
Spatial Databases

1

Spatial Databases
Lecture notes

for Geoinformatics/Cartography Master Students

Dr. UNGVÁRI Zsuzsanna

assistant professor

ELTE Institute of Cartography and Geoinformatics

Spatial Databases

2

Contents
Foreword ... 4

Chapter 1: Installing pgAdmin4, PostgreSQL and POSTGIS, a short introduction to pgAdmin4 5

Importing a spatial database .. 12

Chapter 2: DBeaver, the free universal database tool .. 18

Installing DBeaver on Windows is straightforward: ... 18

DBeaver User Interface ... 19

Database Stucture in DBeaver ... 20

Querying in the SQL Console ... 25

Chapter 3. Basics SQL .. 27

Chapter 4. Key to basics SQL .. 39

Chapter 5: Comparision sheet to PostgreSQL and MySQL .. 43

Chapter 6. The PostGIS functions ... 47

Getting familiar with PostGIS ... 47

Representing Points, Lines and Polygons in WKT ... 47

Geometry type, Dimension, Coordinate dimension and Number of Nodes 50

Advanced in PostGIS .. 52

Projections, Spatial Reference Identifiers ... 52

Measurements .. 53

Bounding boxes and bounding geometries .. 57

Accessing other geometric information ... 58

Geometry validation .. 59

Creating geometries ... 59

Understanding spatial relations – Geoprocessing .. 60

Combining geometries .. 61

Others .. 62

Conversion function in PostGIS .. 62

Chapter 7: Practices in POSTGIS ... 63

Chapter 8: Key ... 70

Chapter 9. Data import ... 80

Creating a new database, and importing data from SQL files ... 80

Adding extensions (PostGIS, PostGIS Raster, PostGIS Topology) .. 80

Uploading Data into a PostgreSQL Database from CSV – Using an Existing table structure 81

Uploading Data to a PostgreSQL database from a CSV – Missing table structure 86

Creating a backup .. 88

Upload a table from an another one. ... 89

Data conversion ... 89

Spatial Databases

3

The Geography data type .. 91

Shapefile import with PostGIS Bundle ... 92

Troubleshooting FAQ .. 94

Chapter 10: Key... 101

Spatial Databases

4

Foreword

These lecture notes were created for the Spatial Databases course in the Geoinformatics and Cartography

Master’s programme at Eötvös Loránd University, Budapest, Hungary. It also includes an introductory

section on database management and queries. Based on the author’s experience, the best way to master

SQL is through extensive practice with queries, clauses, functions, etc. Therefore, this note is consists

of the following parts:

• A description of basic SQL with several practical examples.

• A chapter on PostGIS, including theoretical concepts, function descriptions, and numerous

examples.

• Practical guidance on installing PostgreSQL and PostGIS, as well as uploading databases and

performing other related tasks.

The author strongly recommends readers to have some prior experience with QGIS or ArcGIS, as it

simplifies the understanding of spatial databases.

The tasks in these note are based on PostgreSQL 13 and PostGIS 3.1. Newer versions may have

some differences, so please refer to the official documentation for updates.

I wish you an enjoyable learning experience!

the author

Reviewed by Dr. Gede Mátyás

Spatial Databases

5

Chapter 1: Installing pgAdmin4, PostgreSQL and POSTGIS,

a short introduction to pgAdmin4

„pgAdmin is the most popular and feature rich open source administration and development platform

for PostgreSQL, the most advanced open source database in the world”.1 However, pgAdmin itself is

only a database management tool. To use it with a PostgreSQL database, PostgreSQL must be

installed alongside pgAdmin. I recommend using the following website to install these programs.

Install the available newest version. (Note: when I wrote these lecture notes, I used the PostgreSQL

version 13 and pgAdmin4. If you will found some differences in syntax or in pictures, that caused by

the different software versions. In this case, please check the documentation!)

https://www.postgresql.org/download/windows/

Click on Download the installer, then select your computer’s operating system and the software

version.

1 https://www.pgadmin.org/

https://www.postgresql.org/download/windows/
https://www.pgadmin.org/

Spatial Databases

6

The installion process is straightforward:

1. Click Next through the setup and accept the default options.

2. Set the port number. The default is 5432. If it is not already in use, keep it.

3. Choose a username and a password (for example: postgres/appletree). Do not forget these

credentials!

Finally, you will set up the PostgreSQL DB with pgAdmin. While pgAdmin is a professional, robust

and stable software, its user interface is not very user-friendly. Therefore, in the next chapter, the

author will suggest an alternative solution (DBeaver).

However, if you prefer or are more familiar with pgAdmin, you can still use it. Keep in mind that

some tasks in this guide are written specifically for DBeaver.

To handle spatial data, you need to install the PostGIS extension. Please visit the following website to

download and install PostGIS on Windows using one of the two methods below:

Method 1: Download and Install the Setup File:

1. Open this website: https://download.osgeo.org/postgis/windows/

2. Find the appropriate version of PostGIS and download the setup file (EXE).

https://download.osgeo.org/postgis/windows/

Spatial Databases

7

3. The installer and follow the instructions to complete the installation.

Method 2: Install via Application Stack Builder

1. PostgreSQL includes the Application Stack Builder. Open it.

2. Select your PostgreSQL version, and click Next.

Spatial Databases

8

3. Expand the Spatial Extensions list and check PostGIS Bundle.

4. Choose the folder where you want to download the PostGIS Bundle.

5. Accept the license agreement, then review and confirm the components to be installed.

Spatial Databases

9

6. Set the destination folder to your PostgreSQL directory and confirm.

7. The installation process will begin. Please wait until it is completed.

Now, you are ready to start working with pgAdmin.

pgAdmin quick start guide

The following sections present some basics functions of pgAdmin.

Starting pgAdmin

First, launch pgAdmin. The initial step is logging in. You must remember the username and password

you set during the installation process. After entering your password, you will gain access to your

Spatial Databases

10

databases. This is the welcome screen:

Navigating the Interface

In the left column (Object Explorer), open the Servers menu. Under Servers, you can find the

Databases. By default, there is always an empty, initial DB called postgres.

Importing the Library Database

Now, let’s import the library DB from library.sql file.

Create a New Database

• Right-click on Servers, then select Create → New Database.

• A dialog window will appear.

• Enter a name for the database and click the Save button.

• The database is now created.

Spatial Databases

11

Executing SQL Queries

• Right-click on the library database and select Query Tool.

• Open the library.sql file in a text editor (e.g., Notepad++).

• Copy all the text from the file.

• Paste the copied text into the Query Tool window.

• Click the Play button to run the queries.

This set of queries will create the necessary tables in the library database, and populate them with

data. Once the process is complete, you should receive the message:’The query was successful’.

For a detailed description of the library database structure and its tables, refer to the Appendix.

Spatial Databases

12

Importing a spatial database

In the following chapters, we will be working in DBeaver, a universal database management tool.

However, DBeaver has a weakness: importing process of large size SQL files (30–50MB +) often

results int the error message „importing process has failed”. To avoid this issue, I recommend using

pgAdmin to import hungary.sql, our sample spatial database for this semester. pgAdmin is a more

stable and robust tool for handling large imports.

Creating the Hungary Database

1. Open pgAdmin.

2. Right-click on Databases → Create → Database.

3. Enter hungary as the database name and click Save.

Adding the PostGIS Extension

Since the hungary DB contains spatial data, you must first enable the PostGIS extension before import

ing the SQL file.

1. In pgAdmin, locate the Extensions section under your database.

2. Right-click on Extensions → Create → Extension

3. In the dialog window, search for PostGIS and select it.

4. Click Save to add the extension.

Importing the hungary.sql File

1. Open the Query Tool:

a. Right-click on the hungary database and select Query Tool.
b. Alternatively, you can click on the barrel icon in the toolbar or access it via Tools →

Query Tool.
2. Open hungary.sql in a text editor (e.g., Notepad++).

Spatial Databases

13

3. Copy all the text from the file.

4. Paste the copied text into the Query Tool window.

5. Click the Play button to execute the queries. Wait for 20–30 seconds while the database is

created and populated with data.

Viewing Databases in pgAdmin

Once the database is imported, you will see the following structure in the database tree. The Schemas

contains the tables of the DB. To view a table, select it and click on the table icon above the Object

Explorer.

A select * query will run automatically, displaying all columns (fields) and rows (records). This is

the Data Output section.

Spatial Databases

14

Viewing Databases in pgAdmin

If the table contains geometry data, click on the geometry column header to open the Geometry

Viewer. If the geometry projection is EPSG: 4326 (Plate Carée projection on WGS84 ellipsoid), an

OpenStreetMap (OSM) basemap will appear in the background. This projection works with

geographic coordinates (degrees). If the projection uses meter units, such as in the motorway table, the

OSM basemap will not be visible.

To exit the Geometry viewer, returnn the Data Output tab.

Spatial Databases

15

Editing Data in Tables

To modify data, click the small pencil icon in the field header.

A small editor window will open. Make the necessary changes.

Click Save the Data Changes. in the Data Output toolbar.

Running Queries

Open the Query Tool as described earlier. Type your SQL query. Click the Play button to run it.

Creating a New Table

Right click on Tables → Create → Table In the first tab, enter the table name. Navigate to the

Columns tab and add field name, data type and other properties (e.g primary key, NULL constraints,

etc.). The SQL tab will display the generated SQL query. Click Save to create the table.

Spatial Databases

16

Adding New Column

Expand the Columns section in Object Explorer. Right click on → Create → Column. In the

dialog window, enter the column name (General tab); select the data type (Definition tab). Configure

additional properties if needed. The SQL tab will show the generated SQL query. Click Save to apply

changes.

Spatial Databases

17

Deleting Columns or Tables

To remove a column or table: right-click on the column/table name and select Delete.

Modifying Column Properties

To change column properties (e.g., name, type): Right-click on the column name and select

Properties. Modify the desired attributes in the dialog window.

Refreshing the Database View

If changes are not visible, then right-click on Tables or Database and select Refresh.

Spatial Databases

18

 Chapter 2: DBeaver, the free universal database tool

DBeaver Community is a free cross-platform database tool for developers, database administrators,

analysts, and everyone working with data. It supports all popular SQL databases like MySQL, MariaDB,

PostgreSQL, SQLite, Apache Family, and more.2

Advantages:

- Basic support for relational databases: MySQL, SQL Server, PostgreSQL and others

- Data Editor

- SQL Editor

- Database schema editor

- Basic ER Diagrams

- Basic charts

- Data export/import

- Task management

- Database maintenance tools

We will use this software to handle spatial databases (PostgreSQL+PostGIS).

You can download it from here: https://dbeaver.io/download/

Windows installation:

Installing DBeaver on Windows is straightforward:

1. Download the installer from the link above.

2. Run the setup file.

3. Click Next and accept the default settings when prompted.

Creating a New Connection in DBeaver

When you start DBeaver for the first time, you will see the New Connection wizard. You can also

access this menu anytime via Database → New Database Connection.

Setting Up a PostgreSQL Connection

1. Select PostgreSQL and click Next.

2. Enter the following details: Server name localhost; port 5432 (default), username and password

(same as in pgAdmin)

3. Check the Show all databases option.

4. Click Finish to complete the setup.

Note: The first time you connect to PostgreSQL, DBeaver will download the necessary drivers. Allow

DBeaver to proceed with the download.

2 https://dbeaver.io/

https://dbeaver.io/download/
https://dbeaver.io/

Spatial Databases

19

DBeaver User Interface

DBeaver has a user-friendly interface, where frequently used menus are easily accessible. The figure

below illustrates keyy components of the user interface. Database Navigator displays the DBs, you

are connected to. Editor allows you to browse tables, view data, access the ER Diagram, and run

queries.

A double-click in the Database Navigator opens the corresponding database, table, or column sheet.

Spatial Databases

20

Database Stucture in DBeaver
When you open a database sheet, you can modify the database name and collation (character encoding,

case sensivity, accent sensitivity, aplhabetical order based on language). The default encoding is UTF-

8.

Spatial Databases

21

When you open a database, two important submenus appear in the navigation tree:

1. Schemas → public (default database schema). A Schema defines how data is organized within

a relational database. It includes tables, fields, data types, and their relationships.

2. Extensions displays additional modules installed on your system. PostGIS is a key extension

for handling spatial data (geometries).

To add a new extension: right-click on Extensions → Create New Extension. If PostGIS is

installed, find it in the list and enable it.

Viewing and Managing Tables in DBeaver

Spatial Databases

22

If you open Schemas, you can access Tables. To see the table details, make a double-click on table

name or right click and View Table. This opens the table sheet, which consists of three tabs:

1. Properties: Table structure, settings, and metadata.

2. Data: View and edit table records.

3. ER Diagram: Visual representation of table relationships. The ER Diagram provides an

overview of database structure: it displays tables, columns, data types, primary and foreign keys.

If the database contains primary and foreign keys, they will be represented in the ER Diagram.

Spatial Databases

23

Working with Table Columns

The Columns tab displays field names, data types, encoding settings, and NULL constraints. There are

some submenus in the right of Editor window.

1. Tables: To create a new column: Right-click → Create new column. Here you can set the

fields of the table with data type, character encoding and Null or Not Null values.

Always Save changes after modifying the table structure!

Constraints: Primary key or unique key ensures data integrity.

Foreign keys: Defines relationships between tables.

Cascade delete and update: If a primary key value is modified or deleted, related foreign key records

will also be updated/deleted.

Restricted delete and update: Prevents modifications or deletions in the parent table if they would

leave orphaned foreign keys.

Indexes: Improves search performance.

Spatial Databases

24

Editing Table Data

Each cell in the Data tab is editable. If you made any modifications, do not forget to save the

changes! After modifying data, always click Save at the bottom of the Editor.

Filtering Data

Spatial Databases

25

Below the Properties and Data tabs, you can filter data using SQL conditions.

select * from katalogus where CONDITION

The first part (select * from katalogus) is pre-written, you only need to fill in the WHERE

condition. Additional filtering options:

• Sort data (ascending/descending) → Right-click the column header.

• Filter by column value → Click the funnel icon in the column header.

Querying in the SQL Console

To execute SQL queries, open the SQL Console: It is available in the Menu bar → SQL Editor

→ Open SQL Console, or right-click on Tables → Open SQL Console or Icon bar → Click

on the SQL icon → Open SQL Console

Important note: Always set the focus on Schema Public before running queries, otherwise you may get

a "failed" error message.

Spatial Databases

26

To execute a query, click the orange Play button.

Now, let’s try an SQL query in the next Chapter.

Spatial Databases

27

Chapter 3. Basics SQL

SQL Basics 1

Use the Chapter 4. to check the correctness of your queries.

1. Get familiar with the library database! Open each data tables and review its content! At the end

of these lecture notes, you will find a reference and explanation for all columns.

SQL is a standard language for querying, modifying and manipulating databases.

An SQL statement looks like this:

select COLUMN_NAME(S) from TABLE_NAME

After select, write the field name(s), or use * to retrieve all column in the result table.

2. List the identifier, purchase date, and the price for all publications from the catalogue table!

Ordering in the result table

In ascending order:

select COLUMN_NAME from TABLE_NAME order by COLUMN_NAME asc

or simply:

select COLUMN_NAME from TABLE_NAME order by COLUMN_NAME

In descending order:

select COLUMN_NAME from TABLE_NAME order by COLUMN_NAME desc

3. List the ISBN number, title and the author from the publications table, in descending order by

title!

The WHERE condition

If you want to filter the data, use a where condition in your query.

select COLUMN_NAME from TABLE_NAME where CONDITION order by COLUMN_NAME

A condition consists of a column name, a relational operator and a value. Example:

ca_price>800

Relational operators include: <, >, <=,>=, =, and <> (not equal).

Spatial Databases

28

Values can be numbers (integer e.g. 12 or float/real e.g. 12.345), or text (e.g. 'this is a text type data')

and dates (e.g. '2024-09-15' or '2024.09.15').

