression of
the local truncation error (3.31). Using the fact that the function u(z)
satisfies the differential equation u'(x) = f(x,u(x)) we get

m—1 m
Cktm = u(Tp + mh) + Z aju(zy + jh) — hZﬁju'(xk + jh).
=0 =0

Assume that u(z) is sufficiently smooth (this is the case if f has suffi-
ciently many continuous partial derivatives). Expanding u(z +ih) and
its derivative u'(x + ih) in Taylor series about z; and collecting terms
in powers of h gives

Chim = Cou(x) + crhu' (x) + ... + e, hPu® (z) + ..., (3.33)

where the constants ¢; are independent of u(xy) and h. Using our
initial assumption «,, = 1 the following formulae for the constants ¢;
are easily established:

Co = Z = 9(1)7
=0

c =) (joj— ;) =2(1) —a(1), (3.34)
=0

Ci = %(Zaﬂz _Z.Zﬁjjiil)a (i=2,3,...).
© V=0 =0

According to Definition 3.5 the following simple sufficient condition
for the consistency may be obtained: If the characteristic polynomials
0 and o associated with the method (3.25) satisfy the condition

o1)=0 and ¢(1)—0c(1)=0 (3.35)

then method (3.25) is consistent. In general, it has order p if

co=c=--=¢c=0 and ¢y #0.

3.4. GENERAL LINEAR MULTISTEP METHODS 127

EXAMPLE 3.9. Fzamine the consistency of the two-step Adams-
Bashforth method (3.10).

SOLUTION. The method (3.10) can be written in the form

1 3
§fk + §fk+1),
therefore its characteristic polynomials are
3 1
_ 2 _2r_Z
o) =C=¢ o) =5(—3
Since ¢'(¢) = 2¢ — 1 thus
o(1)=0, J(1)=1=0(1)

and hence the method is consistent. O

Ykt2 — Y1 = h(—

EXAMPLE 3.10. Determine the order of consistency of the trape-
zoidal method (3.14).

SOLUTION. The trapezoidal method has the following form

h
Yk+1 — Yk = §(fk + fri1)-

The characteristic polynomials are

o) =C-1 o(O)=5C+3
Since ¢'(¢) = 1, thus
o) =0, J(1)=1=0(1),

and the method is consistent.
Let us denote by u(x) the solution of the initial value problem

u'(x) = flw,u(x), w(zk) = yp
By (3.31) we get

epr1 = u(xy + h) —u(xy) — g (u'(zy) +u'(z + h)) .

Through Taylor expansion in h one finds

h? h3
Chi1 = [u(xk) + hu'(z) + ?u"(xk) + Eu"’(xk) + ..] — u(xy) —

h ! ! n h2 n
—3 [u(ﬁk)+u(xk)+hu (:Ek)+?u (:Ek)+],

128 3. LINEAR MULTISTEP METHODS

thus
€E+1 h2 " 3
—_ = —— h?).
h 12u (k) + O(Rh?)
Hence the method is consistent of order two. O

Unfortunately the consistency is only a necessary but not a suffi-
cient condition for the convergence, as the following example illustrates.

EXAMPLE 3.11. The method

Yk+2 T Yrt1 — 2y =

h

1 [f (@kr2s Yve) + 8 (Tht1, Ynr1) + 3 (Ths i)

15 consistent but it is divergent.

3.5. Stability of linear multistep methods

In this section we suppose that the conditions of the Theorem 1.2
are satisfied. From this it follows that the initial value problem (3.1) has
a unique solution on the interval [a, b]. We also suppose that the prob-
lem (3.1) is well-conditioned. Roughly speaking this means that small
perturbations in the stated problem will only lead to small changes in
the solutions.

We consider several types of numerical stability.

e Zero-stability

As we have seen in the preceding section convergence implies consis-
tency, the converse is not true. It can happen that the difference system
produced by applying the numerical method (3.25) to the initial value
problem (3.1) suffers an in-built instability which persist even in the
limit as h — 0 and prevents convergence. This leads to the concept of
zero-stability, which controls the manner in which errors accumulate,
but only in the limit as h — 0.

DEFINITION 3.6. We say that a linear multistep method of class
(3.25) is zero stable if, for sufficiently small stepsizes h, small pertur-
bations in the starting values produce small perturbations in subsequent
values.

We recall that zero-stability is nearly automatic for single step
methods (see Theorem 2.2). The following example shows that the
situation changes in the case of multistep methods.

3.5. STABILITY OF LINEAR MULTISTEP METHODS 129

Consider the two step method
Yo = so(h), y1 = s1(h),
Yrt2 = 3Yk+1 + 2y = h(frs1 — 2fk),
applied to the problem

yl(x) = 2z, y(O) =0,

whose exact solution is y(z) = z2. Now

oQ)=¢=3C+2, o(Q)=¢-2, J{)=20-3,
thus
o(1)=0, d(1)=0(l)=-1

and hence the method is consistent provided we choose starting values
such that so(h) — 0, s;(h) — 0. Now

Ykt2 — Ykt +2ur = 2h(Tpp1 — 22) =
= 2h%(1 — k).

The roots of p(¢) are (= 1 and ¢ = 2. Hence the general solution of
the difference equation is

yp = A+ B2 + k(k — 1)R%
The particular solution satisfying the initial conditions is
ye = [250(h) — s1(R)] + [s1(h) — s0(h)]2% + k(k — 1)R%.
Now for the starting values
so(h) =0, s1(h) =0,

1,2

yk:k(k—l)h2:x2—?—>a¢2 as h—0 (k — o0).

However for the exact starting values

2 2 2

X T X
yp = —h* + h?2% 4 k(k — 1)h? = —73 +ﬁ2’“+x2 -7

But
2k:

PR as k— oo (h—0),
hence the method is not convergent for these starting values. Thus we
see that the method is sensitive to small perturbations in the starting
values i.e. it is unstable in the sense that the resulting perturbations
are unbounded, even in the limit as h — 0.

It is clear that the reason for the instability is the root +2 of the
characteristic polynomial o(().

130 3. LINEAR MULTISTEP METHODS

The definition of the zero-stability given above is a desirable one
rather then a convenient one. We want a practical technique for testing
for stability.

To obtain such a condition consider the equation

y'(x) =0, y(0) =0, (soln. y(z) = 0).
Then (3.25) reduces to

> ajyry =0. (3.36)

§=0
If

0(¢) =Y ;¢

5=0
has distinct roots (i, (o, ..., (;n, then the solution of the difference equa-
tion (3.36) is
gk = A1 (G)F + A2(GQ)" 4 + Am(Ca)®.

If the method is consistent then, since E;f’l:o a; = 0, one root, say
(1 = 1. This root corresponds to the exact solution of the differential
equation. Hence for stability we require

Gl <1, 2<1<m.
If o(¢) has a root (;, of multiplicity r, then
(@) A {() A () L i ()
are solutions of (3.36). Hence for a multiple root, with multiplicity
r > 1, stability requires that

Gl < 1.

DEFINITION 3.7. We say that a linear multistep method (3.25) sat-
isfies the root condition if the roots of the first characteristic polyno-
mial o(C) all lie within or on the unit circle in the complex plane, and
are simple if they lie on the unit circle.

We have shown that a necessary condition for zero-stability is that
the method satisfies the root condition. We can strengthen this to:

THEOREM 3.1. The linear multistep method (3.25) is zero-stable if
and only if it satisfies the root condition.

We can now state the fundamental theorem concerning convergence:

THEOREM 3.2. A method of class (3.25) is convergent if and only
if it is both consistent and zero stable.

3.5. STABILITY OF LINEAR MULTISTEP METHODS 131

A more accurate result can be stated (see, e.g. [H1], Chapter III,
Theorem 4.5).

THEOREM 3.3. If the multistep method (3.25) is zero-stable and the
order of its consistency is p then it is convergent of order p.

e Absolute stability

The concept of zero-stability, and also convergence are concerned
with the limiting process as h — 0. In practice, we must compute
with a finite number of steps, i.e. with finite, nonzero step size h. In
particular we want to know if the errors we introduced at each step
(truncation and round-off) have a small or large effect on the answer.
What is needed is a stability theory which applies when A takes a fixed
non-zero value.

We have already considered the notion of absolute stability for sin-
gle step methods (see Section 2.7). This concept can be generalized to
linear multistep methods.