4. List the ISBN number and the year of publication from the publications table!

5. Query those catalogue items that cost more than 3,000 Forints. List the inventory number and

price!

6. Query those catalogue items, that are cheaper than 3,000 Forints. Print the inventory number,

the price and the publication group code. Order the results by price in descending order.

7. Query the primary key and the title of publications that do not belong to publication group

number 3!

AND / OR operators

Sometimes you need to apply multiple conditions. Use and and or operators combine them.

and: All conditions must be true.

or: At least one condition must be true.

select COLUMN_NAME from TABLE_NAME where CONDITION1 and CONDITION2
select COLUMN_NAME from TABLE_NAME where CONDITION1 or CONDITION2

Exercises

8. Print the data of catalogue items that are more expensive than 9,000 Forints and are marked as

non-borrowable!

9. Print all data of reserved items from „borrowing” table!

10. Print all data of catalogue items that were purchased before 2004-03-01!

11. Print data of loans (borrowings) that were made after 2004-03-01!

12. List the inventory number, publication code, and status code of catalogue items, belonging to

publication group 4!

13. List the name, job and date of entering of the librarians, ordered by the date in ascending order!

14. Print all data from the librarian table. Order the result by job in ascending order, and by the

librarian name in descending order.

DISTINCT

The distinct keyword in SQL is used to eliminate duplicate values in the result set. It ensures that

only unique (non-duplicated) records are returned for the columns specified in the query.

select distinct COLUMN_NAME from TABLE_NAME

15. Query the distinct job titles from the librarian table! (Every job should appear only once.)

Practice

16. Query librarians with the job title „Storekeeper” and „Customer Service Representative”. Order

the results by date of entering in descending order!

17. List the librarians whose salary is more than 50,000 Forints whose job is „Storekeeper”. Order

the results by date of entering in ascending order.

18. List librarians whose salary is less than 60,000 or more than 100,000.

Spatial Databases

29

19. List librarians who work in the department 2 or 5.

20. List the departments that are not located in Budapest!

21. List the department's locations from the department table! Every locations should appear only

once!

BETWEEN / NOT BETWEEN operators

The between operator selects values within a given range. The values can be numbers or dates.

The between operator is inclusive: beginning and end values are included.

not between returns the values that are outside of the given range.

Examples:

where column_name between value A and value B
where column_name not between value A and value B

22. List the librarians whose salary is between 50,000 and 100,000!

23. List the librarians whose salary is not between 50,000 and 100,000!

IN / NOT IN operators

The in operator allows you to specify multiple values in a where clause. not in returns the values

that are not in the specified list.

where column_name in (value A, value B)
where column_name not in (value A, value B)

24. List the librarians whose job is Storekeeper and Team Leader!

25. List the librarians whose job is neither Storekeeper nor Team Leader!

Testing for NULL value (no data value)

The is null operator is used to check if a column contains a null value. It is commonly used in

where clauses to filter records where a column has no value (i.e., it is null).

is not null returns those records where the column contains a value.

where column_name is null
where column name is not null

SQL ALIASES

SQL aliases are used to temporarily rename a column or table. They are often used to make column

names more readable and exist only for the duration of the query.

column_name AS new_column_name

26. Which publications were returned? (Check where there is a date in bo_indate column in the

borrowing table?)

27. Display the name, the job and the income (salary+premium calculates as a percentage of salary)

of the librarians! Rename the column to salary.

Spatial Databases

30

LIKE / NOT LIKE Operators

The like operator is used in a where clause to search for a specified pattern in a column.

• % represents zero, one, or multiple characters

• _ represents a single character

’NOT LIKE’ returns the results that do not match the specified pattern.

where column_name like 'j%'
where column_name not like 'j%'

28.List the names of librarians whose names start with J!

29. List the names of librarians whose second character is A!

30. List the names of librarians whose last character is R!

31. List the names of department that contain ’geo’!

Let's do these excercises

32. List the librarians whose job is Storekeeper and Team Leader and whose salary is between

60,000 and 100,000!

33. List the librarians who do not receive a salary!

34. List the publications whose title contains ’atlasz’!

35. Create a list about the catalogue items with a price between 10,000 and 30,000 and a purchase

date before 2002-01-01!

36. List the publications that have no author and were published in the year 2000.

Simple functions

MySQL offers many built-in functions that help in working with different kinds of data such as text,

number (integers and floats) and dates.

What does a function look like?

functionname(value1, value2, etc.)

Examples:

Upper(’dog’) → and the result is: DOG.
Lower(’CAT’) → cat

Lower → Converts a string to lowercase,

Upper → Converts a string to uppercase.

37. Display the titles of publications in lowercase, and the publishers in uppercase!

CONCAT

Concat() joins two or more strings into one.

Spatial Databases

31

Example:

Concat(’large ’,’black ’,’dog’) → large black dog

38. Create a list of borrowers from Eger! Show the name, the identifier (ID), and the date of entering.

Add the word ’CUSTOMER’ before each name.

CHAR_LENGTH

Char_Length() returns the number of characters in a string.

Char_Length(’dog’) → 3

39. Show the length of each borrower’s name!

SUBSTRING

Substring(string, start, length) extracts a part of a string. The length is optional; if omitted,

it returns the rest of the string.

Examples:

Substring(’black cat’, 3, 2) → ac
Substring(’black cat’, 3) → ack cat

LEFT and RIGHT

Left(string, n) → Returns the first n characters of a string.

Right(string, n) → Returns the last n characters of a string.

Examples:

Left(’black cat’, 3) → bla
Right(’black cat’, 3) → cat

STRPOS

In PostgreSQL, StrPos(string, substring) returns the position of a substring in a string.

StrPos(’black cat’,’ ’) → 6

Tasks:

40. Print characters from 3 to 7 from the borrower’s name!

41. Print borrower’s name starting from the 5th character!

42. Print the first 5 characters of the borrower’s name!

43. Print the last 5 characters of the borrower’s name!

44. Print the position of the ’space’ character from the borrower’s name!

45 Print the borrower's first and last name in separate columns.

Spatial Databases

32

46. Same as 45, but display the first name in lowercase and the last name in uppercase.

47. Show the length of the publication titles using char_length and octet_length! Explain the

difference.

Math functions

48. Run and explain these functions!

Abs(1000), Abs(-100) and Abs(-27.11) → Returns the absolute value of a number

Sqrt(25), Sqrt(-36) → square root (watch for invalid input).

Power(2,5) → Power (2^5 = 32)

Round(-123.456,2), Round(123.456,0), Round(123.456,-2), Round(-

123.4567,2) → Rounding with different precision. It rounds a number to a specified number of

decimal places (the second parameter is positive number). If the second parameter a negative

number, it rounds to tens, hundreds, thousends etc. 0 round to integer.

SIGN(10), SIGN(0), SIGN(-5) → Returns the sign of a number.

CEIL(6.1), CEIL(-6.1) → Round up to the nearest integer

FLOOR(6.1), FLOOR(-6.1) → Round down to the nearest integer

PI() → 3.1415…

Division

49. Try the following and explain:

10/3 What do you get, integer or decimal number? - Use ::decimal or ::integer to declare the data

type!

10%3 What is this? (Remainder (modulus))

Date functions

You can subtract dates to get the number of days between them.

’2024-09-27’-’2024-09-20’ → 7 days

NOW()

Returns the current date and time with time zone:

2025-02-14 12:58:02.623 +0100

Tasks:

50. Show borrowing records where the duration was less than one week!

51. Show borrowing records where the duration was more than one week.

52. How many days have passed since your birth = How old are you in days?

EXTRACT

Used to get specific parts of a date or time:

Extract(year from Now())
Extract(month from Now())

Spatial Databases

33

Extract(day from Now())
Extract(hour from Now())
Extract(minute from Now())
Extract(second from Now())
Extract(dow from Now()) or Extract(dow from DATE ’1989-01-13’) → day of week,
Extract(timezone_hour from now())

53. Extract the year/month/day/hour/minute/second from today!

54. Extract only the days from the query in task 50.

55. What day of the week is today?

56. What day of week were you born?

Group By

The group by statement groups rows that have the same values into summary rows, like "find the

number of customers in each country". An aggregate function is a function that performs a calculation

on a set of values and returns a single value. Aggregate functions are often used with the group by

clause of the select statement. The group by clause splits the result-set into groups of values and

the aggregate function can be used to return a single value for each group.

Common aggregate functions:

The group by statement is often used with aggregate functions (Count(), Max(), Min(),
Sum(), Avg()) to group the result set by one or more columns.

- Count() → Returns the number of rows that match a condition.

Most aggregate functions ignore NULL values (except Count(*), which includes all rows).

- Min() → Returns the smallest value in a column.

- Max() → Returns the largest value in a column.

- Sum() → Returns the total of a numeric column.

- Avg() → Returns the average of a numeric column.

Tasks

57. Display the minimum, maximum, average, and the total salary from the librarian table! How many

librarians are there?

 58. What was the lowest and highest price in the catalogue table?

 59. How many borrowers are from Budapest?

 60. Show the oldest and the most recent purchase dates in the catalogue table!

 61. How many different jobs are there in the librarian table?

The order of clauses are the following:

select… from … where… group by… having… order by …

62. Display the minimum, maximum, average, and the total salary from the librarian table!

Group the results by job title. Also show how many librarians are in each group.

Spatial Databases

34

63. Do the same as in Task 62, but group by department code. Order the results by department

code.

64. Show the code of each publication group, and the number of publications in each group

from the catalogue table!

65. Show the number of publications and the average price for each department from the

catalogue table! Group the data by department!

66. What was the average borrowing duration (in days) for all borrowings before 2004-05-30?

67. What is the average borrowing duration (in days) for the publication titled KISATLASZ?

Group by librarian.

HAVING

The having clause is used to filter groups created by group by. Unlike where, it can be used with

aggregate functions.

68. Show the minimum, maximum, average, and total salary from the librarian table, grouped

by job. How many people are in the librarian table? Show only those groups where the average

salary is greater than 80,000 Forints.

69. Show the code of departments, where there are exactly 3 librarians.

70 Group librarians by the length of their names. How many librarians are in each group? Also

display the average salary. Order the results by average salary.

71. For each job title, calculate the difference between the maximum and minimum salaries.

LIMIT

limit 1 – Returns only one row from the result set.

72. Show only the group with the biggest difference!

Table Joins

A join clause is used to combine rows from two or more tables, based on a related column between

them A way to join tables, can be primary key–foreign key relationships definition. Primary key

uniquely identifies each record in a table. n most cases, it is a sequential integer. Foreign key refers to

the primary key of another table, creating a connection between the two.

Let’s see an example in the library database. The department table contains a primary key (dept_code).

The librarian table has its own primary key (li_code) and a foreign key (li_deptcode), which refers to

the department table primary key (department.dept_code). This means that if Noah Coleman has

li_deptcode = 1, and department 1 is "Department of Cartography", then Noah Coleman works in

the Department of Cartography.

Relational databases define relationships between tables through primary key – foreign key pairs.

Spatial Databases

35

Foreign key – primary key relationships in the Library database:

dept_code – li_deptcode: Which department the librarian works in (department and librarian

tables)

pg_code – p_pgcode: the group code of a publication (publication_group and publication tables)

pg_code – ca_pgcode: the group code of a catalogue item (publication_group and catalogue

tables)

p_code – ca_pcode: Link between publication and catalogue item (publication and catalogue

tables)

dept_code – ca_deptcode: Which department owns the catalogue item (department and

catalogue tables)

dept_code – re_deptcode: Which department the borrower belongs to (department and borrower

tables)

re_code – bo_recode: Which borrower made the borrowing (borrower and borrowing tables)

li_code – bo_licode: Which librarian handled the borrowing (librarian and borrowing tables)

ca_code – bo_cacode: which catalogue item was borrowed (catalogue and borrowing tables)

p_code – bo_pcode: which publication was borrowed (publication and borrowing tables)

The following diagram shows this structure: white diamonds represent primary keys, and filled circles

represent foreign keys.

Spatial Databases

36

How to Write a JOIN Query

There are two standard ways to join tables. Do not mix them in one query!

Implicit join syntax (older style):

select FIELD_NAMES from TABLE1, TABLE2 where FOREIGN_KEY=PRIMARY KEY

Explicit JOIN syntax (recommended):

select FIELD_NAMES from TABLE1 join TABLE2 on FOREIGN_KEY=PRIMARY KEY

Examples

73. Display the librarian’s name, job title and the name of the department where they work.

Order the results by the librarian’s name.

Spatial Databases

37

74. Display all librarians who work in Sopron.

75. Print the title, author and publisher of publications, which price is between 3,000 and 10,000

Forints!

76. Print the names of borrowers who reserved a publication (bo_type=’F’)!

77. Print the lowest and the highest salary, grouped by the department name!

78. Print the average salary and the number of librarians, grouped by city!

Joining Three or More Tables

To join three or more tables, identify the correct primary key–foreign key pairs between them.

Example syntax (implicit):
select FIELD_NAMES from TABLE1, TABLE2, TABLE3 where FOREIGN_KEY=PRIMARY KEY and
FOREIGN_KEY=PRIMARY KEY

Example syntax (explicit join):

select FIELD_NAMES from TABLE1 join TABLE2 on FOREIGN_KEY=PRIMARY KEY join TABLE3
on FOREIGN_KEY=PRIMARY KEY

More Advanced Exercises:

79. Display the inventory number and price of a publication, the name of borrower, full

address (city, postal code and address), and the borrowing date but only for borrowings before

2004-05-01.

80. Print the borrower’s name, the title of the publication, the name of the librarian and the

borrowin code!

81. Display the borrowed publication’s title, inventory number, and borrower’s name and the

date of borrowing!

82 Print the names of borrowers who borrowed the publication titled ‘KISATLASZ’. Show

the borrower’s name, title of the publication, and borrowing date.

83. Show the borrower’s name and the borrowing date (in- and out dates) where the librarian’s

name was Oliver Cross.

Left and Right JOINS

The left join keyword returns all records from the left table (table1), and the matching records

from the right table (table2). If there is no match, the result will still include the row from the left

table, and NULL values for the right table.

The right join keyword does the opposite: it returns all records from the right table, and the

matching records from the left table.

If there is no match, the result will still include the row from the right table, and NULL values for the

left table.

For visual examples, visit: W3Schools SQL JOINs

https://www.w3schools.com/sql/sql_join.asp

Spatial Databases

38

84. Print the publications and their publication groups. If the group has no publications, it

should still appear in the list.

Subqueries

A subquery is a query nested within another SQL query. Subqueries are often used inside the WHERE

clause and are placed in round brackets ().

Let’s take a look at the next example:

85. Print the librarians, whose salary is higher than that of of Alison Porter.

This can be solved in two steps: First, you have to know how much money Alison Porter earned. Then,

you can compare this value with another librarian’s salary.

select li_salary from librarian where li_name='Alison Porter'
→The value is 50,300.
select * from librarian where li_salary>50300

Or it can be solved in one query using a subquery:

select * from librarian where li_salary>(select li_salary from librarian where
li_name='Alison Porter')

More Subquery Exercises

86. Print the borrower’s name and code, whose city is same as Aaron Thorsen’s!

87. Print those publications, that are cheaper than the publication titled ’FÖLDRAJZI

VILÁGATLASZ’

88. Print those librarians, whose job is the same as Samantha Carter’s job.

89. Print those publications that were published earlier than ’Cartography Thematic Map

Design’!

If the subquery returns multiple results, use the IN operator instead of =.

90. Print the code, name and job of the librarians whose job is the same as any librarian working

in the Dept. of Cartography.

91. Print the departments that are in the same city as both the Dept. of Geophysics and the Dept.

of Geodesy.

92. List borrowings where the price of the borrowed publication is greater than the average

price.

93. Print the borrowings, where the borrowing time was the longest.

94. Print the borrowings, where the borrowing time was the shortest.

95. Print the publications where the title length is longer than hald of the longest title in the

table.

96. Print those librarians who earn more than the average salary in Budapest.

97. Print the librarians from Budapest who earn more than the overall average salary.

Spatial Databases

39

Chapter 4. KEY TO BASIC SQL Queries

2. select ca_inventory_number, ca_indate, ca_price from catalogue
3. select p_title, p_author, p_isbn from publications order by p_title desc
4. select p_isbn, p_year from publications
5. select ca_inventory_number, ca_price from catalogue where ca_price >3000
6. select ca_inventory_number, ca_price,ca_pgcode from catalogue where ca_price
<3000 order by ca_price desc
7. select p_code, p_title from publications where p_pgcode !=3
8. select * from catalogue where ca_price>9000 and ca_status ='N'
9. select * from borrowing where bo_type='F'
10. select * from catalogue where ca_indate<'2004-03-01'
11. select * from borrowing where bo_outdate <'2004-03-01'

12. select ca_inventory_number, ca_code, ca_status from catalogue where ca_pgcode
= 4
13. select li_name, li_job, li_enter from librarian order by li_enter
14. select * from librarian order by li_job, li_name desc
15. select distinct li_job from librarian
16. select * from librarian where li_job='Storekeeper' or li_job='Customer Service
Representative' order by li_enter desc
select * from librarian where li_job in ('Storekeeper', 'Customer Service
Representative') order by li_enter desc
17. select * from librarian where li_job ='Storekeeper' or li_salary >50000 order
by li_enter asc
18. select * from librarian where li_salary <60000 or li_salary >100000
19. select li_name from librarian where li_deptcode in (2,5)
select li_name from librarian where li_deptcode =2 or li_deptcode =5
20. select dept_name from department where dept_city <>'Budapest'
21. select distinct dept_city from department
22. select * from librarian where li_salary between 50000 and 100000
23. select * from librarian where li_salary not between 50000 and 100000
24. select * from librarian where li_job in ('Storekeeper','Team Leader')
25. select * from librarian where li_job not in ('Storekeeper','Team Leader')
26. select * from borrowing where bo_indate is not null
27. select li_name, li_job, li_salary+li_premium*li_salary as salary from
librarian
28. select li_name from librarian where li_name ilike 'j%'
29. select li_name from librarian where li_name ilike '_A%'
30. select li_name from librarian where li_name ilike '%R'
31. select dept_name from department where dept_name ilike '%geo%'
32. select * from librarian where li_job in ('Storekeeper', 'Team Leader') and
li_salary between 60000 and 90000
33. select * from librarian where li_premium is null
34. select * from publications where p_title ilike '%atlasz%'
35. select * from catalogue where ca_price between 10000 and 30000 and
ca_indate<'2002-01-01'
36. select * from publications where p_author is null and p_year=2000

37. select Lower(p_title), Upper(p_publisher) from publications
38. select Concat('CUSTOMER: ', re_name), re_identifier, re_enter from borrower
where re_city='Eger'
39. select re_name, Char_length(re_name) from borrower
40. select re_name, Substring(re_name,3,5) from borrower
41. select re_name, Substring(re_name,5) from borrower
42. select re_name, Substring(re_name,1,5), Left(re_name, 5) from borrower
43. select re_name, Right(re_name, 5) from borrower

Spatial Databases

40

44. select re_name, StrPos(re_name,' ') from borrower
45. select Substring(re_name, 1, StrPos(re_name,' ')-1) as givenname,
Left(re_name, StrPos(re_name,' ')-1) as givenname, Substring(re_name,
StrPos(re_name,' ')+1) as familyname, Right(re_name, Char_Length(re_name)-
StrPos(re_name,' ')) as familyname from borrower
46. select Lower(Substring(re_name, 1, StrPos(re_name,' ')-1)) as givenname,
Upper(Substring(re_name, StrPos(re_name,' ')+1)) as familyname from borrower
47. select p_title, Char_Length(p_title), Octet_Length(p_title) from publications
Octet_length gives the binary length (accent characters have duplicated the
length), the char_length give the real character length.
49. select 10/3 → 3 we got an integer
 select 10/3::integer
 select 10/3::decimal → we got the decimal number
 select 10%3 →1 this is the modulo operation returns the remainder or signed
remainder of a division.
50. select * from borrowing where (bo_indate - bo_outdate) <7
51. select * from borrowing where (bo_indate - bo_outdate) >7
52. select now()-'1989-01-13'
53. select extract(year from now())
54. select extract(day from (now()-'1989-01-13'))
55. select extract(dow from now())
56. select extract(dow from date '1989-01-13')
57. select Min(li_salary), Max(li_salary), Avg(li_salary), Sum(li_salary),
Count(*) from librarian
58. select Min(ca_price), Max(ca_price) from catalogue
59. select Count(*) from borrower where re_city='Budapest'
60. select Min(ca_indate), Max(ca_indate) from catalogue
61. select Count(distinct li_job) from librarian
62. select li_job, Min(li_salary), Max(li_salary), Avg(li_salary), Sum(li_salary),
Count(*) from librarian group by li_job
 or
select li_job, Min(li_salary), Max(li_salary), Avg(li_salary), Sum(li_salary),
Count(*) from librarian group by 1
63. select li_deptcode, Min(li_salary), Max(li_salary), Avg(li_salary),
Sum(li_salary), Count(*) from librarian group by 1 order by 1
64. select ca_pgcode, Count(*) from catalogue group by 1
65. select ca_deptcode, Count(*), Avg(ca_price) from catalogue group by 1
66. select Avg(bo_indate-bo_outdate) from borrowing where bo_outdate <'2004-05-30'
67. select bo_licode, Avg(bo_indate-bo_outdate) from borrowing where bo_pcode=1
group by 1
68. select li_job, Min(li_salary), Max(li_salary), Avg(li_salary), Sum(li_salary),
Count(*) from librarian group by li_job having Avg(li_salary)>80000
69. select li_deptcode from librarian group by 1 having count(*)=3
70. select Char_Length(li_name), Count(*), Avg(li_salary) from librarian group by
1 order by 3
71. select li_job, Max(li_salary)-Min(li_salary) from librarian group by 1
72. select li_job, Max(li_salary)-Min(li_salary) from librarian group by 1 order
by 2 desc limit 1

73. select li_name, li_job, dept_name, dept_city from librarian, department where
li_deptcode=dept_code order by 1
or
select li_name, li_job, dept_name, dept_city from librarian join department on
li_deptcode=dept_code order by 1
74. select li_name, li_job, dept_name, dept_city from librarian, department where
li_deptcode=dept_code and dept_city='Sopron'
or
select li_name, li_job, dept_name, dept_city from librarian join department on
li_deptcode=dept_code where dept_city='Sopron'

Spatial Databases

41

75. select p_title, p_author, p_publisher from publications, catalogue where
ca_pcode =p_code and ca_price between 3000 and 10000
or
select p_title, p_author, p_publisher from publications join catalogue on ca_pcode
=p_code where ca_price between 3000 and 10000
76. select re_name from borrower, borrowing where re_code=bo_recode and
bo_type='F'
or
select re_name from borrower join borrowing on re_code=bo_recode where bo_type='F'
77. select dept_name, Min(li_salary), Max(li_salary) from department, librarian
where li_deptcode=dept_code group by 1
or
select dept_name, Min(li_salary), Max(li_salary) from department join librarian on
li_deptcode=dept_code group by 1
78. select dept_city, Avg(li_salary), Count(*) from department, librarian where
li_deptcode=dept_code group by 1
or
select dept_city, Avg(li_salary), Count(*) from department join librarian on
li_deptcode=dept_code group by 1
79. select ca_inventory_number, ca_price, re_name, re_address, re_city,
re_postal_code, bo_indate from catalogue, borrowing, borrower where re_code=
bo_recode and bo_cacode=ca_code and bo_indate<'2004-05-01'
or
select ca_inventory_number, ca_price, re_name, re_address, re_city,
re_postal_code, bo_indate from catalogue join borrowing on bo_cacode=ca_code join
borrower on re_code= bo_recode where bo_indate<'2004-05-01'
80. select re_name, p_title, li_name, bo_code from publications, borrowing,
borrower, librarian where bo_pcode=p_code and re_code= bo_recode and
li_code=bo_licode
or
select re_name, p_title, li_name, bo_code from publications join borrowing on
bo_pcode=p_code join borrower on re_code= bo_recode join librarian on
li_code=bo_licode
81. select p_title, ca_inventory_number, re_name, bo_indate, bo_outdate from
borrower, borrowing, catalogue, publications where re_code=bo_recode and
bo_cacode=ca_code and bo_pcode=p_code
or
select p_title, ca_inventory_number, re_name, bo_indate, bo_outdate from borrower
join borrowing on re_code=bo_recode join catalogue on bo_cacode=ca_code join
publications on bo_pcode=p_code
82. select re_name, p_title, bo_indate, bo_outdate from borrower, borrowing,
publications where bo_recode=re_code and bo_pcode=p_code and p_title='KISATLASZ'
or
select re_name, p_title, bo_indate, bo_outdate from borrower join borrowing on
bo_recode=re_code join publications on bo_pcode=p_code where p_title='KISATLASZ'
83. select re_name, bo_indate, bo_outdate from borrower join borrowing on
bo_recode=re_code join librarian on bo_licode=li_code where li_name='Oliver Cross'
or
select re_name, bo_indate, bo_outdate from borrower, borrowing, librarian where
bo_recode=re_code and bo_licode=li_code and li_name='Oliver Cross'
84. select * from publication_group left join publications on pg_code =p_pgcode
or
select * from publications right join publication_group on pg_code =p_pgcode
85. select * from librarian where li_salary>(select li_salary from librarian where
li_name='Alison Porter')
86. select * from borrower where re_city=(select re_city from borrower where
re_name='Aaron Thorsen')

Spatial Databases

42

87. select * from publications, catalogue where ca_pcode=p_code and
ca_price>(select ca_price from publications, catalogue where ca_pcode=p_code and
p_title='FÖLDRAJZI VILÁGATLASZ')
88. select * from librarian where li_job=(select li_job from librarian where
li_name='Samantha Carter')
89. select * from publications where p_year <(select p_year from publications
where p_title='Cartography Thematic Map Design')
90. select * from librarian where li_job in (select li_job from librarian,
department where li_deptcode=dept_code and dept_name='Department of Cartography')
91. select * from department where dept_city in (select dept_city from department
where dept_name in ('Department of Geodesy', 'Department of Geophysics'))
92. select publications.* from publications, catalogue where ca_pcode=p_code and
ca_price>(select Avg(ca_price) from catalogue)
93. select * from borrowing where (bo_indate-bo_outdate)=(select Max(bo_indate-
bo_outdate) from borrowing)
94. select * from borrowing where (bo_indate-bo_outdate)=(select Min(bo_indate-
bo_outdate) from borrowing)
95. select * from publications where Char_Length(p_title) > (select
Max(Char_Length(p_title))/2 from publications)
96. select * from librarian where li_salary >(select Avg(li_salary) from
librarian, department where li_deptcode=dept_code and dept_city='Budapest')
97. select * from librarian, department where li_deptcode=dept_code and
dept_city='Budapest' and li_salary >(select Avg(li_salary) from librarian)

Spatial Databases

43

Chapter 5: Comparision sheet to PostgreSQL and MySQL

If you have previously learned MySQL, you may notice some differences when working with

PostgreSQL. The following table compares the two SQL dialects and highlights their key differences.

Function,
operator, clause

MySQL Example

PostgreSQL Example

ORDER BY
two fields

select * from publications order
by p_year desc, p_publisher;

select * from publications order by
p_year desc, p_publisher

WHERE with one
condition

select * from catalogue where
ca_price >2000;

select * from catalogue where
ca_price >2000;

Text type data in
SQL

select * from librarian where
li_job='Team Leader'
select * from librarian where
li_job="Team Leader"

select * from librarian where
li_job='Team Leader'
Note: Use single quotes. Case
sensitivity depends on collation.

Date type data in
SQL

select * from librarian where
li_enter>='1992-01-03'
select * from librarian where
li_enter>='1992.01.03'
select * from librarian where
li_enter>="1992-01-03"
select * from librarian where
li_enter>="1992.01.03"

select * from librarian where
li_enter>='1992-01-03'
select * from librarian where
li_enter>='1992.01.03'

Note:
Use ISO format 'YYYY-MM-DD'.

IN select * from librarian where
li_job in ('Storekeeper', 'Team
Leader')

select * from librarian where
li_job in ('Storekeeper', 'Team
Leader')

NOT IN select * from librarian where
li_job not in ('Storekeeper',
'Team Leader')

select * from librarian where
li_job not in ('Storekeeper', 'Team
Leader')

BETWEEN select * from publications where
p_year between 2001 and 2005

select * from publications where
p_year between 2001 and 2005

NOT BETWEEN select * from publications where
p_yeaar not between 2001 and
2005

select * from publications where
p_yeaar not between 2001 and 2005

LIKE
Case Sensitive!

select * from publications where
p_title like '%ATLASZ%'

select * from publications where
p_title like '%ATLASZ%'

Case Sensitive,see the explanation
above!

NOT LIKE
Case Sensitive!

select * from publications where
p_title not like '%ATLASZ%'

select * from publications where
p_title not like '%ATLASZ%'
Case Sensitive,see the explanation
above!

ILIKE
case-
insensitive!

PostgreSQL only select * from publications where
p_title ilike '%atlas%'
Use ILIKE / NOT ILIKE in PostgreSQL
for case-insensitive search.

NOT ILIKE
case-
insensitive!

PostgreSQL only select * from publications where
p_title not ilike '%atlas%'
Use ILIKE / NOT ILIKE in PostgreSQL
for case-insensitive search.