To illustrate the problem of absolute stability let us consider the
mid-point method

Yk+2 = Uk + 20 fr1
applied to the test equation
Y () = Ay(@). (3.37)
Substituting into the differential equation gives
Yk+2 = Yk + 2hAYk 1.
Thus

Yk+2 — 2AYk+1 — Yp = 0.
Let y, = ¢*. Thus

CF(C? —2hAC —1) = 0.

Solving

Co =

M+ VAN T4
; VAT

132 3. LINEAR MULTISTEP METHODS

Thus there are two roots

G =hA+Vh22 + 1
1 1
= h) + (1+§h2)\2— Zh4)\4+---)
1 1
= 1+h)\+§h2)\2—1h4)\4+---
="+ O(n?)
and
Co=hA—Vh2X2 11

= (14 S L
— h\ (1+2h)\ T+)

1 1
:—1+h/\—§h2)\2+1h4)\4+---
= —e " 1L O(h?).
Therefore the solution of the difference equation is
yr = A + B(= A" + B(—1)Fe "
= Aelxy, + B(—1)Fe™,

Thus if A < 0 the difference equation has a spurious solution cor-
responding to (5 which will eventually dominate the desired solution
leading to instability. This is illustrated in the following example.

ExXAMPLE 3.12. Solve the initial value problem
y'(z) = —y(z), y(0)=1 (3.38)

using the mid-point method with h = 0.25. Let the starting value 1, be
an Fuler’s step. Compare the computed one with the exact solution.

SOLUTION. First we find the exact solution of (3.38)

> In_Val_Pr := {diff(y(x), x) = -y(x), y(0) = 1};
InVal_Pr = {5-3(x) = —y(a), ¥(0) = 1}

> es := dsolve(In_Val _Pr, y(x)):

> Exact_Sol := proc(t)
subs(x=t, rhs(es));
end:

3.5. STABILITY OF LINEAR MULTISTEP METHODS 133
> Exact_Sol(x);

1
el‘
Now we define the parameters of the initial value problem

> f

(x, y) > -y;
f:: (.CL', y)_>_y

> a ::=0: yo :=1: h :=0.25:
yl := y0 + hxf(a,y0);
yl :==.75
A Maple program of the mid-point method is
> mpm := proc (k)
option remember;
if k=0 then yO0
elif k=1 then yl
else mpm(k-2)+2*h*f (a+(k-1)*h,mpm(k-1))
fi
end:

> x := k -> kxh: # for the mesh points

> mpm(1);
75

We define the error function in the following way
> Error := k -> Exact_Sol(x(k)) - mpm(k):
Finally we create a table with appropriate headings.
> mm:=array(1l..10, 1..4):
mm[1,1]:=‘Mesh points‘:mm[1,2]:=‘Exact sol.‘:
mm[1,3]:=‘Approx.sol.‘:mm[1,4]:=‘Error‘:
for i from 2 to 10 do
mm[i,1]:=x(i-1):
mm[i,2] :=evalf (Exact_Sol(x(i-1)), 5):
mm[i,3]:=evalf (mpm(i-1), 5):
mm[i,4] :=evalf(Error(i-1), 5):

134 3. LINEAR MULTISTEP METHODS

od:
eval (mm) ;
[Mesh points FEzxact sol. Approz. sol. Error]
.25 77882 75 .02882
.50 .60654 .6250 —.01846
.75 AT237 43750 03487
1.00 36788 40624 —.03836
1.25 28651 23438 05213
1.50 22313 .28905 —.06592
1.75 17377 .08985 .08392
2.00 13533 24412 —.10879
I 2.25 .10540 —.03221 13761 |

O

If A > 0 then the spurious solution decays as = increases and hence
the instability does not manifest itself.

Now consider the linear multistep method
D ki =hY Bifer (3.39)
§=0 §=0

applied to the test equation
y'(z) = Ay(z).

On substitution into the differential equation (3.39) we obtain

> it =AY Bk
=0 =0
Thus

> ks = hAY Biyes; = 0.
=0 =0

3.5. STABILITY OF LINEAR MULTISTEP METHODS 135

Let y;, = ¢¥, then

D ;= hAY B =0.
j=0 5=0
Hence
7(C; hA) := 0(¢) — hAo(¢) = 0. (3.40)
7(C; hA) is called the stability polynomial of the linear multistep method
(3.39). Now one of the roots (;(hA) of 7({; hA) will correspond to the
true solution, the other roots will lead to spurious solutions whose

magnitude will have to be controlled to obtain stability. For a pth
order method we can show that

Ci(hA) = e + O(hPt). (3.41)

DEFINITION 3.8. A linear multistep method is said to be absolutely
stable for a given hA if all the roots of w((; hA) lie within the unit circle.
A region Ry of the complex plane is said to be a region of absolute
stability if the linear multistep method is absolutely stable for all h\ in
R.

The most convenient method for finding regions of absolute stability
is the boundary locus technique. The region R, of the complex (h\)-
plane is defined by the requirement that for all hA € R, all of the
roots of m(¢, hA) have modulus less than 1. Let the contour OR, in the
complex (hA)-plane be defined by the requirement that for all hA € R,
one of the roots of (¢, h)\) has modulus 1, that is, is of the form
¢ = €. Since the roots of a polynomial are continuous function of its
coefficients it follows that the boundary of R must consist of 9R, (or
of part of OR,; some parts of OR, could, for example, correspond to
7(¢, hA) having one root of modulus 1, some of the remaining roots
having modulus less than 1 and some having modulus greater than 1).
Thus, for all hA € OR,, the identity

(e, b)) = o(e’) — hAo(e?) =0
must hold. This equation is readily solved for hA, and we have that
the locus of OR, is given by

o(e”)
o(ei?)’
In most cases we simply use (3.42) to plot (hA)(6) for a range of 6 €
[0, 27].

EXAMPLE 3.13. Find and sketch the region of absolute stability of
m-step Adams—Moulton method for m = 1,2, 3,4.

(BA) = (hA)(0) = (3.42)

136 3. LINEAR MULTISTEP METHODS

SOLUTION. If m =1 then we have the trapezoidal rule

h
Yk+1 — Yk = §(fk + frt1)-

From Example 2.16 of Section 2.7 we know that the region of absolute
stability of this method is the whole left half-plane.

We investigate the cases m = 2, 3,4 with Maple. The coefficients
of these methods are in the Table 3.2. Therefore the corresponding
characteristic polynomials can be defined in the following way

> rho2 := x -> x72 - x;

p2i=x =1’ —x

> sigma2 := x-> (-1/12)+(8/12)*x+(5/12) *x"2;
2:=x— ! +2 + e
A DR SR T
> rho3 := x -> x"3 - x72;
p3 =z — 2> — 22
> sigmad := x ->
(1/24)-(5/24) *x+(19/24) xx~2+(9/24) *x~3;
1 5) 19 3
3i=r—> — — — R
o T Y 24x+24x +8x
> rho4 :=x -> x"4 - x73;

p4::x—>x4—x3

> sigma4 := x -> -(19/720)+(106/720) *x~
(264/720) *x~2+(646/720) *x~3+ (251/720)*x"4;
19 53 11 323 251

Ly — 0 20 Tt g2 990 5 200
0= o T 3607 T 30Y T3607 TT20”

3.5. STABILITY OF LINEAR MULTISTEP METHODS 137

The locus of the boundary R, can be drawn using the complexplot
procedure which is in the plots package.

> with(plots):
> t := Ixtheta:

> am2 := complexplot(rho2(exp(t))/sigma2(exp(t)),
theta=0..2%Pi):

> am3 := complexplot(rho3(exp(t))/sigma3(exp(t)),
theta=0..2%Pi):

> am4 := complexplot(rhod(exp(t))/sigmad(exp(t)),

theta=0..2%Pi):
> pr := textplot({[-5,2, ‘m=2],
[-2.2, 1.3, ‘m=3‘],
[-1.3, 0.8, ‘m=4‘1}, align=LEFT):

> display({am2, am3, am4, pr});

For the Adams—Moulton methods with m = 2,3,4, OR, is a simple
closed contour. To see that the interiors of the regions bounded by
OR, are indeed the regions of absolute stability, all we need do is
observe that, from (3.41), all linear multistep methods are necessarily
absolute unstable for small positive values of Re (h)). O

138 3. LINEAR MULTISTEP METHODS

e Strong stability

Now from (3.41) if hA is real, positive and small then [(;(hA)] > 1
and such h\ are outside R,. If A\ is real, negative and small then
|C1(hA)] < 1. However it is possible that m((;h\) possesses another
root (j(hA) such that |(;(0)] =1 and |(;(RA)| > 1 for hA real, negative
and small. Such a method will have no interval of absolute stability, at
least in the neighborhood of the origin. An example of such a method
is Simpson’s method

h
Ykv2 = Yk + g(fk+2 + 4 frt1 + fr),

for which
hA 4h\ @

R(GhA) = (1=)¢ = =55C — (14 5),

with roots
G (hX) =14 kX + O(h?),

G(hA) = —1 + %hA + O(h?),

so that if Re(h) is small and positive |[(;(hA)| > 1 whereas if Re(h\)
is small and negative |(2(hA)| > 1. Thus the method has no region of
absolute stability in the neighborhood of the origin. More precisely we
can show that R, is empty.