IS NULL select * from publications where
p_isbn is null

select * from publications where
p_isbn is null

Spatial Databases

44

IS NOT NULL select * from publications where
p_isbn is not null

select * from publications where
p_isbn is not null

AND select * from publications where
p_isbn is not null and
p_publisher='ESRI PRESS'

select * from publications where
p_isbn is not null and
p_publisher='ESRI PRESS'

OR select * from publications where
p_isbn is not null or
p_publisher='ESRI PRESS'

select * from publications where
p_isbn is not null or
p_publisher='ESRI PRESS'

DISTINCT select distinct li_job from
librarian

select distinct li_job from
librarian

UPPER() select Upper(li_name) from
librarian

select Upper(li_name) from
librarian

LOWER() select Lower(li_name) from
librarian

select Lower (li_name) from
librarian

CONCAT() select Concat('ISBN number: ',
p_isbn) from publications

select Concat('ISBN number: ',
p_isbn) from publications

COALESCE() select Coalesce(p_isbn,'****')
from publications

select Coalesce(p_isbn,'****') from
publications

SUBSTRING() select Substring(li_name, 2,3)
from librarian

select Substring(li_name, 2,3)
from librarian

SUBSTRING() select Substring(li_name, 2)
from librarian

select Substring(li_name, 2) from
librarian

SUBSTRING() select Substring(li_name, -2,1)
from librarian

- Negative indexes not
supported in PostgreSQL, do
it with RIGHT()

SUBSTRING() select Substring(li_name, -2)
from librarian

- Negative indexes not
supported in PostgreSQL, do
it with RIGHT()

LEFT() select Left(li_name, 3) from
librarian

select Left(li_name, 3) from
librarian

RIGHT() select Right(li_name, 3) from
librarian

select Right(li_name, 3) from
librarian

INSTR()
STRPOS()

select Instr(li_name,' ') from
librarian

select StrPos(li_name,' ') from
librarian

LENGTH() select li_name, Length(li_name)
from librarian
/binary length: accent character
has duplicated length/

select li_name, Length(li_name)
from librarian
Number of characters
Octet_Length(string) is the same as
the Length() in MySQL: for byte
length

 CHAR_LENGTH() select li_name,
Char_Length(li_name) from
librarian
real number of characters

select li_name,
Char_Length(li_name) from librarian
real number of characters

DIV select li_salary, li_salary div
5000 from librarian

select li_salary,
Div(li_salary,5000) from librarian
Use function in PostgreSQL

MOD(), % select li_salary, Mod
(li_salary,5000) from librarian
or
select li_salary, li_salary mod
5000 from librarian
or
select li_salary, li_salary
%5000 from librarian

select li_salary, Mod
(li_salary,5000) from librarian
or
select li_salary, li_salary %5000
from librarian

ABS() select Abs(-2.1) select Abs(-2.1)

SIGN() select Sign(-2.1) select Sign(-2.1)

Spatial Databases

45

POWER() vagy
POW()

select Power(2,4) select Power(2,4)

ROUND() select Round(2.1234, 0)
select Round(200.1234, -2)
select Round(200.1234, 2)

select Round(2.1234)
select Round(2.1234, 0)
select Round(200.1234, -2)
select Round(200.1234, 2)

TRUNCATE() select Truncate(200.1234, 0)
select Truncate(200.1234, 2)
select Truncate(200.1234, -2)

select Trunc(200.1234)
select Trunc(200.1234, 0)
select Trunc(200.1234, 2)
select Trunc(200.1234, -2)
PostgreSQL uses Trunc()

CEIL() select Ceil(-2.1234) select Ceil(-2.1234)

FLOOR() select Floor(-2.1234) select Floor(-2.1234)

SQRT() select Sqrt(200) select Sqrt(200)

DATEDIFF() select * from borrowing where
Datediff(bo_outdate,bo_indate)>7

- use subtraction in
PostgreSQL:

select bo_indate-bo_outdate from
borrowing

NOW() select Now() select now() →with timezone

YEAR() select Year(Now()) select Extract(year from Now())

MONTH() select Month(Now()) select Extract(month from Now())

DAY() select Day(Now()) select Extract(day from Now())

HOUR() select Hour(Now()) select Extract(hour from Now())

MINUTE() select Minute(Now()) select Extract(minute from Now())

SECOND() select Second(Now()) select Extract(second from Now())

DAYOFWEEK() select Dayofweek(now()) select Extract(dow from Now())

timezone select Extract(timezone_hour from
Now())

MIN() select Min(li_salary) from
librarian

select Min(li_salary) from
librarian

MAX() select Max(li_salary) from
librarian

select Max(li_salary) from
librarian

AVG() select Avg(li_salary) from
librarian

select Avg(li_salary) from
librarian

SUM() select Sum(li_salary) from
librarian

select Sum(li_salary) from
librarian

COUNT() select Count(*) from librarian

select Count(*) from librarian

Group by select li_job, Count(*) from
librarian group by li_job or
select li_job, Count(*) from
librarian group by 1

select li_job, Count(*) from
librarian group by li_job
or
select li_job, Count(*) from
librarian group by 1

HAVING select li_job, Count(*) from
librarian group by li_job having
Count(*)>6

select li_job, Count(*) from
librarian group by li_job having
Count(*)>6

INNER JOIN select dept_name, li_name from
librarian, department where
dept_code=li_deptcode
OR
select dept_name, li_name from
librarian join department ON
dept_code=li_deptcode
OR

select dept_name, li_name from
librarian, department where
dept_code=li_deptcode
OR
select dept_name, li_name from
librarian join department ON
dept_code=li_deptcode
OR

Spatial Databases

46

select dept_name, li_name from
librarian inner join department
ON dept_code=li_deptcode

select dept_name, li_name from
librarian inner join department ON
dept_code=li_deptcode

LEFT or RIGHT
JOIN

select dept_name, li_name from
librarian right join department
ON dept_code=li_deptcode

select dept_name, li_name from
librarian right join department ON
dept_code=li_deptcode

Subqueries with
relations

select li_name, li_salary from
librarian where li_salary
>(select li_salary from
librarian where li_name='Daniel
Jackson')

select li_name, li_salary from
librarian where li_salary >(select
li_salary from librarian where
li_name='Daniel Jackson')

Subqueries with
in

SELECT * FROM department WHERE
dept_city IN (select dept_city
FROM department WHERE dept_name
IN ('Department of
Geography','Department of
Geophysics'));

SELECT * FROM department WHERE
dept_city IN (select dept_city
FROM department WHERE dept_name IN
('Department of
Geography','Department of
Geophysics'));

EXISTS, NOT
EXISTS

SELECT * FROM department where
NOT EXISTS (SELECT 1 FROM
librarian WHERE
dept_code=li_deptcode);

SELECT * FROM department where NOT
EXISTS (SELECT 1 FROM librarian
WHERE dept_code=li_deptcode);

LIMIT X SELECT * FROM librarian limit 5 SELECT * FROM librarian limit 5

LIMIT X, Y
LIMIT X OFFSET Y

SELECT * FROM librarian limit
5,3 OR
SELECT * FROM librarian limit 5
offset 3
Write 3 results, begin from the
record 6. (number of offset+1)

SELECT * FROM librarian limit 3
offset 5
Write 3 results, begin from the
record 6. (number of offset+1)

Spatial Databases

47

Chapter 6. The PostGIS functions

This chapter based on the offical PostGIS documentation. In the following sections, you'll find

explanations and examples of key functions. The full documentation is available here:

https:/postgis.net/docs/manual-3.3/

Getting familiar with PostGIS

PostGIS is a PostgreSQL extension or handling spatial data. Here’s a basic example of creating a point

using the ST_Point() function:

select ST_Point(1, 2) as MyFirstPoint;

To create a point with a coordinate system (SRID):

select ST_SetSRID(ST_Point(-77.036548, 38.895108),4326);

Or using WKT (Well-Known Text) format with ST_GeomFromText():

select ST_GeomFromText('POINT(-77.036548 38.895108)', 4326);

What is WKT format?

WKT (Well-known text format) is an OGC Standard for representing geometries as text. Functions

like ST_GeomFromText() and ST_AsText() convert between WKT and geometry. Coordinates

follow the (longitude, latitude) order.

What is WKB format?

WKB (Well-known binary format) is the binary representation of geometries, also standardized by

OGC. Though not human-readable, it's more efficient for storage. To view WKB in readable formats,

use ST_AsEWKT() function or ST_AsText.

select ST_AsEWKT('0101000020E6100000FD2E6CCD564253C0A93121E692724340');
select ST_AsText('0101000020E6100000FD2E6CCD564253C0A93121E692724340');

Representing Points, Lines and Polygons in WKT

The tables below shows single geometries (geometry primitives) and the multipart geometry

representations of features.

The following formats are used:

• Point: POINT(x y) — a simple coordinate pair inside parentheses.

• LineString: LINESTRING(x1 y1, x2 y2, ...) — a sequence of points separated by commas.

• Polygon: POLYGON((outer ring), (inner ring1), (inner ring2), ...) — the first set of

coordinates defines the outer ring; any additional sets define inner rings (holes). The rings

must be closed (first and last points are the same).

https://postgis.net/docs/manual-3.3/

Spatial Databases

48

Image source: Wikipedia.

Multi geometries are group of geometry primitives. When do you use them? For example, the United

Kingdom consists of several islands: Great Britain, Northern Island, the Hebrides, etc. If these

polygons are multipolygons, when you click on one of these features, all parts of the multipolygon will

be selected (try it out yourself in QGIS!)

Geometry collections are a special set of features. They can contain points, lines and polygons (as well

as multipart geometries). However, their usage is not recommended because if you want to use your

data in a geoinformatics software, they won’t be supported. GIS software generally does not support

this type of geometry.

Spatial Databases

49

Image source: Wikipedia.

What is EWKT/EWKB?

EWKT (Extended Well-know text) and EWKB (Extended Well-know binary format) are PostGIS

specific file formats that store the spatial reference system (SRID). For example:

'SRID=4326;POINT(19.1 47.5)'

What is SRID?

SRID stands for Spatial Reference Identifier. You can easily access SRIDs and EPSG codes on this

website: http://epsg.io/. When you add the PostGIS extension to a database, PostGIS automatically

generates a spatial_ref_sys table. Do not delete this table, as it contains the SRIDs.

How many dimensions does the coordinate have?

Coordinate dimensions refer to how many axes the coordinate system has. In most cases, coordinates

have two (X, Y) or three (X, Y, Z, or X, Y, M). PostGIS also supports a fourth dimension, the M

coordinate, which can be stored for every node.

What can ”M” represent?

-Temporal changes: For example, a bus moving from its starting point to its current stop.

- Special IDs: For instance, an emergency phone number next to a motorway.

Storing special geometries in PostGIS

PostGIS does not support popular Bezier curves or other splines, but these can be approximated using

polylines/linestrings. However, PostGIS supports several special curve types:

http://epsg.io/

Spatial Databases

50

CircularString: This is a basic curve type, similar to a LINESTRING. A single segment requires three

points: the start and end points (first and third) and any other point on the arc. In the case of full circle

the first and the last points are the same.

CompoundCurve: it is a combination of CircularString and Linestrings.

COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))

CurvePolygon: Similar to simple polygons, but the outer and inner rings can be CircularStrings or

CompoundCurves or LineStrings.

MultiCurve: A collection of curves, which can be CircularStrings, CompoundCurves or LineStrings.

MultiSurfaceA special type of surface that can consist of Polygons, CurvePolygons.

PolyhedralSurface, Triangle, Tin: Additional possibilities to store geometries. See more here:

https://postgis.net/docs/using_postgis_dbmanagement.html#PolyhedralSurface

Why do every functions start with ST?

The "ST" prefix stands for Spatial and Temporal. These are the new versions of PostGIS functions.

How to specify geometries and spatial reference identifier (projection)?

ST_Point(X,Y) → X: longitude, Y: latitude, point with unknown or default SRID

ST_Point(X,Y,SRID) → X: longitude, Y: latitude, with specified SRID.

You can also add the Z or M coordinates:

 ST_PointM(X,Y,M) or ST_PointZ(X,Y,Z) or ST_PointZM(X,Y,Z,M)

ST_PointM(X,Y,M, SRID) or ST_PointZ(X,Y,Z,SRID) or ST_PointZM(X,Y,Z,M,SRID)

Other Functions for Geometry Creation:

ST_MakePoint(X,Y) →Creates a point with two dimensions

ST_MakePoint(X,Y, Z) → Creates a point with three dimensions

ST_MakePoint(X,Y, Z, M) → Creates a point with three dimensions

ST_MakeLine(Point, Point) → Creates lines from points

ST_MakePolygon(LineString) → Convert a linestring to polygon. (Be sure the first and last

points are the same.)

Geometry type, Dimension, Coordinate dimension and Number of

Nodes

What is the type of the geometry?

ST_GeometryType(geom) → ST_Multipolygon. Returns the type of the geometry with the ST_ prefix

https://postgis.net/docs/using_postgis_dbmanagement.html#PolyhedralSurface

Spatial Databases

51

GeometryType(geom) → Returns the type without the ST_ prefix (e.g., MULTIPOLYGON).

select ST_GeometryType(s_geom), GeometryType(s_geom) from settlement

ST_NumGeometries(geom) → Returns the number of geometries in a geometry collection or

multi-geometry.

What are the dimensions?

ST_Dimension(geom) → Returns the topological the dimension of geometry. In case of points: 0,

lines: 1, polygons: 2.

ST_CoordDim(geom) → Returns the coordinate dimension: 2 if only X and Y are present, 3 or 4 if

Z and/or M values are included.

select ST_Dimension(sc_geom), ST_CoordDim(sc_geom) from settlement_centroid

Number of Nodes

You can count the number of nodes in a geometry using the ST_NPoints or ST_NumPoints functions:

ST_NPoints(geom) → Returns the total number of nodes in a geometry, including in multi-geometries

and polygons.

ST_NumPoints(geom) → Returns the number of points in a LineString. For other geometry types, it

returns NULL.

SELECT ST_NPoints(s_geom) As npoints, ST_NumPoints(s_geom) As numpoints from

settlement

Spatial Databases

52

Advanced in PostGIS

Projections, Spatial Reference Identifiers

What is the SRID of the geometry?

SRID stands for Spatial Reference Identifier, which defines the projection used. PostGIS supports

many projections and uses the EPSG identification system. The SRID is equivalent to the EPSG

number. You can find all EPSG codes at https://epsg.io/.

In this course, you will use:

EPSG 23700: Hungarian EOV projection with HD72 datum.

EPSG 3857: Web Mercator projection (used in Google Maps, OpenStreetMap etc.)

EPSG 4326: WGS 84 - WGS84 - World Geodetic System 1984, used in GPS

To check the SRID of geometries:

ST_SRID(geom) → returns with the SRID of each feature. In the hungary database, all features

within the same table generally have the same SRID.

select ST_Srid(sc_geom) from settlement_centroid

To update the SRID of a geometry column:

UpdateGeometrySrid('table name', 'geom ', 'EPSG number') → this function updates

the SRID in a table.

select UpdateGeometrySRID('settlement','s_geom','23700')

Projection transformation

ST_Transform(geom, EPSG number) → transforms a geometry into a different projection

select s_name, ST_Transform(s_geom, 4326) from settlement

Validity of geometry

ST_isValid(geom) → check if geometries are valid (e.g., no self-intersections): Returns true or

false.

select ST_IsValid(s_geom) from settlement

https://epsg.io/

Spatial Databases

53

Measurements

Before measuring distances, lengths, or areas, consider:

- Dimensionality (2D or 3D): How many dimensions do the coordinates have (2D - plain or

3D – spatial coordinates)

- Do you use planar or 3D spatial measurement functions?

- Which coordinate system do you use?

- Whether measurements are planar (flat surface) or geodetic (curved surface, i.e., globe). In

case of hundred of km distance, it can be a significant difference.

Always understand the nature of your dataset before working with measurements!

Measurements on a plane (2D)

Units depend on the dataset’s coordinate system. If the feature coordinates are in meter, you get the

result in meters or square meters. If coordinates are in degrees, you will get back the size in degrees.

Line length (2D)

ST_Length(geom) → length of a line (ST_Length2D function is the same)

select cr_name, ST_Length(cr_geom) from creek

Line length (3D)

ST_Length3D(geom) → 3D length, includes the Z coordinate

Perimeter of a polygon

ST_Perimeter(geom) → the length of a polygon outline. If the polygon contains hole(s), it’s length

will be also inlcuded in the result (ST_Perimeter2D is the same).

select d_name, ST_Perimeter(d_geom) from district

Area of a polygon

ST_Area(geom) → area of the polygon

select d_name, ST_Area(d_geom) from district

Measurements using geographic coordinates

Length on a spheroid

ST_LengthSpheroid(geom, shperoid data) → returns with the length in meter, while the

input coordinates are in degrees. Calculates the length or perimeter of a geometry on an ellipsoid.

select ST_LengthSpheroid(ST_GeomFromText('LINESTRING(19.1 47.5, 18.5 47.2)') ,
'SPHEROID["WGS_84",6378137,298.257223563]')

Spatial Databases

54

Get Coordinates from Points

If you have point data, it is possible to separate the longitude and latitude into two columns. Use

ST_X(geom) → returns with X (longitude)

ST_Y(geom) → returns with Y (latitude)

Other measurement functions

Distance between geometries

ST_Distance(geom A, geom B) → distance of two geometries in meter/degrees etc./depends on

the initial units/)

select ST_Distance(ST_GeomFromText('LINESTRING(628200 215000, 629000 216000)'),
ST_GeomFromText('POINT(632500 215500)'))

3D Distance

ST_3DDistance(geom A, geom B) → returns the 3-dimensional minimum Cartesian distance

between two geometries in projected units (spatial ref units).

Maximum distance between geometries

ST_MaxDistance(geom A, geom B) → returns with the maximal distance between two

geometries

select ST_MaxDistance(ST_GeomFromText('LINESTRING(628200 215000, 629000 216000)'),
ST_GeomFromText('POINT(632500 215500)'))

Distance on a sphere (degrees)

ST_DistanceSphere(point A in degree, point B in degree) → Returns linear

distance in meters between two lon/lat points. The radius of this sphere: 6 371 008 m

select ST_DistanceSphere(ST_GeomFromText('POINT(19.1 47.5)'),
ST_GeomFromText('POINT(18.5 47.2)'))

Distance on a spheroid

ST_DistanceSpheroid(point A in degree, point B in degree, spheroid

description) → Returns linear distance between two lon/lat points given a particular spheroid.

Currently only implemented for points.

select ST_DistanceSpheroid(ST_GeomFromText('POINT(19.1 47.5)'),

ST_GeomFromText('POINT(18.5 47.2)'),'SPHEROID["WGS 84",6378137,298.257223563]')

Shortest & Longest Lines Between Geometries

Shortest line

ST_ShortestLine(geom A, geom B) → returns with the shortest line between two geometries

Draw the shortest line between Somogy and Nógrád counties!

Spatial Databases

55

select ST_ShortestLine((select co_geom from county where co_id=1), (select co_geom

from county where co_id=17))

3D Shortest line

ST_3DShortestLine(geom A, geom B)→ Returns the shortest line between two geometries,

including elevation (Z coordinate)

ST_LongestLine(geom A, geom B) → Returns the longest line between two geometries.

Task:

Draw the longest line between Somogy and Nógrád counties!

Longest line

select ST_LongestLine((select co_geom from county where co_id=1),(select co_geom

from county where co_id=17))

ST_3DLongestLine(geom A, geom B)→ Returns the longest line between two geometries,

including elevation (Z coordinate)

Closest Point

ST_ClosestPoint(geom A, geom B) → returns the coordinates of the closest point of the

geometry B to geometry A. This point corresponds to the start of the shortest line.

select ST_ClosestPoint((select co_geom from county where co_id=1),(select co_geom

from county where co_id=17))

ST_3DClosestPoint(geom A, geom B)→ Returns the closest point of geometry B to geometry

A, including elevation (Z coordinate).

Azimuth

ST_Azimuth(point A, point B) → Returns the azimuth of the line defined by the two points.

Azimuth: north= 0; northeast= π/4; east= π/2; southeast = 3π/4; south = π; southwest 5π/4; west= 3π/2;

northwest = 7π/4.

select degrees(ST_azimuth(ST_GeomFromText('POINT(628200 215000)'),
ST_GeomFromText('POINT(632500 215500)')))

Angles

degrees(radian)→ Converts the radians to degrees.

ST_Angle has three forms:

• ST_Angle(line A, line B) → Angle between two lines.

• ST_Angle(point A, point B, point C) → Angle at point B formed by three points.

• ST_Angle(point A, point B, point C, point D) → Angle between segment AB

and segment CD.

Result is given in radians.

Spatial Databases

56

Angle between two lines:

select degrees(ST_Angle(ST_GeomFromText('LINESTRING(628200 215000,632500
215500)'), ST_GeomFromText('LINESTRING(629500 212500,628200 212500)')))

Angle between 3 points, at point B

select degrees(ST_Angle(ST_GeomFromText('POINT(628200 215000)'),
ST_GeomFromText('POINT(632500 215500)'), ST_GeomFromText('POINT(629500 212500)')))

Angle between line AB, and CD.

select degrees(ST_Angle(ST_GeomFromText('POINT(628200 215000)'),
ST_GeomFromText('POINT(632500 215500)'), ST_GeomFromText('POINT(629500 212500)'),
ST_GeomFromText('POINT(628200 212500)')))

Distance Metrics

Hausdorff-distance → Returns the Hausdorff distance, a measure of similarity between two

geometries.

ST_HausdorffDistance(geom A, geom B)

Fréchet distance → Implements algorithm for computing the Fréchet distance restricted to discrete

points for both geometries, based on Computing Discrete Fréchet Distance. The Fréchet distance is a

measure of similarity between curves that takes into account the location and ordering of the points

along the curves. Therefore it is often better than the Hausdorff distance.

ST_FrechetDistance(geom A, geom B, float densifyFrac = -1)

Spatial Databases

57

Bounding boxes and bounding geometries

Envelope

ST_Envelope(geom) → returns the coordinates of bounding box as a polygon (5 points, first and the

last identical).

Box2D(geom) → returns only the lower-left and the upper-right corner points of the bounding box

select ST_Envelope(s_geom), Box2D(s_geom) from settlement where s_name ='Sopron'

Envelope result

POLYGON ((452818.6793498857 256385.44666137366, 452818.6793498857

271262.2491004063, 477455.0613929047 271262.2491004063, 477455.0613929047

256385.44666137366, 452818.6793498857 256385.44666137366))

and Box2D result

BOX(452818.6793498857 256385.44666137366,477455.0613929047 271262.2491004063)

Note: there is also a BOX3D function.

Hulls

ST_ConvexHull(geom) → returns the smallest convex polygon that encloses a geometry.

select ST_ConvexHull(s_geom) from settlement where s_name ='Sopron'

ST_ConcaveHull(geom, target_percent, allow_holes) → returns with a concave hull.

The target percent indicates the grade between the original object and the convex hull. If target percent

is 0, it is the original object, if it is 1, this is the convex hull. Allow holes parameter indicates whether

holes are allowed.

select ST_ConcaveHull(s_geom,0.5) from settlement where s_name ='Sopron'

ST_OrientedEnvelope(geom) →Returns with the smallest area bounding box. It can be rotated,

and in the most cases, it is not identical with the Envelope.

select ST_OrientedEnvelope(s_geom) from settlement where s_name ='Sopron'

The image below shows these geometries. Blue is the envelope, red is the oriented envelope, and the

orange is the convex hull.

select ST_Envelope(s_geom), ST_OrientedEnvelope(s_geom), ST_Convexhull(S_geom)
from settlement where s_name ='Sopron'

Spatial Databases

58

Accessing other geometric information

Boundary

ST_Boundary(geom) → Returns the outline of a geometry as a linestring. If the polygon element

has a hole/inner ring, the result will be a MultiLineString. If the original element is a polyline, the

result is a MultiPoint feature. The points are the first and the last point of the line.

select ST_Boundary(s_geom) from settlement where s_name ='Sopron'

SELECT ST_Boundary(geom)FROM (SELECT 'LINESTRING(10 130, 50 190, 110 190, 140
150, 150 80, 100 10, 20 40)'::geometry As geom) As f;
→MULTIPOINT ((10 130), (20 40))

Start and end point

ST_StartPoint(geom) and ST_EndPoint (geom) → returns the first or last point of a

LineString.

SELECT ST_StartPoint(geom)FROM (SELECT 'LINESTRING(10 130, 50 190, 110 190, 140
150, 150 80, 100 10, 20 40)'::geometry As geom) As f;
→POINT (10 130)

SELECT ST_EndPoint(ST_Boundary(geom)) FROM (SELECT 'POLYGON ((10 130, 50 190, 110
190, 140 150, 150 80, 100 10, 20 40, 10 130), (70 40, 100 50, 120 80, 80 110, 50
90, 70 40))'::geometry As geom) As f; → returns NULL for polygons (no end-point)

Spatial Databases

59

Exterior ring

ST_ExteriorRing(geom) → returns the outer ring/outline of the polygon as a LineString. You get

NULL, if the initial geometry is not polygon, or it is a MultiPolygon.

SELECT ST_ExteriorRing(geom) FROM (SELECT 'Polygon((10 130, 50 190, 110 190, 140
150, 150 80, 100 10, 20 40, 10 130))'::geometry As geom) As f;
→ LINESTRING (10 130, 50 190, 110 190, 140 150, 150 80, 100 10, 20 40, 10 130)

Geometry validation
ST_IsRing(geom) → Returns true if the LineString is closed and simple (no self-intersection).

ST_IsSimple(geom) → Returns true if the geometry has no self-intersections or invalid points.

ST_IsClosed(geom) → Checks if the first and last points of a LineString are the same. (It also

works with CircularString, Curves and PolyhedralSurface).

SELECT ST_IsClosed('LINESTRING(0 0, 0 1, 1 1,0 0)');
→True
SELECT ST_IsClosed('LINESTRING(0 0, 0 1, 1 1)');
→False

ST_IsPolygonCW(geom) or ST_IsPolygonCCW(geom) →Check if a polygon’s exterior ring is

clockwise (CW) or counter-clockwise (CCW).

 True

False

Creating geometries

ST_Buffer(geom, radius of the buffer, other options) → Creates a buffer around

the geometry with the given radius (units are the same as the projection’s unit). If the radius is

negative, then the result is an inner (shrinking) buffer. The third parameter is optional:

quad_segs = the number of line segments, used to approximate curves. Default is 8.

endcap = round | flat | square → Defines the style of line endings. round (default), flat (ends at

last vertex), square (extends beyond line)

 join = round | mitre | bevel → Defines how corners are joined. Default is round.

 mitre_limit→ Sets the mitre ratio limit.

side = both | left | right → Creates a one- or two-sided buffer.

select s_name, ST_Buffer(s_geom, 1000) from settlement where s_name='Sopron'

Spatial Databases

60

select cr_name, ST_Buffer(cr_geom, 500,'endcap=flat') from creek where
cr_name='Benta-patak'

Centroid

ST_Centroid(geom) → returns the centroid (geometric center) of the geometry.

select s_name, ST_Centroid(s_geom) from settlement

Delaunay Triangles

ST_DelaunayTriangles(geom, tolerance) → returns a triangulated subdivision of the

geometry.

select ST_DelaunayTriangles(s_geom) from settlement where s_name='Sopron'

Line Merge

ST_LineMerge(geom) → Merges a collection of lines into a single continuous LineString or

MultiLineString.

select ST_LineMerge('MULTILINESTRING((10 160, 60 120), (120 140, 60 120), (120
140, 180 120))');

Line Simplification and Smoothing

ST_Simplify(geom, tolerance)→ Line or polygon simplification with Douglas–Peucker

algorithm.

select s_name, ST_Simplify(s_geom, 500) from settlement where s_name='Sopron'

ST_SimplifyVW(geom, tolerance) → Line or polygon simplification Visvalingam-Whyatt

algorithm.

select s_name, ST_SimplifyVW(s_geom, 500) from settlement where s_name='Sopron'

ST_ChaikinSmoothing(geom, number of iterations, preserve_endPoints) →

Applies Chaikin's smoothing algorithm to the geometry. Maximum 5 iterations. The last parameter

defines whether to preserve the original endpoints.

select cr_name, ST_ChaikinSmoothing(cr_geom, 3, true) from creek where

cr_name='Benta-patak'

Understanding spatial relations – Geoprocessing

These functions test spatial relationships and return a boolean value (true/false).

Please study the following website to understand these functions:

http://postgis.net/workshops/postgis-intro/spatial_relationships.html

ST_Intersects(geom A, geom B) → Returns true if geometries A and B share any space. If

geom A and geom B have a common part in plain or 3D, they intersect. For example: there are two

points in same coordinate; a polygon touches a line, or a polygon overlaps with another one, or it

overlaps with a point.

http://postgis.net/workshops/postgis-intro/spatial_relationships.html

Spatial Databases

61

ST_Disjoint(geom A, geom B) → Returns true if geometries A and B do not intersect. The

reverse of intersects. In this case, the two geometries do not intersect.

ST_Equals(geom A, geom B) → Returns true if A and B are spatially equal (identical

coordinates and structure). If they are perfectly same, it it true (point-point, line-line, polygon-polygon

etc).

ST_Crosses(geom A, geom B) → Returns true if A crosses B (e.g., linestring-line, point-line,

etc.). Possible crossings can be between: multipoint/polygon, multipoint/linestring,

linestring/linestring, linestring/polygon and linestring/multipolygon

ST_Overlaps(geom A, geom B) → Returns true if A and B overlap and are of the same

dimension. Point-Point, line-line and polygon-polygon.

ST_Touches(geom A geom B) → Returns true if A and B touch at the boundary but do not

overlap. For example: point is on the line or on outline of polygon; lines or polygons touch each other

on outline.

ST_Contains(geom A, geom B) → Returns true if B is entirely within A (excluding boundaries).

Geom B lays in geom A, of no points outside geom A. If a line fits on the outline (outer ring) of a

polygon, it returns false. Minimum one points should be inside of the polygon. If two polygons are

exactly the same, it returns true.

ST_Within(geome A, geom B) → Returns true if A is entirely within B (excluding boundaries).

Geom A lays in geom B, of no points outside geom B. If a line fits on the outline (outer ring) of a

polygon, it returns false. Minimum one points should be inside of the polygon. If two polygons are

exactly the same, it returns true.

Don’t forget:

ST_Contains(geom A, geom B) = ST_Within(geom B, geom A)

ST_Covers(geom A, geom B) → Returns true if A completely covers B (including boundaries).

Geom B lays in geom A, of no points outside geom A. If a line fits on the outline (outer ring) of a

polygon, it returns true. If two polygons are exactly the same, it returns true.

ST_CoveredBy(geom A, geom B) → Returns true if A is completely covered by B (including

boundaries). Geom A lays in geom B, of no points outside geom B. If a line fits on the outline (outer

ring) of a polygon, it returns true. If two polygons are exactly the same, it returns true.

Don’t forget:

ST_Covers(geom A, geom B) = ST_CoveredBy(geom B, geom A)

Combining geometries

ST_Intersection(geom A, geom B, gridSize) → Returns the intersecting part(s) of two

geometries (A and B). Optional gridSize increases precision performance.

ST_Difference(geom A, geom B, gridSize) → Returns the part of A that does not intersect

with B →with other words: Geom A - ST_Intersection(geom A, geom B). Optional

gridSize increases precision performance.

Spatial Databases

62

ST_SymDifference(geom A, geom B, gridSize) → Returns the parts that are in A or B but

not in both. → with other words: ST_Union(geom A, geom B) - ST_Intersection(geom A,

geom B). → or with other words: ST_SymDifference(geom A, geom B) =

ST_SymDifference(geom B, geom A). Optional gridSize increases precision performance.

ST_Union(geom A, geom B, gridSize) → Merges A and B into a single geometry (can be

MultiGeometry or GeometryCollection). Optional gridSize increases precision performance.

SELECT ST_Union(co_geom) from county -> give the country polygon.

ST_Split(geome A, geom B) → Splits geometry A using geometry B (e.g., splitting a polygon

with a line or point).

Others

String_Agg() → A PostgreSQL aggregation function that concatenates string values with a given

separator. For example: String_Agg(d_name, ’,’)

Conversion function in PostGIS

These functions convert between PostGIS geometries (WKT or WKB) and other spatial formats

(KML, GeoJSON, SVG, etc.)

ST_GeomFromGeoJSON(text) → Creates WKT geometry from GeoJSON string.

ST_GeomFromKML(text) → Creates WKT geometry from a KML string

ST_AsGeoJSON(geom) → Creates GeoJSON geometry from the database record.

ST_AsKML(geom) → Creates KML geometry from the database record.

select ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

ST_AsSVG() → Creates SVG geometry from database record.

ST_AsLatLonText(geom) → Returns the coordinates of a point geometry as text in “latitude

longitude” format. You can control the numeric format and number of decimal places.

Spatial Databases

63

Chapter 7: Practices in POSTGIS

Part 0: SQL conditionals

CASE

 WHEN condition THEN result

WHEN condition THEN result

….

ELSE result

END

1. Print the librarian’s name and how long she or he has worked in the library.

• If the hire date is before 1995-01-01, label it as veteran employment.

• If the hire date is between 1995-01-01 and 2000-01-01, label it as core staff.

• If the hire date is after 2000-01-01, label it as rookie.

2. Increase the salary of the librarians.

• Provide a 20% salary increase to those with the position Customer Service Representative.

• Provide a 15% salary increase to those with the position Storekeeper.

• Provide a 25% salary increase to those with the position Administrative.

• Provide a 17% salary increase to those with the position Team Leader.

Update hungary database, specifically the county table. Change co_name from 'megye' to

'vármegye'.

3. Add a new column to the county table and update each county name, replacing 'megye' with

'vármegye'.