If we wish to avoid the possibility of an empty R, we choose a
method satisfying the strong root condition.

DEFINITION 3.9. A method is said to satisfy the strong root con-
dition if the characteristic polynomial has a simple root at o = 1 and
all the remaining roots lie strictly within the unit circle.

DEFINITION 3.10. A method of class (3.25) is said to be strongly
stable if it is consistent and satisfies the strong root condition.

A class of methods which are strongly stable are the Adams meth-
ods previously encountered for which the characteristic polynomial o(()
has the form

o(¢) =¢F = ¢

3.6. Advanced methods

The unpredictable behavior of solutions of differential equations
forces the numerical integration to proceed with step sizes which, in
general, must vary from point to point if a prescribed error bound is to

3.7. EXERCISES 139

be maintained. Multistep methods which use equidistant mesh points
and a fixed order, therefore, are not very suitable in practice.

Predictor-corrector methods possess many advantages, notably the
facility for monitoring the local truncation error cheaply and efficiently.
However, there is a balancing disadvantage, shared by all multistep
methods, namely the difficulties encountered in implementing a change
of step size.

A program embodying a multistep method will have to use tech-
niques for starting, changing step, and changing order as necessary.
The choice of which class of methods to use depends on the prob-
lem. Often little is known about the problem to be integrated, so the
Adams’ methods whose extraneous eigenvalues are zero is usually the
best choice. (Other methods for special problems will be discussed in
Chapter 4.)

Suppose that we have used an mth order Adams—Bashforth—Moul-
ton method to compute y;, but before going on to compute y,. 1 we
want to change the step size from h to ah. In order to apply the
method to compute an approximation to the exact solution at x + ah,
we need back data at x, which we have, and at z;, — ah,x, —2ah, ...,
x — (m — 1)ah, which we do not have. Many different ways of tack-
ling this problem have been proposed. The available techniques can be
categorized into two different groups. The first, known as interpolatory
techniques, use polynomial interpolation of the existing back data in
order to approximate the missing back data; there are several ways of
doing this. In the second group, the Adams—Bashforth—Moulton meth-
ods themselves are replaced by Adams—Bashforth—Moulton-like meth-
ods which assume that the data is unevenly spaced, and whose coeffi-
cients therefore vary as the step size varies. Stepchanging techniques
based on such methods are usually known as variable step techniques.

3.7. Exercises

1. Write Maple programs to solve the system of ordinary differential
equations
y'(2) =f(z,y(x)), y(x)=yo
by the two-step Adams—Bashforth method.

2. Use the Euler’'s method as a predictor and trapezoidal method
as a corrector in a) PECE and b) PEC modes and c¢) correcting
to convergence to solve the initial value problem

y(x) =2e™@, y(1)=0, 1<z<2.

140

3. LINEAR MULTISTEP METHODS

. Examine the consistency of the methods

a) Y1 = 4Yr — 3Yp—1 — 2h fr_1,
b) Yri1 = —%yk + 3yk-1 — %yk—Z + 3hfg.

. Examine the zero stability of the methods of 3.

5. Show that Simpson’s method satisfies the root condition but not

the strong root condition.

. Show that the solution of the difference equation for Simpson’s

method applied to the test equation
Y (z) = Ay(z)
can be written as
yp = A’ 4 Be 2k,
What implications does this have for the stability of the method?

. Use the boundary locus method to obtain regions of absolute

stability for the following methods

a) Yr+1 = Yk + hfry1 backward Euler’s method,
b) Yk+1 = yk—1 + 2hf;, mid-point method.

. Show that the method

h
Ykt2 = Yr + §(fk+1 + 3 fri2)

is not strongly stable.
Show also that when the method is applied to the test equation
y'(z) = Ay(z) the roots of the difference equation are

¢ =1+hA+0(h?),
1
G =-1-— §h)\ + O(h?).
Is R, empty?

[AB]
[BeCo]
[BG]

[BD]

[Bu]
[CL]
[Co]
[CB]
[DB]
[Dri]
[EW]
[Gel]
[Ge2]

[Ge3]

[Ged]
[H1]

[H2]

[HW]

Bibliography

Abel, M.L. and Braselton, J.P., Differential Equations with Maple V. AP
Professional, Boston, 1994.

Bellmann, R. and Cooke, K.L., Differential-Difference Equations, Academic
Press, 1963.

Birkhoff, G. and Gian-Carlo, Rota, Ordinary Differential Equations. John
Wiley and Sons, Inc., New York, 1989.

Boyce, W.E. and DiPrima R.C., Elementary Differential Equations and
Boundary Value Problems. John Wiley and Sons, Inc., New York, (5th ed.),
1992.

Butcher, J.C. The Numerical Analysis of Ordinary Differential Equations.
John Wiley and Sons, Inc., New York, 1987.

Coddington, E.A. and Levinson, N., Theory of Ordinary Differential Equa-
tions. McGraw-Hill Book Company, Inc., New York, 1955.

Collatz, L., The Numerical Treatment of Differential Equations. Springer-
Verlag, Berlin-Heidelberg-New York, 1966.

Conte, S.D. and de Boor, C., Elementary Numerical Analysis: An Algorith-
mic Aproach. McGraw-Hill Kégakusha, Tokyo, (3rd ed.). 1980.

Dahlquist, G. and Bjork, A., Numerical Methods. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey, 1994.

Driver, R.D., Ordinary and delay differential equations, Applied Math. Sci-
ences 20, Springer Verlag, 1977.

Eldén, L. and Wittmeyer-Koch, L., Numerical Analysis, An Introduction.
Academic Press, Inc., Boston, 1990.

Gear, C.W., Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1971.

Gear, C.W., The automatic integration of ordinary differential equations.
Comm. ACM 14 (Mar. 1971), pp. 176-179.

Gear, C.W., The automatic integration of stiff ordinary differential equa-
tions, Information Processing 68, A.J.H. Morrell, Ed., North Holland, Am-
sterdam, 1969, pp. 187-193.

Gear, C.W., The numerical integration of ordinary differential equations,
Math. Comp. 21, 2 (Apr. 1967), pp. 146-156.

Hairer, E., Ngrsett, S.P. and Wanner, G., Solving Ordinary Differential
Equations I. Nonstiff Problems. Springer Verlag, Berlin, (2nd ed.), 1991.
Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff
Problems and Differential-algebraic Equations. Springer Verlag, Berlin,
1991.

Hall, G. and Watt, J.M. (Eds.), Modern Numerical Methods for Ordinary
Differential Equations. Clarendon Press, Oxford. 1976.

141

BIBLIOGRAPHY

Hamming, R.W., Numerical Methods for Scientists and Engineers. McGraw-
Hill Book Company, Inc., New York, (2nd ed.) 1973.

Hartman, Ph., Ordinary Differential Equations. John Wiley and Sons, Inc.,
New York, 1964.

Hammerlin, G. and Hoffmann, K-H., Numerical Mathematics. Springer-
Verlag, New York Inc., 1991.

Heck, A., Introduction to Maple. Springer-Verlag, New York, 1993.
Henrici, P., Discrete Variable Methods in Ordinary Differential Equations.
John Wiley and Sons, Inc., New York, 1962.

Higham, N. J., Accuracy and Stability of Numrical Algorithms, SIAM,
Philadelphia, 1996.

Hildebrand, F.B., Introduction to Numerical Analysis. McGraw-Hill Book
Company, New York, 1974.

Hindmarsh, A.C., LSODE and LSODI, two new initial value ordinary dif-
ferential equation solvers, ACM-SIGNUM Newsletter 15, 1980, pp. 10-11.
Hindmarsh, A.C., GEAR: ordinary differential equation system solver,
UCID-30001, Rev. 2, LLL, Livermore, Calif. 1972.

Hindmarsh, A.C., ODEPACK, a Systemized Collection of ODE Solvers, In:
Scientific Computing, R.S. Stepleman et al. (eds.) North-Holland, Amster-
dam, 1983.

Isaacson, E. and Keller, H.B., Analysis of Numerical Methods. John Wiley
and Sons, Inc., New York, 1966.

Iserles, A., A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge Text in Applied Mathematics. Cambridge Univ. Press.,
1996.

Kamke, E., Differentialgleichungen, Lésungsmethoden und Losungen, Vol.
1. Leipzig, 1959.

Kopchenova, N.V. and Maron, I.A., Computational Mathematics, Worked
Ezamples and Problems with Elements of Theory. Mir Publishers, Moscow,
1975.

Lambert, J.D.; Numerical Methods for Ordinary Differential Systems. John
Wiley and Sons, Ltd., Chichester, 1991.

Lorentz, H.W., Nonlinear Dynamical Economics and Chaotic Motion.
Springer Verlag, Berlin-Heidelberg, 2nd Ed., 1993.

Nordsieck, A., On numerical integration of ordinary differential equations,
Math. Comp. 16, 1 (Jan. 1962), pp. 22-49.

Press, W.H., Teukolsky, S.A., Vatterling, W.T. and Flannery, B.P., Numer-
ical Recipes in C. The Art of Scientific Computing. Second Ed., Cambridge
Univ. Press, 1992.

Ralston, A. and Rabinowitz, P., A First Course in Numerical Analysis.
McGraw-Hill Book Company, New York, 1978.

Schwarz, H.R., Numerical Analysis, A Comprehensive Introduction. John
Wiley and Sons, Ltd., Chichester, 1989.

Shampine, L.F. and Gordon, M.K., Computer Solution of Ordinary Differ-
ential Fquations. W.H. Freeman, San Francisco, 1975.

Stetter, H.J., Analysis of Discretization Methods for Ordinary Differential
Equations. Springer Tracts in Natural Philosophy. Vol. 23, Springer Verlag,
Berlin, 1973.

BIBLIOGRAPHY 143

Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis. Springer

Verlag, Berlin, 1980
Yakowitz, S. and Szidarovszky, F., An Introduction to Numerical Computa-

tions. Macmillan Publ. Comp., New York, 1986.

CHAPTER 4

Stiff and Delay Systems of Differential Equations

4.1. Stiffness and stability

EXAMPLE 4.1. Let us solve the following system of differential equa-
tions [Is].

z'(t) = —100x(t) + y(t),
y'(t) = —0.1y(t)

with the initial conditions
d0) =1, y(0)=1

We determine the exact solution with Maple:

> sys := diff(x(t), t) = -100*x(t) + y(t),

diff(y(t), t) = -(1/10)xy(t);
0 9, 1
sys = ax(t) = —100x(t) + y(¢), gy(t) =10 y(1)

> init_cond := x(0)=1, y(0)=1;
init_cond :=x(0) =1, y(0) =1
> funcs := {x(t), y(&)};
funcs = {x(t), y(t)}
> 8ol := dsolve({sys, init_cond}, funcs);

989 10
Sol :— £ = (—100¢) (—1/100) (4} = (~1/100)

141

142 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

Let us display the components of the solution vector:
> assign(Sol);

> with(plots):

> P1 := plot(x(t), t=0..1):
> P2 := plot(y(t), t=0..1):

> display({P1, P2});

From the result it can be seen that the function ¢~ in the solution

decays exceedingly fast while the decay of the other term e %! is a
thousandfold more sedate. Thus, the solution vector tends to the zero
vector as ¢ — o0.

Now let us try to solve the problem numerically with the explicit
Euler’s method with the step size h = 0.025 :

> sl := diff(x(t), x)= -100*x(t) + y(t);
s2 := diff(y(t), t)= -0.1xy(t);
sl = ax(t) = —100x(t) + y(t)
9,

> in_condl := x(0)=1, y(0)=1;

in_condl :=x(0) =1, y(0) =1

4.1. STIFFNESS AND STABILITY 143

> num_soll := dsolve({sl, s2, in_condl}, {x(t), y(t)},
type=numeric, method=classicall[foreuler],
stepsize=0.025):

> for n from O to 5 do num_so0l1(0.3*n) od;
[t=0,x(t) =1, y(t) =1]
[t = .3, x(t) = 128.4572895542000, y(t) = .9704090817588188]
[t = .6, x(t) = 16665.61199080038, y(t) = .9416937859599939]
[t =9, x(t) = .2162300910623603 107, y(t) = .9138282021314234]
[t = 1.2, x(t) = .2805506233929891 10°, y(t) = .8867871865156667]
[t = 1.5, x(t) = .3640041597702512 10", y(¢) = .8605463393821544]

)
)

We see that at the step size h = 0.025 the Euler’s method gives a very
bad result, it has a frightful numerical instability. If we choose the
step size less then 0.02 we get appropriate results. The situation is
quite similar if we apply another explicit numerical methods, discussed
earlier. With any of the method, the presence of the e %% term would
require a stepsize h < 2/100 (as we see below) for the method to be
stable. This is so even though the term 1% is completely neglibile
in determining the values of z(¢) and y(¢) as soon as one is away from
the origin. This behaviour in the numerical solution is referred to as
stiffness. Systems such as this where there is mismatch between the
requirements of accuracy and stability, at least for methods with a
finite region of absolute stability, are referred to as stiff.

DEFINITION 4.1. A system of differential equations is called stiff
system if there are either quickly or slowly varying components of the
solution vector.

We try to give an explanation in the case of Euler’s method: If
the abowe problem is integrated by the Euler’s method, the numerical
solution can be represented in ”closed form” as follows

= C1(1 — 100h)" + Co(1 — 0.1h)"
Yy = + C3(1 — 0.1h)".

Evidently, the approximations converge to zero as ¢« — oo only if the
steplength A is chosen small enough to have

1 —100h| <1 and |1 —0.1h| < 1. (4.1)

144 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

The influence of the component e 1% in the exact solution is negligibly

small in comparison with e %%, Unfortunately, this is not true for the
numerical solution. In view of (4.1), indeed, the steplength h > 0 must
be chosen so that
2
h < 100"
Appropriate numerical methods for stiff differential equations can
be derived from implicit methods. As an example, we consider the

implicit Euler method,

Ynt1 = Yn + hf(Tni1, Yns1), n=12,.. (4.2)

Let us consider the following linear system of differential equations
as model problem

y'=Ay, y(0)=u, (4.3)
where y(t) is the solution vector and A is a constant n X n matrix.
If the Euler method is applied to (4.3) with constant steplength,

it will produce a sequence y; of approximation vector for the solution
y(t;) which satisfy a recurrence formula

Yni1 = g(hA)yn. (4.4)

The function g(z) depends only on the method employed and is usually
a rational function in which it is permissible to substitute a matrix for
the argument. For the implicit Euler method the formula (4.4) gives

Ynt1 = Yn + hAyn+1, Le. Ynt1 = (1 - h’A)ily”?

whence
1
1z
Let \; i =1,..,n be the eigenvalues of the matrix A. The differ-
ential equation (4.3) is stable if all \; are negative, or more generally
if their real parts are negative. In this case, the solution y(t) of (4.3)
converges to zero as t — 0o, while the discrete solution {y,} by virtue

of (4.4), converges to zero as i — oo only for those stepsizes h > 0 for
which

9(2)

lg(hX;)] < 1

for all eigenvalues \; of A. Now the region of absolute stability of the
implicit Euler method is

1 —hA| > 1

implying no restricition on the stepsize h for Re(\) < 0. Thus although
the system is stiff the implicit Euler method can provide an acceptable

4.1. STIFFNESS AND STABILITY 145

solution with a stepsize which is governed by the requirement of accu-
racy rather than stability.

The more negative);, the shorter the characteristic time. Let the
step size h the same for all components of the solution for a numerical
method. The step size may be controlled by the most negative eigen-
value A; which corresponds to the fastest decay and dies first in the
true solution.

DEFINITION 4.2. If the matriz A has eigenvalues of very different
magnitudes, the system (4.3) is called stiff. The quotient of the largest
and the smallest (in modulus) eigenvalues of a linear system (and for
a general nonlinear system, the eigenvalues of the Jacobian matriz) is
refferred to as the stiffness ratio.

The stiffness ratio of the Example 4.1. is 103. Stiff systems fre-
quently occur in practice, this is typical of certain physical processes,
chemical engineering problems, economics etc.. There may be large
negative eigenvalues (strong damping of some components) or large
imaginary eigenvalues (rapid oscillations). It leads to a strict restric-
tion for the step size. The integration with large step sizes causes
instability, therefore, we need to keep

| Amazh| < C, C = constant

For linear differential systems, methods which have a region of ab-
solute stability including the whole left hand plane impose no stability
related restriction on the stepsize. Such methods are said to be A-
stable.