Spatial Databases

64

Part 1.: Creating and querying geometry

1. Create a new point at Budapest using the ST_Point function (coordinates lat: 47.5° and lon:

19.1°).

2. Use the same coordinates, but define a coordinate system using EPSG:4326!

3. Provide this point in WKT format, and create a geometry representing Budapest (47.5°,

19.1°).

4. Add the spatial reference system ID (SRID) to this point (EPSG:4326)!

5. Create the same point with projection using the ST_GeomFromEWKT() function.!

6. Create a WKT LineString, using these cities as nodes: Budapest–Sárbogárd–Siófok (47.5°

19.1°, 46.88° 18.62°, 46.9° 18.05°).

7. Create a WKT polygon, using the following cities as nodes: Budapest–Sárbogárd–Siófok–

Tatabánya (47.5° 19.1°, 46.88° 18.62°, 46.9° 18.05°, 47.58° 18.4°).

8. Add an inner ring/hole to the previous polygon. The nodes of the inner ring: (47.22° 18.66°,

47.24° 18.6°, 47.18° 18.55°)!

9. Convert the line (without the hole) to polygon using ST_MakePolygon (Budapest–Sárbogárd–

Siófok–Tatabánya: 47.5° 19.1°, 46.88° 18.62°, 46.9° 18.05°, 47.58° 18.4°).

10. Create a new line between Budapest and Székesfehérvár (47.5° 19.1°, 47.2° 18.4°) using

ST_MakePoint, ST_MakeLine!

11. Get familiar with Hungary dataset! Query the geometries from the following table

’settlement_centroid’, ’creek’, ’district’ tables. Try to understand the geometry types based on

the previous chapter.

12. Query the type of geometry, the dimension of geometry and the dimension of coordinates for

the settlement_centroid, creek and district tables! Let’s compare what we find!

13. Check the number of nodes in both simple and multi-geometries (ST_Npoints,

ST_NumPoints). You can use the creek and district tables. For simple geometries, use those

from exercises 3, 6, and 7.

14. Check the number of geometries in the builtup_area table.

15. Query all counties. Check the spatial view!

Spatial Databases

65

Data view – Grid view

Spatial View

Spatial Databases

66

Part 2. Measurements, coordinates, projection

1. What is the projection of the features in county table? Print the name of the county and the

EPSG code of the projection.

2. What is the area of each county? Print the county name and the area size! What is the unit of

measurement?

3. Print the area of all counties in square kilometers (km2) sorted in descending order.

4. Print the area of each county in the layer (table)’s original projection (Hungarian EOV, EPSG:

23700) and in Web Mercator projection (EPSG: 3857)! Sort the data in ascending order based

on EOV projection.

5. What is the perimeter of each county? What is the unit of measurement?

6. Print the perimeter of each county in the layer/table’s original projection (Hungarian EOV,

EPSG: 23700) and in Web Mercator projection (EPSG: 3857)! Sort the data in ascending

order based on EOV projection.

7. What is the length of each creek? Print their names and lengths!

8. Print the length of each creek in the layer/table’s original projection (Hungarian EOV, EPSG:

23700) and in Web Mercator projection (EPSG: 3857)! Sort the data in ascending order based

on EOV projection.

9. Print the X and Y coordinates of the centroid of the settlements in separate columns!

10. What is the distance between Aggtelek and Barcs using the settlement layer?

11. What is the distance between the centroid of Aggtelek and Barcs? Use the settlement layer.

(Note: ST_Centroid calculates the centroid of a feature)

12. What is the EOV coordinates (EPSG: 23700) and the geographic coordinates (EPSG: 4326) of

the centroid of Barcs?

13. What is the distance in meters between Barcs and the point at X=600 000 and Y=200 000

(EPSG: 23700)?

14. What is the distance in meters between Barcs and the point Lat=47.5° and Lon=19.1° (EPSG:

4326)?

15. What is the distance in meters between the points: 47.5°, 19,1° and 48.2°, 20.2° (EPSG:4326)?

16. What is the shortest and longest distance between the polygons of Barcs and Aggtelek?

17. Display these (shortest and the longest) lines on the map! Check them on the map!

18. If you travel along the shortest path between Lake Balaton and city of Barcs, which node of

the Balaton polygon is the closest to Barcs?

19. Which settlement contains this point? (Use St_Contains(geomA, geomB) → where geom A is

the settlement, geomB is the point)

20. Which settlement is the farthest settlement from Barcs? What is the distance? (Use

settlement_centroid table)

21. What is the azimuth of the line drawn from Barcs to Magosliget?

22. And what is the azimuth of the line drawn from Magosliget to Barcs (the reversed line)

Spatial Databases

67

Part 3. Accessing, editing, and processing of geometry

1. Print the bounding box of Barcs! Check it the Spatial View.

2. Print the coordinates of the bounding box of Barcs.

3. Print the bounding box of Barcs with geographic coordinates.

4. Print the minimum bounding rectangle (MBR) of Barcs. Check it the Spatial View.

5. Print the convex hull of Barcs. Check it the Spatial View.

6. What is the area and perimeter of the convex hull?

7. Print the concave hull of Barcs using the following parameters for the second argument: 0,1,

0.25,0.5, 0.75. Check it the Spatial View.

8. Print the centroid of Barcs.

9. Transform the centroid coordinates to the Mercator projection (3857)!

10. Print the outline (boundary) of Pest and Fejér counties.

11. Create a WKT polygon using the following cities as vertices: Budapest–Sárbogárd–Siófok–

Tatabánya (47.5° 19.1°, 46.88° 18.62°, 46.9° 18.05°, 47.58° 18.4°). Add a hole: the nodes of

the ring: (47.22° 18.66°, 47.24° 18.6°, 47.18° 18.55°)! Print the outer ring of this polygon.

12. Check whether the ring of the previously created polygon is clockwise or counterclockwise.

13. Create a line using the cities Budapest–Székesfehérvár–Siófok–Tatabánya–Budapest. (47.5°

19.1°, 47.2° 18.4°, 46.9° 18.05°, 47.58° 18.4°, 47.5° 19.1°). Is the line closed? Is it a ring?

14. Check the line created in the previous task has any self-intersections.

15. Create a 1km buffer zone around ’Dera-patak’.

16. Ensure the buffer has square end caps, and beveled joins.

17. Display only the left side of the buffer zone!

18. Simplify the path of Dera-patak’s using Douglas-Peucker and Visvalingam-Whyatt

algorithms! Compare the results. Check how each algorithm works.

19. Apply Chaikin-smoothing to Dera-patak. Check how the Chaikin algorithm works!

20. Create a triangulated irregular network (TIN) subdivision for Barcs!

Spatial Databases

68

Part 4.: Understanding spatial relations, geoprocessing

1. Check whether the Danube (Duna) and Tisza intersect (use river_polygon table).

2. Check whether the Danube (Duna) and Tisza are disjoint.

3. Check whether the point (616100, 206300 in Hungarian EOV projection) is located within

Fejér county ('Fejér megye').

4. Check whether the point (47.2° N, 18.6° E) is located within Fejér county ('Fejér megye').

5. Check whether Fejér county touches Pest county? What are the results (true or false), for the

following spatial relationships: intersects, touches, disjoint, crosses, overlaps, within, contains.

Explain why?

6. Check whether Fejér county contains the polygon of Székesfehérvár?

7. Check whether Fejér county overlap or crosses the polygon of Székesfehérvár?

8. Test the ST_COVERS/ST_CONTAINS and the ST_COVEREDBY/ST_WITHIN functions.

Observe their subtle differences.

-Does this polygon ’POLYGON((0 0,0 1,1 1,1 0,0 0))’ contains/covers an identical polygon

POLYGON((0 0,0 1,1 1,1 0,0 0)) ?

-Does this linestring ’LINESTRING(0 0,0 1,1 1,1 0)’ contains/covers the polygon

POLYGON((0 0,0 1,1 1,1 0,0 0))?

Does this linestring ’LINESTRING(0 0,0.5 0.5,0 1,1 1,1 0)’ ’ contains/covers the polygon?

POLYGON((0 0,0 1,1 1,1 0,0 0))

-Does the point ’POINT(0 0)’ contains/covers the polygon POLYGON((0 0,0 1,1 1,1 0,0 0)) ?

-Run the same tests using ST_COVEREDBY/ST_WITHIN functions!

9. Draw section of the Danube (Duna) that lies within Fejér county!

10. Draw all national parks that are outside Veszprém county! If a national park is partially

within the county, only display the part outside it.

11. Print the names of settlements in Fejér county! (use settlement_centorid table)

12. Print the names and geometry of settlements in Fejér county!

13. Print the names of all settlements not located in Fejér county!

14. How many settlements are not located in Fejér county!

15. Draw the section of M7 motorway that passses through Fejér county!

16. What is the total length of this road?

17. What is the length of one direction (either backward or forward) in kilometers?

18. What is the total area of the protected regions in Veszprém county (in km2)?

19. What percentage of Veszprém County is protected?

20. What percentage of the entire country is protected?

21. Which geoboxes are located in Fejér county?

22. How many geoboxes are located within Fejér county?

23. Which geoboxes are located outside Fejér county?

24. Which geoboxes are located in the 10 km buffer zone around the Danube (Duna)?

25. Which geoboxes are located in the 10 km buffer zone around the M7 motorway?

26.Which geoboxes are located in the 10 km buffer zone around M7 motorway in Fejér

county?

27. Which creek is the closest to Hollókő castle. What is this distance?

28. Which node of this creek is the closest to Hollókő? (Print its coordinates.)

29. Split Hungary (polygon) into two halves along the 47° latitude (between 16°and 22°).

30. Draw the areas that belong to either the 'Budai Tájvédelmi Körzet' or Budapest, but

exclude the areas where these features intersect.

31. Print the district name and and associated castle(s), ordered in ascending order.

32. Formulate a question for the following query!

Spatial Databases

69

select b_name, string_agg(va_name,', ') from belterulet, var where

st_contains(st_intersection((select m_geom from megyek where m_name='Nógrád megye'),

b_geom),st_transform(va_geom, 23700)) group by b_name order by 1

33. Print all projection pairs, where the sum of their EPSG code is 23700!

34. Which districts border 'Székesfehérvári járás'?

Create a list of districts, with each row containing the district name and a second column

listing its neighboring districts.

Spatial Databases

70

Chapter 8: Key

Part 0: The CASE conditional

1. select li_name, li_job,

case
 when li_enter between '1995-01-01' and '2000-01-01' then 'Core staff'
 when li_enter >'2000-01-01' then 'rookie'
 else 'Veteran employment'
end jobrange
from librarian

2. select li_name, li_job, li_salary,

case
 when li_job='Customer Service Representative' then li_salary*1.2
 when li_job='Storekeeper' then li_salary*1.15
 when li_job='Administrator' then li_salary*1.25
 when li_job='Team Leader' then li_salary*1.17
end as newsalary
from librarian

3. ALTER TABLE public.county ADD new_name varchar NULL;

update county set new_name =(concat(substring(co_name,1,(Length(co_name)-
5)),'vármegye')) where Substring(co_name,(Length(co_name)-5))=' megye'

Spatial Databases

71

Part 1.: Creating and querying geometry

1. select ST_Point(19.1, 47.5);

2. select ST_SetSRID(ST_Point(19.1, 47.5), 4326);

3. select ST_GeomFromText('POINT(19.1 47.5)');

4. select ST_GeomFromText('POINT(19.1 47.5)', 4326);

5. select ST_GeomFromEWKT('SRID=4326;POINT(19.1 47.5)');

6. select ST_GeomFromText('LINESTRING(19.1 47.5, 18.62 46.88, 18.05 46.9)', 4326);

7. select ST_GeomFromText('POLYGON((19.1 47.5, 18.62 46.88, 18.05 46.9, 18.4

47.58, 19.1 47.5))', 4326);

8. select ST_GeomFromText('POLYGON((19.1 47.5, 18.62 46.88, 18.05 46.9, 18.4

47.58, 19.1 47.5),(18.66 47.22,18.6 47.24, 18.55 47.18,18.66 47.22))', 4326);

9. select ST_MakePolygon('LINESTRING(19.1 47.5, 18.62 46.88, 18.05 46.9, 18.4

47.58, 19.1 47.5)');

10. select ST_MakeLine(ST_MakePoint(19.1, 47.5), ST_MakePoint(18.4, 47.2));

11.

select sc_geom from settlement_centroid;

select cr_geom from creek;

select d_geom from district;

12. select ST_GeometryType(sc_geom), GeometryType(sc_geom), ST_Dimension(sc_geom),

ST_CoordDim(sc_geom) from settlement_centroid

select ST_GeometryType(cr_geom), GeometryType(cr_geom), ST_Dimension(cr_geom),

ST_CoordDim(cr_geom) from creek

select ST_GeometryType(d_geom), GeometryType(d_geom), ST_Dimension(d_geom),

ST_CoordDim(d_geom) from district

13. select ST_NPoints(d_geom) from district;

select ST_NumPoints(d_geom) from district; → NULL

select ST_NPoints(cr_geom) from creek;

select ST_NumPoints(cr_geom) from creek; → NULL

select ST_NumPoints(ST_GeomFromText('LINESTRING(19.1 47.5, 18.4 47.2, 18.05

46.9)', 4326));

select ST_NPoints(ST_GeomFromText('LINESTRING(19.1 47.5, 18.4 47.2, 18.05 46.9)',

4326));

select ST_NPoints(ST_GeomFromText('POLYGON((19.1 47.5, 18.4 47.2, 18.05 46.9, 18.4

47.58, 19.1 47.5))', 4326));

select ST_NumPoints(ST_GeomFromText('POLYGON((19.1 47.5, 18.4 47.2, 18.05 46.9,

18.4 47.58, 19.1 47.5))', 4326));→ NULL

14. select ST_NumGeometries(ba_geom) from builtup_area;

15. select * from county;

Spatial Databases

72

Part 2. Measurements, coordinates, projection

1. select co_name, ST_Srid(co_geom) from county;

2. select co_name, ST_Area(co_geom) from county; /Unit in square meter/

3. select co_name, ST_Area(co_geom)/1000000 from county order by 2 desc

4. select co_name, ST_Area(co_geom)/1000000 as eov,

ST_Area(ST_Transform(co_geom,3857))/1000000 as webmerc from county order by

2 asc

5. select co_name, ST_Perimeter(co_geom) from county; /meter/

6. select co_name, ST_Perimeter(co_geom) as eov,

ST_Perimeter(ST_Transform(co_geom, 3857)) as webmerc from county order by 2

7. select cr_name, ST_Length(cr_geom) from creek; /meter/

8. select cr_name, ST_Length(cr_geom) as eov, ST_Length(ST_Transform(cr_geom,

3857)) as webmerc from creek;

9. select ST_X(sc_geom), ST_Y(sc_geom) from settlement_centroid;

10. select ST_Distance((select s_geom from settlement where

s_name='Aggtelek'),(select s_geom from settlement where s_name='Barcs'))

11. select ST_Distance((select ST_Centroid(s_geom) from settlement where

s_name='Aggtelek'),(select ST_Centroid(s_geom) from settlement where

s_name='Barcs'))

12. select ST_Centroid(s_geom) as eov, ST_Transform(ST_Centroid(s_geom),4326)

as geog from settlement where s_name='Barcs'

13. select ST_Distance((select sc_geom from settlement_centroid sc where

sc_name='Barcs'), ST_GeomFromText('POINT(600000 200000)',23700))

or

select ST_Distance((select s_geom from settlement where s_name='Barcs'),

ST_GeomFromText('POINT(600000 200000)',23700))

14. select ST_Distance((select s_geom from settlement where s_name='Barcs'),

ST_Transform(ST_GeomFromText('POINT(19.1 47.5)',4326),23700))

or

select ST_Distance((select sc_geom from settlement_centroid sc where

sc_name='Barcs'), ST_Transform(ST_GeomFromText('POINT(19.1

47.5)',4326),23700))