DEFINITION 4.3. A numerical method is said to be A-stable if
Ra 2 {h)\ | Re(h)) < 0} (4.5)
where R4 is the stability domain of the method.

A slightly less restrictive type of stability is A(«) stability defined
as follows:

DEFINITION 4.4. A numerical method is said to be A(a) stable
a € (0,5) if

Ry 2D {h\| —a<m—arg(h\) < a} (4.6)

The concept of A(«) stability is more adequate, which means that
the stability region should include the sector |arg(h)) — w| < a. The
special case of the left half-plane, o = /2, is the A-stability.

In Chapter 3 was shown that the trapezoidal method is precisely
A-stable. Dahlquist proved that if a multistep method is A-stable, then

146 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

k < 2,1i.e. an A-stable multistep method may be at most a two-step
method. It can be shown that the trapezoidal method has the smallest
truncation error among all A-stable linear multistep methods.

The methods which have been most successful for stiff problems are
all implicit.

An alternative way of slackening the requirements of A-stability is
to assume that all the eigenvalues which produce the fastest transients
lie to the left of a line Re(hA\) = —a, where a > 0. This leads to the
definition of stiff stability:

DEFINITION 4.5. A numerical method is said to be stiffly stable if
RsDO RiUR,

where
Ry = {h\ | Re(h)\) < —a}
Ry ={hA| —a < Re(h)) <0, —c < Im(h\) <c}

and a and ¢ are positive real numbers.

The rationale for this definition is as follows. e is the change in

a component in one step due to an eigenvalue A. If hA = u + iv, then
the change in magnitude is e*. If u < —a < 0, then the component
is reduced by at least e~ in one step. We are not interested in the
accuracy of components that are very small, so for some a we are
willing to ignore all components in R;.

These concepts are illustrated in the diagram below:

A-stable A(av)-stable Stiffly-stable

4.2. ADVANCED METHODS FOR STIFF SYSTEMS 147

4.2. Advanced methods for stiff systems

e Gear method

Considering [Gel-Ge4], in this section we describe the technique
used in the Gear’s numerical integration program. The method may be
either a form of the Adams methods, or a method for stiff equations.
The order is chosen to try to maximize the step size. Since the amount
of work per step is relatively independent of order, this chois will tend
to minimize the amount of work.

The Adams-Bashforth pth order predictor equation for the differ-
ential equation y' = f(¢,y) is

Y = yor + Bihy s+ o+ Bohy, (4.7)

where y = y(t;) and t; = ih (h being the step size), y; = f(t;,y;), and
where [3; are given, for example in Chapter 3. The approximation Uh
is used in this predictor corrector scheme as the first approximation in
the Adams-Moulton corrector formula of pth order given by

Ut = s+ BF (tn, Ul™) + Bihy g+ o By B i (48)
The coefficients 37 can also be found in Chapter 3. If the corrector
equation (4.8) is iterated until it converges to y, (as is guaranteed for
small enough h and smooth functions f) the truncation error intro-
duced in the nth step of the integration will be

C;\+1hp+1y(p+1)(tn) + O(h(p+2)),

where y*) is the kth derivative of y.
The method for stiff equations is similar. It uses a pth order pre-
dictor formula of the form

Yl =yt F e A Yoy + by, (4.9)
and a corrector
o = 0yt o 0y F RS (™). (410)
The truncation error when (4.10) is iterated to convergence is
Coaa " 1y () + O(hP*2),

where C5, = 1/(p+1). The o and the 7 are given in [He].
The predictor corrector equations can be expressed in matrix form.
In the case of Adams methods, we are going to define the vector
Yo = [Yns My W1, s hyy,_1]", where T is the transpose operator.
Similarly define
YH[m] = [Lm]a hy;;,[m}a hy;l—la st hy;z—p+1]T

b

148 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

where hy;m[m} is a symbol for a quantity to be defined below. For m > 1

we define it as hf(t,, yi"). Then we note from (4.8) that

yr = g G (™) = ™) (4.11)
for m > 1. Subtracting (4.7) from (4.8) and defining ; = 0, we obtain

yl =yl + B[R (ta, Y1) —

By — B By — By (4.12)
- —hy,, +...+ —hy,_,}
T g
We set 0; = (8; — 3F)/ 55 and define
hy % = 61hy, |+ ..+ 5phy;7p. (4.13)

Now (4.12) is equivalent to (4.11) when m = 0. We note that (4.7) and
(4.13) may be written as

Yo" = Bya_1, (4.14)
where
(1 B Be .. Bpr By]
0 61 6 ... 6,1 6,
o 1 0 ... 0 0
B —
0 0 0 10|

Noting that
hy, " = hf (t,, yim)
= hy,™ + [hf (tn, yI™) — hy, ™),

we see that (4.11) may be written as

yn[m+1] — ylrl[m] + cF(yn[m}), (4.15)
where ¢ = [3;,1,0,...,0]” and
F(ya™) = hf(tn, yI™) — hy ™. (4.16)

After M iteration we accept the result by setting

Yn = Yn[M}

For stiff methods we define the vector

Yn = [yna hy;u YUn—1y -+ yn*P]T

4.2. ADVANCED METHODS FOR STIFF SYSTEMS 149

and perform similar operations. If we define the coefficients v; = (a; —
af)/ng and 6, = 1y /ng we also arrive at eqs. (4.14) and (4.15) where
the matrix B is now given by

i Qq ﬂl Qy ... Op_1 Oy T
o0 Y2 e el MW
10 0 ... 0 0
B=|0 0 1 ... 0 0
L0 0 0 1 0 |

and c is as before.

We now note that the predictor formulas (4.7) and (4.9) are equiva-
lent to fitting a pth degree polynomial through the known information
carried in y,_1. Instead of saving the information in this form, we will
make a linear transformation Q and save z,_y = Qyn_1. The trans-
formation Q is chosen so that the p + 1 components of z, ; are the
function value ¥,_; and the first p derivatives of the polinomial used
in the prediction process. If the kth derivative saved in z, ; is scaled
by h¥/k! the matrix Q is independent of .

Thus we have z, = [y, hy,, ...,hpyﬁlp)/p!]T, where ¥ is the kth
derivative of the approximating polynomial. By applying the transfor-
mation Q to eqs. (4.14) and (4.15) we get

Zn[o] — Qyn[o} = QBQ_IZH—]_) (417)

2™ = Qu ol = 7,7 L 1P(Q 12, ™), (4.18)

where 1 = Qc. Since both z, and y, have y, and hy;l as their first two
components and F depends on these only, F(Q 'z,) = F(z,). The
matrix Q depends on whether the Adams or stiff methods are used;
hence 1 depends on the method. The 1 for the Adams methods are given
in [Ged]; those for stiff methods are given [Ge3]. (This formulation
of the Adams method is essentially the same as the Nordsieck method
[No].) The matrix QBQ ™! provides a pth order approximations to
z,% in terms of Z,_1; hence it is the Pascal triangle matrix

11 1 1 ... 1 17
123 ... p—10p

1 3

1

150 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

for either method. (The entries in the columns of this matrix are the
binomial coefficients.)

A complication occurs in the case of stiff equations: Iteration (4.10)
does not converge unless h is very small. To overcome this problem we
note that the effect of any number of iterations of (4.18) is to compute

Zn = 70 + 1b, (4.19)

where b is scalar. If A is small enough, the iteration will converge to a
solution of

F(zy,) = 0. (4.20)

If we attempt to solve (4.20) directly by Newton’s method using (4.19)

and starting with a first approximation of z,%, we get successive ap-
proximations given by

2, = 2, M L [(0F/02)1] 7' F(z,™),
where

[—(0F/02)1]™" = [I;, — hlyOf /Oy]™" = W.
(In the case of system of equations, W is a matrix.) Therefore, if
stiff methods are used, the program multiplies the value of F' by W
before performing the correction. If f(¢,y) is linear in y, the corrector
will converge in one iteration. If it is nonlinear, several iterations may

be needed. This process will converge for sufficiently small A since

Newton’s method is convergent in some neighborhood of the solution,
[0]

and since, as h tends to 0, y5 tends to y,. For most functions f(¢,y)
that occur, large values of h still permit rapid convergence.
EXAMPLE 4.2. Let us solve the Curtiss-Hirschfelder equation
y =—50(y —cos(t)), 0<t<10, y(0)=1.