15. select ST_DistanceSphere(ST_GeomFromText('POINT(19.1 47.5)',4326),

ST_GeomFromText('POINT(20.2 48.2)',4326)); /Unit is meter/

16. select ST_Distance((select s_geom from settlement where

s_name='Aggtelek'),(select s_geom from settlement where s_name='Barcs')),

ST_MaxDistance((select s_geom from settlement where

s_name='Aggtelek'),(select s_geom from settlement where s_name='Barcs'))

17. select ST_ShortestLine((select s_geom from settlement where

s_name='Aggtelek'), (select s_geom from settlement where s_name='Barcs')),

ST_LongestLine((select s_geom from settlement where s_name='Aggtelek'),

(select s_geom from settlement where s_name='Barcs'))

18. select ST_ClosestPoint((select la_geom from lake where

la_name='Balaton'),(select s_geom from settlement where s_name='Barcs'))

19. select * from settlement where ST_Contains(s_geom, ST_ClosestPoint((select

la_geom from lake where la_name='Balaton'),(select s_geom from settlement

where s_name='Barcs')))

Spatial Databases

73

20. select sc_name, ST_Distance((select sc_geom from settlement_centroid where

sc_name='Barcs'), sc_geom) from settlement_centroid order by 2 desc limit

1

21. select ST_Azimuth((select sc_geom from settlement_centroid sc where

sc_name='Barcs'), (select sc_geom from settlement_centroid where

sc_name='Magosliget'))*180/pi()

or

select degrees(ST_Azimuth((select sc_geom from settlement_centroid sc where

sc_name='Barcs'), (select sc_geom from settlement_centroid where

sc_name='Magosliget')))

22. select ST_Azimuth((select sc_geom from settlement_centroid sc where

sc_name='Magosliget'), (select sc_geom from settlement_centroid where

sc_name='Barcs'))*180/pi()

or

select degrees(ST_Azimuth((select sc_geom from settlement_centroid sc

where sc_name='Magosliget'), (select sc_geom from settlement_centroid

where sc_name='Barcs')))

Spatial Databases

74

Part 3. Accessing, editing, and processing of geometry

1. select ST_Envelope(s_geom) from settlement where s_name='Barcs'

2. select Box2D(s_geom) from settlement where s_name='Barcs'

or select Box(s_geom) from settlement where s_name='Barcs'

3. select ST_Transform(ST_Envelope(s_geom),4326) from settlement where

s_name='Barcs'

4. select ST_OrientedEnvelope(s_geom) from settlement where s_name='Barcs'

5. select ST_ConvexHull(s_geom) from settlement where s_name='Barcs'

6. select ST_Area(ST_ConvexHull(s_geom)), ST_Perimeter(ST_ConvexHull(s_geom))

from settlement where s_name='Barcs'

7. select ST_ConcaveHull(s_geom,0) from settlement where s_name='Barcs'

Change the second parameter to 0.25, 0.5, 0.75 and 1.

8. select ST_Centroid(s_geom) from settlement where s_name='Barcs'

9. select ST_Transform(ST_Centroid(s_geom),3857) from settlement where
s_name='Barcs'

10. select ST_Boundary(co_geom) from county where co_name in ('Fejér megye', 'Pest

megye')

-> Fejér is a LineString, Pest is a MultiLineString because of the ring of

Budapest

11. select ST_ExteriorRing(ST_GeomFromText('POLYGON((19.1 47.5,18.62 46.88,18.05

46.9, 18.4 47.57,19.1 47.5),(18.66 47.22,18.6 47.24, 18.55 47.18, 18.66

47.22))'));

12. select ST_IsPolygonCW(ST_GeomFromText('POLYGON((19.1 47.5,18.62 46.88,18.05

46.9, 18.4 47.57,19.1 47.5),(18.66 47.22,18.6 47.24, 18.55 47.18, 18.66

47.22))'));

→ true

select ST_IsPolygonCCW(ST_GeomFromText('POLYGON((19.1 47.5,18.62 46.88,18.05 46.9,

18.4 47.57,19.1 47.5),(18.66 47.22,18.6 47.24, 18.55 47.18, 18.66 47.22))'));

→ false

13. select ST_IsRing(ST_GeomFromText('LINESTRING(19.1 47.5,18.62 46.88,18.05 46.9,

18.4 47.57,19.1 47.5)')) ;

-> true
14. select st_IsSimple(ST_GeomFromText('LINESTRING(19.1 47.5,18.62 46.88,18.05
46.9, 18.4 47.57,19.1 47.5)')) ;
->true, no self-intersection (try to do alone a self-intersected object and test
it!)
15. select ST_Buffer(cr_geom,1000) from creek where cr_name='Dera-patak'
16. select ST_Buffer(cr_geom,1000,'endcap=square') from creek where cr_name='Dera-
patak'
17. select ST_Buffer(cr_geom,1000,'side=left') from creek where cr_name='Dera-
patak'
18. select ST_Simplify(cr_geom,100), ST_SimplifyVW(cr_geom,5000), cr_geom from
creek where cr_name='Dera-patak'
Click here to read more about Douglas–Peucker algorithm and Visvalingam–Whyatt

algorithm

https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
https://en.wikipedia.org/wiki/Visvalingam%E2%80%93Whyatt_algorithm
https://en.wikipedia.org/wiki/Visvalingam%E2%80%93Whyatt_algorithm

Spatial Databases

75

Both algorithms are point reduction algorithms. Read the articles in the url above.

In cartography, we often use them to simplify or generalize lines or polygons. Read

the PostGIS Topology Module, before you use these algorithms in polygon

simplification.

Check and understand the differences between the tolerance values!

19. select ST_Chaikinsmoothing(cr_geom,5), cr_geom from creek where cr_name='Dera-

patak'

Chaikin's smoothing

Smoothing is used to smooth a polyline. Smoothing is often used after

simplification to make the new line with less nodes. Th appperance is much more

curve-like.

20. select ST_DelaunayTriangles(s_geom), s_geom from settlement where

s_name='Barcs'

Delaunay Triangulation is used to tessellate or subdivide a plane.

https://medium.com/@jrespinozah/creating-smooth-curves-with-chaikins-algorithm-a0ad91d98ef7
https://en.wikipedia.org/wiki/Delaunay_triangulation

Spatial Databases

76

Part 4.: Understanding spatial relations, geoprocessing.

1. select ST_Intersects((select rp_geom from river_polygon where

rp_name='Duna'),(select rp_geom from river_polygon where rp_name='Tisza')) →

False

2. select ST_Disjoint((select rp_geom from river_polygon where

rp_name='Duna'),(select rp_geom from river_polygon where rp_name='Tisza')) →

True

3. select ST_Intersects(ST_SetSRID(ST_Point(616100, 206300),23700), (select

co_geom from county where co_name='Fejér megye'))

4. select ST_Intersects(ST_Transform(ST_SetSRID(ST_Point(18.6,

47.2),4326),23700), (select co_geom from county where co_name='Fejér megye'))

5. select ST_Intersects(ST_Transform(ST_GeomFromText('POINT(18.6

47.2)',4326),23700), (select co_geom from county where co_name='Fejér megye'))

select ST_Touches((select co_geom from county where co_name='Fejér

megye'),(select co_geom from county where co_name='Pest megye')) → True

Use other spatial relations!

select ST_Contains((select co_geom from county where co_name='Fejér

megye'),(select co_geom from county where co_name='Pest megye')) → False

select ST_Disjoint((select co_geom from county where co_name='Fejér

megye'),(select co_geom from county where co_name='Pest megye')) → False

select ST_Within((select co_geom from county where co_name='Fejér

megye'),(select co_geom from county where co_name='Pest megye')) → False

select ST_Crosses((select co_geom from county where co_name='Fejér

megye'),(select co_geom from county where co_name='Pest megye')) → False

select ST_Overlaps((select co_geom from county where co_name='Fejér

megye'),(select co_geom from county where co_name='Pest megye')) → False

6. select ST_Contains((select co_geom from county where co_name='Fejér

megye'),(select s_geom from settlement where s_name='Székesfehérvár')) → True

7. select ST_Overlaps((select co_geom from county where co_name='Fejér

megye'),(select s_geom from settlement where s_name='Székesfehérvár')) →

False

select ST_Crosses((select co_geom from county where co_name='Fejér

megye'),(select s_geom from settlement where s_name='Székesfehérvár')) →

False

8. select ST_Within((select ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0

0))')),(select ST_GeomFromText ('POLYGON((0 0,0 1,1 1,1 0,0 0))'))) → True

select ST_CoveredBy((select ST_GeomFromText ('POLYGON((0 0,0 1,1 1,1 0,0

0))')),(select ST_GeomFromText ('POLYGON((0 0,0 1,1 1,1 0,0 0))'))) → True

select ST_Within((select ST_GeomFromText('LINESTRING(0 0,0 1,1 1,1

0)')),(select ST_GeomFromText ('POLYGON((0 0,0 1,1 1,1 0,0 0))'))) → False

select ST_CoveredBy((select ST_GeomFromText('LINESTRING(0 0,0 1,1 1,1

0)')),(select ST_GeomFromText ('POLYGON((0 0,0 1,1 1,1 0,0 0))'))) → True

select ST_Within((select ST_GeomFromText('LINESTRING(0 0,0.5 0.5,0 1,1 1,1

0)')),(select ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))'))) → True

select ST_CoveredBy((select ST_GeomFromText('LINESTRING(0 0,0.5 0.5,0 1,1 1,1

0)')),(select ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))'))) → True

select ST_Within((select ST_GeomFromText('POINT(0 0)')),(select

ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))'))) → False

Spatial Databases

77

select ST_CoveredBy((select ST_GeomFromText('POINT(0 0)')),(select

ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))'))) → True

To run the queries above with ST_COVERS or ST_CONTAINS reverse the order of

geometries!

ST_COVERS(geomA, geomB) <-> ST_CoveredBy(geomB, geomA)

ST_CONTAINS(geomA, geomB) <-> ST_Within(geomB, geomA)

9. select ST_Intersection((select co_geom from county where co_name='Fejér

megye'),(select rp_geom from river_polygon where rp_name='Duna'))

10. select ST_Difference(np_geom,(select co_geom from county where

co_name='Veszprém megye')) from nature_protection

11. select sc_name from settlement_centroid where ST_Intersects(sc_geom,(select

co_geom from county where co_name='Fejér megye'))

12. select sc_name, sc_geom from settlement_centroid where

ST_Intersects(sc_geom,(select co_geom from county where co_name='Fejér

megye'))

13. select sc_name, sc_geom from settlement_centroid where not ST_Contains((select

co_geom from county where co_name='Fejér megye'), sc_geom)

14. select count(sc_name) from settlement_centroid where not ST_Contains((select

co_geom from county where co_name='Fejér megye'), sc_geom)

15. select ST_Intersection((select co_geom from county where co_name='Fejér

megye'), m_geom) from motorway where m_ref ilike '%M7%' and

ST_Intersects((select co_geom from county where co_name='Fejér megye'),

m_geom)

this is why M7 text can not be found everywhere in the name column

or do it with st_union

select ST_Intersection((select co_geom from county where co_name='Fejér

megye'), ST_Union(m_geom)) from motorway where m_ref ilike '%M7%'

16. select ST_Length(ST_Intersection((select co_geom from county where

co_name='Fejér megye'), ST_Union(m_geom))) from motorway where m_ref ilike '%M7%'

17. select ST_Length(ST_Intersection((select co_geom from county where

co_name='Fejér megye'), ST_Union(m_geom)))/1000 from motorway where m_ref ilike

'%M7%'and m_hu_ed_dire='forward'

or

select ST_Length(ST_Intersection((select co_geom from county where co_name='Fejér

megye'), ST_Union(m_geom)))/1000 from motorway where m_ref ilike '%M7%'and

m_hu_ed_dire='backward'

18. select ST_Area(ST_Union(ST_Intersection((select co_geom from county where

co_name='Veszprém megye'),np_geom)))/1000000 from nature_protection

19. select ST_Area(ST_Union(ST_Intersection((select co_geom from county where

co_name='Veszprém megye'),np_geom)))/1000000/(select ST_Area(co_geom)/1000000

from county where co_name='Veszprém megye')*100 from nature_protection

20. select ST_Area(ST_Union(np_geom))/1000000/(select

ST_Area(ST_Union(co_geom))/1000000 from county)*100 from nature_protection

Spatial Databases

78

21. select * from geobox where ST_Contains((select co_geom from county where

co_name='Fejér megye'), gl_geom)

22. select count(*) from geobox where ST_Contains((select co_geom from county

where co_name='Fejér megye'), gl_geom)

23. select * from geobox where ST_Disjoint((select co_geom from county where

co_name='Fejér megye'), gl_geom)

or select * from geobox where not ST_Contains((select co_geom from county where

co_name='Fejér megye'), gl_geom)

24. select * from geobox where ST_Intersects((select ST_Buffer(rp_geom, 10000)

from river_polygon where rp_name='Duna'), gl_geom)

25. select * from geobox where ST_Intersects((select ST_Union(ST_Buffer(m_geom,

10000)) from motorway where m_ref ilike '%M7%'), gl_geom)

26. select * from geobox where ST_Intersects(ST_Intersection((select

ST_Union(ST_Buffer(m_geom, 10000)) from motorway where m_ref ilike '%M7%'),(select

co_geom from county where co_name='Fejér megye')), gl_geom)

27. select cr_name, ST_Distance((select ST_Transform(ca_geom,23700) from castles

where ca_name='Hollókői vár'), cr_geom) from creek order by 2 asc limit 1

28. select ST_Endpoint(ST_ShortestLine((select ST_Transform(ca_geom,23700) from

castles where ca_name='Hollókői vár'), cr_geom)) from creek order by 1 asc limit 1

or

select ST_ClosestPoint((select ST_Transform(ca_geom,23700) from castles where

ca_name='Hollókői vár'), cr_geom) from creek order by 1 asc limit 1

29. select ST_Split(ST_Union(co_geom),

ST_Transform(ST_GeomFromText('LINESTRING(16.0 47.0, 22.0 47.0)',4326),23700)) from

county

30. select ST_SymDifference((select ST_Union(np_geom) from nature_protection where

np_name='Budai Tájvédelmi Körzet'),(select co_geom from county where co_name=

'Budapest'))

31. select d_name, ca_name from district, castles where ST_Contains(d_geom,

ST_Transform(ca_geom,23700)) order by d_name

or

select d_name, ca_name from district, castles where d_geom ~

ST_Transform(ca_geom,23700) and ST_Contains(d_geom, ST_Transform(ca_geom,23700))

order by d_name

32. Draw the section of Route 8 that lies between Bory Castle in Székesfehérvár

and Thury Castle in Várpalota. When trimming the section, make sure it ends at the

point on the road closest to each castle.

33. select SRS1.srid, SRS2.srid from spatial_ref_sys SRS1, spatial_ref_sys SRS2

where (SRS1.srid+SRS2.srid)=23700

divide by 2, because it repeated twice

34. select d2.d_name from district d1, district d2 where ST_Touches(d1.d_geom,

d2.d_geom) and d1.d_name='Székesfehérvári járás'

Spatial Databases

79

35. select d1.d_name, count(*), string_agg(d2.d_name,', ') from district d1,

district d2 where ST_Touches(d1.d_geom, d2.d_geom) group by 1 order by 1

Spatial Databases

80

Chapter 9. Data import

Creating a new database, and importing data from SQL files

Right-click on Database, and create a new empty database, e.g. library (Create → Database).

Open the library.sql file via SQL editor menu → Open SQL script.

Execute the script → Execute script (use the 3rd icon on the left of the SQL window) then press F5

(refresh the database).

If your database is in MySQL, you cannot directly use SQL files to migrate it to PostgreSQL, as

MySQL and PostgreSQL dumps are not compatible. In such cases, use CSV text files for database

migration instead.