The equation has significance as a good test case for computational
algorithm because it is a moderately stiff problem.

SOLUTION. Let us find the exact solution by the Maple.
> eq := diff(y(t), t) = -50*(y(t) - cos(t));

0
eq := Ey(t) = —50y(t) + 50 cos(t)

> init_cond := y(0) = 1;

init_cond :=y(0) =1

4.2. ADVANCED METHODS FOR STIFF SYSTEMS 151
> Sol := dsolve({eq, init_cond}, y(t));

2500 50 | 1

_ 200 e+ 2 it (—501)
2501 ©05(0) + 5y sin(t) + 557 €

Sol :=y(t)

> assign(Sol):

> plot(y(t), t=0..20);

LAAL

The solution is a smooth solution in the vicinity of y = cost and all
other solutions reach this one after a rapid ”transient phase”.
Now, we solve the problem by means of the Euler’s method

(@)

> num_sol := dsolve({eq, init_cond}, y(t),
type=numeric, method=classicall[foreuler],

stepsize=0.05):

> for n from 0 to 5 do num_sol(2*n) od;

[t=0,y(t)=1]
[t =2, y(t) = —1106.564450996085]
[t =4, y(t) = —.1223125006062327 10"']
[t =6, y(t) = —.1352449966133859 10'¥]
[t =8, y(t) = —.1495448872298088 10*"]

[t =10, y(t) = —.1653567514995976 10?]

152 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

We observe that whenever the step size is a little too large (h > 0.04),
the numerical solution goes too far beyond the equilibrium and violent
oscillations occur. O

Criteria for error control

The average user would like to be able to specify an error parameter
which would cause the program to bound the error over the whole
interval.

If, for a single equation, 0f/0y = 0, the total is the sum of the
truncation error in each step. If these errors are bounded by ¢ (which
is the optimum choice for a fixed order method), the total error is
bounded by Ne in N steps. This leads us to consider bounding the
error in a step of length h by he. Then the total error would be bounded
by € per unit interval.

Gear made some tests, using both £ and he as the error bound
in each step. The latter was unsatisfactory for stiff problems for the
following reasons: Usually the object of integrating a stiff problem is
to continue until the system is in equilibrium. Toward the end of the
integration, very large steps may be taken. An error control of he
per step would then allow large errors to be made. However, the best
choice for these problems is to make large errors initially, as they are
later damped out. Therefore, the program controls an estimate of the
error per step to be less than €. The decision whether this is a relative
or an absolute error control depends on the solution. If it is growing,
a relative control is used; if it is decaying, an absolute control is used.

Starting, step, and order changing

Starting is achieved by setting the order to one the first call. For
this order, zg is [yo, hy,]”. Since yq is given and hy, can be computed
from hf(to,yo), there is no starting problem.

A change of step size requires only that components of z be scaled
by powers of the change. A decrease in order corresponds to discarding
a component of z. When the order is increased from p to p + 1, the
backward difference of the last component of z divided by p + 1 gives
an estimate of A?+1y®+D /(p + 1)! to be appended to z.

Invoking the dsolve function with the type=numeric option and
method=mgear or method=mgear [choices] causes a numerical solution
to be found by way of a Gear multi-step method. The chices of the
mgear method are adamspc, msteppart, mstepnum. The first choice
corresponds to an Adams predictor-corrector method. msteppart is a
multi-step method suitable for stiff systems, and which evaluates the
Jacobian matrix of the system at each step. mstepnum is essentially the

4.2. ADVANCED METHODS FOR STIFF SYSTEMS 153

same as the above, however the Jacobian is computed using numerical
differencing of the derivatives.

It can be asked about the existence of stiffly stable methods of
order greater than two. It is shown in [Ge3|, that the k-step methods
presented by Gear are stiffly stable for ¥ < 6 for some a and ¢ and
of order k, with o(¢) = ¢*. The result is obtained by first computing
o(¢) from o(({) so as to get an order k method. The coefficients of
the polynomials o(¢) are in the Table 3.3. (See also [Gel] §8.1.1.)
The locus in the z-plane for which a root of o(¢) + zo({) = 0 has
magnitude one can then be plotted by plotting z = —o(e) /o ('),
where 6 € [0,27]. These loci for £ = 1,2,3 and k = 4,5,6 can be
plotted in the following way

> sigma := (k, x) -> x7k;

o= (k, z) = 2"

> 7rhol := x -> x-1;

pl: =0z =2 -1

> rho2:= x> (3/2)*x"2-2xx+(1/2);

3 1
p2 ::x—>§x2—2x+§
> rho3 := x> (11/6)*x~3-3*x"2+(3/2)*x-1/3;
11 3 1
3i=x— —2° -3+
p T 5 T T+ 230 3
> rhod := x —-> (25/12)*x"4-4*xx~3+3*x"2-(4/3) *x+(1/4);
25 4 1
phi=x — E$4—4$3+3x2— §x+1
> rhob := x-> (137/60)*x"5-5%xx"4+5xx"~3-
(10/3) *x~2+(5/4) *x-(1/5) ;
3 5 1
p5i=x— ——a° 52" +52° -~ 4+ -z — -

60 3 4 5

154 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS
> rho6 := x—> (49/20)*x~6-6*%x"5+(15/2)*x"~4-
(20/3)*x~3+(15/4) *x~2-(6/5) *x+(1/6) ;

49 15 20 15 6 1
p6::x—>2—0x6—6x5+7x4—§x3+zx2—5x+6

> with(plots):
> t := Ixtheta:

> aml := complexplot(rhol(exp(t))/sigma(l, exp(t)),

theta=0..2%Pi):

> am2 := complexplot(rho2(exp(t))/sigma(2, exp(t)),
theta=0..2%Pi):

> am3 := complexplot(rho3(exp(t))/sigma(3, exp(t)),
theta=-Pi..Pi):

> amé4 := complexplot(rho4(exp(t))/sigma(4, exp(t)),
theta=0..2xPi):

> amb := complexplot(rho5(exp(t))/sigma(5, exp(t)),
theta=0..2xPi):

> am6 := complexplot(rho6(exp(t))/sigma(6, exp(t)),
theta=0..2%Pi):

> prl := textplot({[1.5,1.7, ‘m=1‘]1, [3,2, ‘m=2‘],
[4.2,3.8, ‘m=3‘1}, align=LEFT):

> pr2 := textplot({[12,5.2, ‘m=4‘]1, [15,10, ‘m=5°],
[20,18, ‘m=6‘1}, align=LEFT):

> display({aml, am2, am3, prl},scaling=CONSTRAINED);

display ({am4, am5, am6, pr2},scaling=CONSTRAINED);

4.2. ADVANCED METHODS FOR STIFF SYSTEMS 155

/\K‘l
-5 \j 15] 20 25

All roots for z outside of the closed locus are less then one in magnitude.
Thus, the absolute stability region is the exterior of the closed curves.
For k£ =7 — 15, these methods are not stiffly stable.

e LSODE the Livermore Stiff ODE solver

LSODE is the ”Livermore Solver” of Hindmarsh [Hil]. The code is
based on the Nordsieck representation of the fixed step size backward
differentiation formalae methods. It emerged from a long development
starting with Gear’s DIFSUB program in 1971. Its exemplary user in-
terface and ease of application has been a model for much subsequent
ODE software. The method allows us to choose between analytically

156 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

supplied Jacobian or numerically computed finite difference approxi-
mations as well as between full or banded linear algebra. Maple also
contains this method in its option

type = numeric and method = lsode

The various choices of 1sode method we refer to the on-line help system
for immediate help. Another reference on the 1sode procedure is [Hi3].

EXAMPLE 4.3. Let us solve the two-dimensional differential equa-
tion system of Van der Pol

y(t)=p(l =2y —z
where s a positive constant.
We choose the initial condition as follows: xz(0) = —3, y(0) = 2
and £(0) =0, y(0) = 1/2, and let the parameter p = 0.2,1,5,10 etc.
Plot the phase trajectories in the plane xy and plot x(t) with respect
to t.

It is possible to show, that the problem does have a unique limit
cycle, it has a stable periodic solution whose period and amplitude
depend on the parameter pu.

We investigate the solutions by Maple.

> with(plots):
> vderpol := diff(x(t), t) = y(t),
diff(y(t), t) = -x(t)+epsilon*(1-x(t)~2)*y(t);

0

vderpol := %X(t) = y(t), 5 y(t) = —x(t) +e (1 —x(t)*) y(?)

> dics := x(0)=0, y(0)=1/2;
ics :=x(0) =0, y(0) = =

> epsilon := 0.2:

> f0 := dsolve({vderpol, ics}, {x(t), y(t)},
type=numeric, output=listprocedure):

> fx0: = subs(f0, x(t)): £fy0 := subs(f0, y(t)):

> fx0(15); fy0(15);

4.2. ADVANCED METHODS FOR STIFF SYSTEMS

.9945526048666897
—1.036824196439655

> odeplot(f0, [x(t), y(t)], 0..50, numpoints=500);

{
\?

> epsilon := 1:
> F1 := dsolve({vderpol, ics}, {x(t),y(t)},
type=numeric, method=mgear[adamspc]);

> odeplot(F1, [x(t), y(t)], 0..30, numpoints=500);

L

157

158 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS
> epsilon := b:

> F2 := dsolve({vderpol, ics}, {x(t), y(t)},
type=numeric, method=1lsode[backfunc]):

> odeplot(F2, [x(t), y(t)], 0..30, numpoints=500);

N

> epsilon := 10:

> F3 := dsolve({vderpol, ics}, {x(t), y(t)},
type=numeric, method=1lsode[adamsfull]):

> odeplot(F3, [x(t), y(t)], 0..30, numpoints=500);

10t

v

4.3. DELAY DIFFERENTIAL EQUATIONS 159

We see that this equation is easily integrate for moderate values of p.
But if we choose > 100, the problem might become difficult. It turns
out that the period of the solution increases with .

4.3. Delay differential equations

Delay differential equations are equations with "retarded arguments”
such as

y (1) = fty(t),y(t = 7)) (4.21)
or of even more general form
y,(t) = f(tay(t)ay(t_Tl)ay(t_TZ))' (4'22)

Here the derivative of the solutions depends also on its values at pre-
vious points.

Retarded arguments are present in many models of applied math-
ematics. They can also be the source of interesting mathematical phe-
nomena such as instabilities, limit cycles, periodic behaviour.

e The existence of the solution

For equations of the type (4.21) or (4.22), where the delay values
t — 17 are bounded away from ¢ by a positive constant, the question of
existence is an easy matter: suppose that the solution is known, say

y(t) = () for ty—7 <t <ty (4.23)

Then y(¢t — 7) is a known function of ¢ for ¢y < ¢ < ty + 7 and (4.21)
becomes an ordinary differential equation, which can be treated by
known existence theories. We then know y(t) for tg < t < ¢ty + 7 and
can compute the solution for ¢y + 7 < t < ty + 27 and so on. This,
so-called "method of steps” then yiels existence and uniqueness result
for all t. For more details see [BeCo] and [Dri].

ExXAMPLE 4.4. Let us consider the equation
y (1) = —y(t — 1), y(t)y=1 for —1<t<0. (4.24)
Procceeding as describe above, we obtain

y(t)y=1—t for 0<t<1

(t—1)°
2!
(t—1* (t—1)

yt)y=1—t+ TR for 2<t<3, etc.

y(t)y=1—1t+

for 1<t<2

160 4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

It can be observed, that despite the fact that the differential equa-
tion and the initial function are C'*°, the solution has discontinuities in
its derivatives. This results from the fact that the initial function does
not satisfy the differential equation. With every time step 7, however,
these discontinuities are smoothed out more and more.

Our next example clearly illustrates the fact that the solutions of a
delay equation depend on the entire history between t, — 7 and ¢y, and
not only on the initial value:

EXAMPLE 4.5. Let us solve the equation
y (1) = —1.4y(t —1) (4.25)

supposing that the solution is known on the intervals
(a) ®(t) =0.8 for —1<t<0,
(b) ®(t) =08+t for —-1<t<0,
(¢c) ®(t)=08+2t for —-1<t<0.

e Application of numerical methods

If we apply the Runge-Kutta method (Ch.2., formulas (2.32)) to a
delay equation (4.21) we obtain

0" =y + 0y aii f(tn + cih, g y(tn + cih — 7))
j

i = +h D bif (b o+ b g, ylin + esh = 7).
J

But which values should we give to y(t, + c¢jh — 7)7 If the delay is
constant and satisfies 7 = kh for some integer k, the most natural idea
is to use the back-values of the old solution

4 vt b st oo (420
J

Yn+1 = Yn + h Z b]f(tn + tha g](n), 7](n)) (427)
where

g](-n_k) if n>k.
This can be interpreted as solving successively

y’(t) = f(tay(t)a (I)(t - T))

4.4. EXERCISES 161

for the interval [to, tp + 7], then

y (8) = f(t,y(), =(t))
2(t) = f(t =7 2(1), ®(t - 27))
for the interval [ty + T, to + 27|, then

y (t) = f(t,y(t), 2(1))
2(t) = ft —7,2(t), v(t))
l/,(t) = f(t—27,v(t), ®(t — 37))

for the interval [ty + 27, to+37], and so on. This is the perfect numerical
analog of the "method of steps” mentioned above.

It can be proved, that if a;;, b;, ¢; are the coefficients of a p-th
order Runge-Kutta method, then (4.26), (4.27) is convergent of order
P

Unfortunately, this method does not allow us to change the step
size arbitrarily, and an application to variable delay equations is not
straightforward. If complete flexibility is desired, we need a global
approximation to the solution. There is no use in having approxima-
tions only at a sequence of points. Therefore, choice methods for these
problems are multistep methods of Adams or BDF type or continuous
Runge-Kutta methods.

4.4. Exercises

1. Obtain a numerical solution of the system of differential equa-
tions
r = —2000x 4 999.75y + 1000.25, z(0) =0
y =z -y, y(0) = -2
by
: a) the classical 4th order Runge-Kutta method,
: b) direct application of the Trapezoidal method.

Use a variety of stepsizes. Solve the equations exactly. Explain
what happens.

2. Let us examine the so-called simplified ” Brusselator” model which
have important applications to the interpretation of biological
phenomena

z(t)=A+a2%— (B+ 1)z

’

y (t) = Bx — 2%y.

162

4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

The system has one critical point: x = A, y = B/A. For B >
A? + 1 it has a limit cycle which, by numerical calculations, is
seen to be unique. Plot the phase-trajectory with different A
and B: A=1, B =3, etc.

. Let us consider the equations of the spherical pendulum in spher-

ical coordinates:
" COST/) ror

¢ = _QSimp¢ v

Y = 52'711/)0051/)(¢I)2 — sina.
Plot the solution curve in 0 < ¢ < 20 and 0 < ¢t < 100.

. Let us solve the ”full Brussellator” model and plot the two-

dimensional projections of the solutions.

g (t)=1+2% — (24 1)z
y (1) =2z —a%

Z(t) = —x2+ a.

The system posses a critical point at © = 1, y = 2z = «a. The
condition for stability is @ < 1.21922. Thus when « increases
beyond this value, there arises a limit cycle which exists for all
values of o up to approximately 1.5. When « continues to grow,
the limit cycle ”explodes” and © — 0 while y and z — o0. So the
system has a completely different behavior from the simplified
model.

. A famous chemical reaction with a limit cycle in three dimensions

is the ”Oregonator” reaction, with a periodic solution describing
the Belusov-Zhabotinskii reaction.

z(t) =77.27(y + z(1 — 8.375 x 10 %z — y)))

Y) = (e = (14 2)y)

2 (t) = 0.161(z — 2)

z(0) =1, y(0) =2, 2(0) =3, ¢=30,60,90,...,360.

This is an example of a stiff differential equation whose solutions
change rapidly over many orders of magnitude. It is a challenging
example for numerical codes.

4.4. EXERCISES 163

6. The chemical reaction of Robertson
z (t) = —0.04z + 10"y

y (t) = 0.04z — 10*yz — 3 x 107y?
Z(t) = 3% 107y

z(0) =1, y(0) =0, 2(0) =0,

one of the most prominent examples of the stiff literature. Hind-
marsh discovered that many codes fail is £ becomes very large
(10! for example). The reason is that whenewer the numerical
solution of y accidentally becomes negative, it then tends to —oo
and then run ends by overflow. Therefore let us try to choose
tour = 1,10,10%,103, ..., 10",

7. Let us consider the famous Lorenz model which was established
for the weather prediction:

z (t) = —ox + oy

y(t)=—zz4+rs—39

2 (t) = zy — bz

where o, r and b are positive constants. Plot the solution curve
in the planes xy and zy, if b = 8/3, 0 = 10 and r = 28 and with
the initial value x = —8, y = 8, 2 = r — 1. The solution curve
looks pretty chaotic.

8. An example from population dynamics: Let y(t) represent the
population of a certain species, whose development as a function
of time is to be studied. If we assume the growth rate to depend
on the population of the preceding generation, we get a delay
differential equation

y (1) = (a—y(t—1)y(t).

All solutions with initial value y(0) > 0 tend asymptotically
to a as t — oo. This equation has an equilibrium point at
y(t) = a. This point is locally stable if 0 < a < 7/2. It has
two real solutions iff a < 1/e = 0.368, which makes monotonic
solutions possible; otherwise they are oscillatory. For a > m/2
the equilibrium solution is unstable and gives rise to a peri-
odic limit cycle. Let us integrate the problem for 0 < ¢ < 10
with @ = 0.35, 0.5, 1., 1.4, 1.6, and with initial values y(t) =
0, -1 <t<0, y(0)=0.1.

164

9.

10.

4. STIFF AND DELAY SYSTEMS OF DIFFERENTIAL EQUATIONS

Predator-prey model. Consider, for example, foxes and rabbits
in a closed forest. We will denote by z(¢) and y(¢) the population
of the prey and predator, respectively, at time ¢. Besides some
assumptions, we are led to the dynamical system consists of the
two-dimensional differential equation system

’

x (t) = ar — bxy

y () = —cy + day
where a, b, ¢, d > 0. The prey are the only food source avail-
able to the predator. Thus, if z = 0, the predator population
decreases exponentially at the rate c. If y = 0, the prey popula-
tion grows exponentially to infinity at the rate a. b and d are the
measures of the effect of the interaction between the two species.
This equations are known as the Lotka-Volterra equations.
Discuss the solution of the system

T =x— 0.5xy

y = —0.75y + 0.25zy

for x and y positive. Plot the phase trajectories with different
initial values. Plot the graph of the prey and predator popula-
tions with time.

Quasiperiodic motion on a two-dimensional torus. The under-
lying three-dimensional system consists of the differential equa-
tions

!

7' = (a—)z — cy +x(z + d(1.0 — %))

!

y =cx+ (a—Db)y+y(z+d1.0—2?)

Z =az— (22 + 92 + 22).
The parameter values are a = 2.105, b = 3.0, ¢ = 0.25, and
d = 0.2. Let the time step be in the numerical simulation 0.1
time units. Show the trajectory after 5000 and 20000 iterations.
In the last case the torus will more densely be covered by the
trajectory.
For other economical model we refer to [Lo].

[AB]
[BeCo]
[BG]

[BD]

[Bu]
[CL]
[Co]
[CB]
[DB]
[Dri]
[EW]
[Gel]
[Ge2]

[Ge3]

[Ged]
[H1]

[H2]

[HW]

Bibliography

Abel, M.L. and Braselton, J.P., Differential Equations with Maple V. AP
Professional, Boston, 1994.

Bellmann, R. and Cooke, K.L., Differential-Difference Equations, Academic
Press, 1963.

Birkhoff, G. and Gian-Carlo, Rota, Ordinary Differential Equations. John
Wiley and Sons, Inc., New York, 1989.

Boyce, W.E. and DiPrima R.C., Elementary Differential Equations and
Boundary Value Problems. John Wiley and Sons, Inc., New York, (5th ed.),
1992.

Butcher, J.C. The Numerical Analysis of Ordinary Differential Equations.
John Wiley and Sons, Inc., New York, 1987.

Coddington, E.A. and Levinson, N., Theory of Ordinary Differential Equa-
tions. McGraw-Hill Book Company, Inc., New York, 1955.

Collatz, L., The Numerical Treatment of Differential Equations. Springer-
Verlag, Berlin-Heidelberg-New York, 1966.

Conte, S.D. and de Boor, C., Elementary Numerical Analysis: An Algorith-
mic Aproach. McGraw-Hill Kégakusha, Tokyo, (3rd ed.). 1980.

Dahlquist, G. and Bjork, A., Numerical Methods. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey, 1994.

Driver, R.D., Ordinary and delay differential equations, Applied Math. Sci-
ences 20, Springer Verlag, 1977.

Eldén, L. and Wittmeyer-Koch, L., Numerical Analysis, An Introduction.
Academic Press, Inc., Boston, 1990.

Gear, C.W., Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1971.

Gear, C.W., The automatic integration of ordinary differential equations.
Comm. ACM 14 (Mar. 1971), pp. 176-179.

Gear, C.W., The automatic integration of stiff ordinary differential equa-
tions, Information Processing 68, A.J.H. Morrell, Ed., North Holland, Am-
sterdam, 1969, pp. 187-193.

Gear, C.W., The numerical integration of ordinary differential equations,
Math. Comp. 21, 2 (Apr. 1967), pp. 146-156.

Hairer, E., Ngrsett, S.P. and Wanner, G., Solving Ordinary Differential
Equations I. Nonstiff Problems. Springer Verlag, Berlin, (2nd ed.), 1991.
Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff
Problems and Differential-algebraic Equations. Springer Verlag, Berlin,
1991.

Hall, G. and Watt, J.M. (Eds.), Modern Numerical Methods for Ordinary
Differential Equations. Clarendon Press, Oxford. 1976.

165

BIBLIOGRAPHY

Hamming, R.W., Numerical Methods for Scientists and Engineers. McGraw-
Hill Book Company, Inc., New York, (2nd ed.) 1973.

Hartman, Ph., Ordinary Differential Equations. John Wiley and Sons, Inc.,
New York, 1964.

Hammerlin, G. and Hoffmann, K-H., Numerical Mathematics. Springer-
Verlag, New York Inc., 1991.

Heck, A., Introduction to Maple. Springer-Verlag, New York, 1993.
Henrici, P., Discrete Variable Methods in Ordinary Differential Equations.
John Wiley and Sons, Inc., New York, 1962.

Higham, N. J., Accuracy and Stability of Numrical Algorithms, SIAM,
Philadelphia, 1996.

Hildebrand, F.B., Introduction to Numerical Analysis. McGraw-Hill Book
Company, New York, 1974.

Hindmarsh, A.C., LSODE and LSODI, two new initial value ordinary dif-
ferential equation solvers, ACM-SIGNUM Newsletter 15, 1980, pp. 10-11.
Hindmarsh, A.C., GEAR: ordinary differential equation system solver,
UCID-30001, Rev. 2, LLL, Livermore, Calif. 1972.

Hindmarsh, A.C., ODEPACK, a Systemized Collection of ODE Solvers, In:
Scientific Computing, R.S. Stepleman et al. (eds.) North-Holland, Amster-
dam, 1983.

Isaacson, E. and Keller, H.B., Analysis of Numerical Methods. John Wiley
and Sons, Inc., New York, 1966.

Iserles, A., A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge Text in Applied Mathematics. Cambridge Univ. Press.,
1996.

Kamke, E., Differentialgleichungen, Lésungsmethoden und Losungen, Vol.
1. Leipzig, 1959.

Kopchenova, N.V. and Maron, I.A., Computational Mathematics, Worked
Ezamples and Problems with Elements of Theory. Mir Publishers, Moscow,
1975.

Lambert, J.D.; Numerical Methods for Ordinary Differential Systems. John
Wiley and Sons, Ltd., Chichester, 1991.

Lorentz, H.W., Nonlinear Dynamical Economics and Chaotic Motion.
Springer Verlag, Berlin-Heidelberg, 2nd Ed., 1993.

Nordsieck, A., On numerical integration of ordinary differential equations,
Math. Comp. 16, 1 (Jan. 1962), pp. 22-49.

Press, W.H., Teukolsky, S.A., Vatterling, W.T. and Flannery, B.P., Numer-
ical Recipes in C. The Art of Scientific Computing. Second Ed., Cambridge
Univ. Press, 1992.

Ralston, A. and Rabinowitz, P., A First Course in Numerical Analysis.
McGraw-Hill Book Company, New York, 1978.

Schwarz, H.R., Numerical Analysis, A Comprehensive Introduction. John
Wiley and Sons, Ltd., Chichester, 1989.

Shampine, L.F. and Gordon, M.K., Computer Solution of Ordinary Differ-
ential Fquations. W.H. Freeman, San Francisco, 1975.

Stetter, H.J., Analysis of Discretization Methods for Ordinary Differential
Equations. Springer Tracts in Natural Philosophy. Vol. 23, Springer Verlag,
Berlin, 1973.

BIBLIOGRAPHY 167

Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis. Springer

Verlag, Berlin, 1980
Yakowitz, S. and Szidarovszky, F., An Introduction to Numerical Computa-

tions. Macmillan Publ. Comp., New York, 1986.