Adding extensions (PostGIS, PostGIS Raster, PostGIS Topology)

A spatial database requires at least the PostGIS extension. Don’t forget to add this to your database

before importing data. Go to Database → Schemas → Extensions, and right-click → Create New

Extension → Search for the extension by name (e.g., PostGIS) and add it.

Spatial Databases

81

Uploading Data into a PostgreSQL Database from CSV – Using an

Existing table structure
The first step is to create a new empty table. In Database Navigator right-click → Tables → Create

New Table.

In the Properties window, define the table columns, data types, collations, and other settings. To add a

new column: right-click under Columns → Create New Column.

Once ready, don’t forget to save the table (Save icon is at the bottom of the window).

Spatial Databases

82

Columns can have constrainst, indexes and keys.

A primary key is a column that contains unique, non-null values (e.g., a sequence like 1, 2, 3...n).

To define it: go to the Constraints submenu, right-click → Create New Constraint → select

Primary Key.

Spatial Databases

83

After any modification, always save your changes.

If you already have a CSV file and a predefined table structure, you can import data from the

CSV file.

Right-click on the Database Navigator → Import data.

Select the file format: CSV. Next.

Spatial Databases

84

Then configure the CSV properties:

Extension: (CSV, TSV,TXT)

Encoding: character encoding

Column delimiter: semicolon, comma, TAB etc.

Header position: does the file include a header? If so, specify how many rows it spans.

Quote char: e.g.” if used around values

Escape char: usually \

Null value mark: what is the NULL value?, Null or „” (empty string)

Set empty strings to Null

Date Time format: specify the format used in the file

Timezone ID: set if applicable

Column length: optional column width

Click Next.

Spatial Databases

85

In the following window, map the columns in your CSV to the corresponding columns in the database

table.

Final settings: Check the option "Truncate target table before load" if you want to delete all existing data

from the table before importing new data. Click Next. Proceed.

Spatial Databases

86

After the import, check the table to confirm the data has been loaded (refresh the table if necessary).

Uploading Data to a PostgreSQL database from a CSV – Missing table

structure

In this task, you need to upload a CSV file and the table structure will be inferred from the file itself.

The example used here is the europe.csv file.

Right-click on the Schemas section of your database and select → Import Data.

Spatial Databases

87

Select the format CSV and configure the CSV settings as shown in the previous example.

If the Table Mapping settings appear, you can define a new table structure here. In the mapping

settings, choose Create, which will generate the columns. Then click the Configure button.

Here, you can review and adjust the data types for each column if needed.

Spatial Databases

88

All other settings should be the same as in the previous example. Finally, check the updated table!

Creating a backup

If you want to back up your database or migrate it, use the Backup option.

Right-click on the Database → Tools → Backup.

Select the tables you want to include in the backup.

Recommended settings:

- Format: Plain. (can be edited/viewed in a text editor).

- Encoding: UTF-8

Spatial Databases

89

- Use SQL INSERT instead of copy of rows: Inserts the rows as SQL statements rather than

copying raw data

- Output folder: Select the destination folder

→ Click Start to begin the backup process.

Upload a table from an another one.

Create a new empty table named ’newtable’. Add the following columns: n_id serial, n_name

varchar and a n_geom geometry columns. The primary key is n_id. SAVE the changes.

create table public.newtable ();

alter table public.newtable add n_id serial NOT NULL;
alter table public.newtable add n_name varchar NULL;
alter table public.newtable add n_geom public.geometry NULL;

Insert data from the geobox table, only include rows where the geometry intersects with the county

named Fejér megye.

Use: an INSERT INTO + SELECT SQL Statement:

insert into newtable (n_name, n_geom) select gl_full_name, gl_geom from geobox

where ST_Intersects(gl_geom, (select co_geom from county where co_name='Fejér

megye'))

Data conversion

You can export geometry to GeoJSON format using the ST_AsGeoJSON function. This function can

convert individual geometries or full rows (with geometry).

Example – convert only the geometry column:

select emp_name, ST_AsGeoJSON(emp_geom) from empty_table

Example – convert entire records (including all attributes):

select ST_AsGeoJSON(empty_table.*) from empty_table

Exporting to a GeoJSON File

Run the query. Below the result table, click on the Export Data button.

Spatial Databases

90

Choose TXT as the export format. Disable delimiters (refer to the image). Leave the remaining

settings as default. After exporting, manually change the file extension to GeoJSON.

Spatial Databases

91

This file can be used in GIS software such as QGIS. Be careful with the coordinate reference system

(CRS): GeoJSON expects EPSG:4326 by default.

In this case, the correct CRS is EPSG:23700, so after importing the file into QGIS, go to:

Layer Properties → Source tab, and set the correct projection.

Exporting to KML Format

PostGIS also provides an ST_AsKML function. However, it only works with individual geometry

columns—it does not support full table rows (i.e., table_name.* is not allowed). This means, you can

convert geometries to KML, but attribute data will not be included.

select ST_AsKML(emp_geom) from empty_table

The Geography data type

The geography data type does not use planar (flat) coordinates—it works with spherical coordinates:

geographic latitude and longitude.

If you want to convert a geometry to geography, you first need to use the ST_Transform function

to project the geometry into EPSG:4326 (WGS84), which uses geographic coordinates.

The most significant differences between geometric and geographic coordinates appear when

calculating distances using functions like ST_Distance and ST_DistanceSphere.

The following article explains these differences in detail:

http://postgis.net/workshops/postgis-intro/geography.html

http://postgis.net/workshops/postgis-intro/geography.html

Spatial Databases

92

Unless strictly necessary, it's often better to avoid using the geography type and stick with

geometry, unless you're working with data covering the entire globe.

Add a geography Column to the empty_table Table:

Create a new column in the ures table with the geography data type:

alter table public.empty_table add emp_geog public.geography NULL;

Populate the new column using transformed geometry data:

update empty_table set emp_geog = ST_Transform(enp_geom,4326);

or

update empty_table set emp_geog = ST_Transform(emp_geom,4326)::geography;

Which geoboxes (geocaches) in Fejér County are within a 10 km radius of Lake Velence?

select emp_name from empty_table where ST_Intersects(emp_geog,(select

ST_Transform(ST_Buffer(la_geom, 10000),4326) from lake where la_name='Velencei-

tó'))

Distance Calculations Example

Let’s calculate the distance between the geocache "Madár Liget in Dunaújváros" (emp_id = 1) and

"Bakonykúti" (emp_id = 28) using different methods.

When using ST_Distance on geometry, you get a planar (projected) distance. When using

ST_Distance on geography, you get a distance over the ellipsoid (WGS84).

When using ST_DistanceSphere (after transforming to EPSG:4326), you get the spherical

distance in meters. The assumed Earth radius is 6,371,008 meters.

select ST_Distance((select emp_geom from empty_table where emp_id=1),(select

emp_geom from empty_table where emp_id=28)),ST_Distance((select emp_geog from

empty_table where emp_id=1),(select emp_geog from empty_table where emp_id=28)) →

65 527.41 m and 65 531.6 m

select ST_DistanceSphere((select ST_Transform(emp_geom,4326) from empty_table

where emp_id=1),(select ST_Transform(emp_geom,4326) from empty_table where

emp_id=28)),ST_Distance((select emp_geog from empty_table where emp_id=1),(select

emp_geog from empty_table where emp_id=28)) → 65 387.86 m and 65 531.6 m

Expected results (approximate):

• Planar vs. ellipsoidal: 65,527.41 m vs. 65,531.6 m

• Spherical vs. ellipsoidal: 65,387.86 m vs. 65,531.6 m

Shapefile import with PostGIS Bundle

The PostGIS Bundle is available on Windows. (On macOS and Linux/Unix systems, the necessary

tools are available, but there is no graphical user interface—you must use the command line.)

Spatial Databases

93

Start the PostGIS Bundle from the Start menu. This tool allows you to import and export Shapefiles to

and from a PostgreSQL + PostGIS database.

First step is to set the connection details. (PostgreSQL user name+password and port number, and the

database name)

Try using the stops.shp file to test the import process.

Click Add File to select the Shapefile. Here, you can define: the table name, the geometry column

name and the SRID (Spatial Reference Identifier). In the Import options, you can also set the character

encoding of the DBF file, and enable the creation of a spatial index, etc

Once everything is configured, click the Import button.

Check the Log Window to confirm whether the import was successful.

Spatial Databases

94

Exporting Shapefiles

You can also export Shapefiles from the database. To do this, select the table, then specify the

geometry column and set the output file name.

Troubleshooting FAQ

Here are solutions to common issues:

Issue: I can’t see the database, even though I created it.

Right-click on the username (e.g., postgres) → Edit connection

Go to the PostgreSQL tab → check the box Show all databases.

Issue: The font in the window is too small. I want to increase it.

Navigate to: Window → Preferences → User Interface → Colors and Fonts → Basic → Text

Font → Click Edit to increase the font size.

Issue: A long SQL query appears in one line in the SQL Console. I want to format it.

Use the shortcut:

CTRL + SHIFT + F (Auto-format)

Spatial Databases

95

CHAPTER 10: POSTGIS Topology

PostGIS allows us to built topological data structure and work with them. To use these features, add

the PostGIS Topology Extension. A detailed description of this module can be found here:

https://postgis.net/docs/Topology.html

Why use a topological data structure instead of standard geometry?

- To store spatial relationships explicitly

- Reduced storage size – every edge is stored once → more compact geometry representation

- Ensures topological integrity: every intersection becomes a node

- Shared edges are stored once, rather than being duplicated for each polygon

Source of image: http://strk.kbt.io/projects/postgis/Paris2011_TopologyWithPostGIS_2_0.pdf

Topological data structure uses four data type for storing data:

• nodes (marked with red dots in the image above)

• edges (lines between nodes, marked green for shared edges and black individual ones.

• faces (entities built from edges, similar to polygons in geometry)

• relation (define relationships between topological elements)

When should you use topological data structures?

Topological structures are especially useful in certain cases. The example below demonstrates such a

case. The hungary database contains a county table with data suited for a map scale of 1:300,000–

500,000. Our goal is to generalize these county borders using a line simplification algorithm to make

the resulting map suitable for a 1:2,000,000 scale. Among various generalization algorithms, the most

commonly used is the Douglas–Peucker (or Ramer–Douglas–Peucker) algorithm. This recursive

algorithm reduces the number of nodes while preserving the vertices that contribute to the line’s

overall shape.

If you apply a simplification algorithm directly to geometries:

http://strk.kbt.io/projects/postgis/Paris2011_TopologyWithPostGIS_2_0.pdf

Spatial Databases

96

• Every feature is simplified independently

• The algorithm does not account for shared borders

• This can cause topological errors, like gaps or overlaps between polygons

So, geometry simplification is not suitable for small-scale maps if shared borders must remain

consistent.

Try it yourself:

Even when using ST_SimplifyPreserveTopology, shared borders can still break:

select co_name, ST_Simplify(co_geom, 1000) from county

select co_name, ST_SimplifyPreserveTopology(co_geom, 1000) from county

Upper-left: Original layer: counties of Hungary. Upper-right: Topological errors of the feature simplification. Bottom-center image: yellow

dots show the nodes of topology

The solution is to introduce the topological data structure. In this case, you will simplify the edges

(single or shared shared edges are stored only once, along with which faces they belong to. The result

maintains topological correctness.

How to do this with PostGIS?

Outline

• Create an empty topology table and populate it with the transformed geometry from county table

• Create one more empty topology table. Call the Douglas–Peucker algorithm on the previous

table, and upload the simplified topology to this table.

• Convert the simplified topolpgy back to geometry.

Spatial Databases

97

Douglas–Peucker algorithm will be described at the end of this lesson. Now, let’s do the task step by

step.

Add a topology Schema and the postgis.topology extension to the database.
create schema IF NOT EXISTS topology;

create extension IF NOT EXISTS postgis_topology SCHEMA topology;

Copy the original county table and add a new field for a simplified geometry.

create table new_county as (select co_id, co_name, co_geom from county);

alter table new_county add column simplified_county geometry(POLYGON, 23700);

Create an empty topology table.

select topology.CreateTopology('topo1',23700)

 Populate the empty topology table with the transformed data from county table.

select ST_CreateTopoGeo('topo1', ST_Collect(co_geom)) from county

Create another empty topology for the simplified result.

select topology.CreateTopology('topo2',23700);

Simplify the edges with Douglas–Peucker algorithm and populate the second table.

select ST_CreateTopoGeo('topo2', geom) from (select
ST_Collect(ST_SimplifyPreserveTopology(geom, 1000)) as geom from topo1.edge_data)
As foo;

Reconstruct the simplified geometry from the simplified topology. Use with clause.

with simple_face As (select ST_GetFaceGeometry('topo2',face_id) as geom from

topo2.face where face_id>0) update new_county d set simplified_county=sf.geom from

simple_face sf where ST_Intersects(d.co_geom, sf.geom) and

ST_Area(ST_Intersection(sf.geom,d.co_geom))/ST_Area(sf.geom)>0.5;

Detailed explanation: an Update statement uses the with clausule to reconstruct the polygons from faces.

ST_GetFaceGeometry returns the polygon in the given topology with the specified face id. Builds the

polygon from the edges making up the face.

Select ST_GetFaceGeometry('topo2',face_id) as geom from topo2.face where face_id>0

The simplified_county table is populated from the result of select statement. The new – simplified

– geometry is inherited from

update new_county d set simplified_county=sf.geom from simple_face sf where
ST_Intersects(d.co_geom, sf.geom) and
ST_Area(ST_Intersection(sf.geom,d.co_geom))/ST_Area(sf.geom)>0.5;

To restore the geometry, the original geometry of the new county and the polygons reconstructed from

the faces must intersect, and the ratio of the area of their intersection to the area of the reconstructed

polygons must be greater than 0.5. This condition is included because we did not store descriptive data

for the topologies. Therefore, I identify the simplified county polygons based on which original polygon

Spatial Databases

98

they significantly overlap with (after simplification, there may be minor overlaps with neighboring

counties, which must be excluded).

Other funtions in the task:

ST_Collect() → create geometry collection from other data types

ST_CreateTopoGeo() → convert topology from geometry

ST_GetFaceGeometry()→ create faces from edges with similar id-s

How WITH clause works:

A CTE (Common Table Expression) is a temporary, named result set in SQL that you define at the start

of a query using the WITH clause. You can use it just like a table or subquery in the main part of your

SQL statement. In PostgreSQL, the WITH clause is used to define Common Table Expressions

(CTEs). A CTE is a temporary result set that you can reference within a SELECT, INSERT, UPDATE,

or DELETE statement. It helps structure complex queries and improves readability.

Syntax:

with temporaryTable (averageValue) as
(select Avg(Attr1)
from table)
select Attr1
from Table, temporaryTable
where table.Attr1 > temporaryTable.averageValue;

Lets see an example from library database. Which salaries are bigger than the average salary?

with libr(avgsalary) as
 (select Avg(li_salary)
 from librarian)
 select li_job from librarian, libr
 where librarian.li_salary > libr.avgsalary;

One more example: the average salary in which position is bigger than the average salary of librarian

table?

with libr(avgsalary) as
(select Avg(li_salary)
 from librarian),
 job(avgsalary, job) as (select Avg(li_salary), li_job from librarian group by
li_job)
 select job.job from job,libr where job.avgsalary>libr.avgsalary;

Other tutorials about PostGIS Topology:

http://strk.kbt.io/projects/postgis/Paris2011_TopologyWithPostGIS_2_0.pdf

https://trac.osgeo.org/postgis/wiki/UsersWikiPostgisTopology

http://strk.kbt.io/projects/postgis/Paris2011_TopologyWithPostGIS_2_0.pdf
https://trac.osgeo.org/postgis/wiki/UsersWikiPostgisTopology

Spatial Databases

99

What is ST_Simplify and ST_SimplifyPreserveTopology?

The most geoinformatics software offers algorithm(s) for line generalization. The most popular

algorithm is the Douglas–Peucker, which can be found in every software with different naming. This

algorithm was find out to reduce the number of nodes of a line, but it can be applied for polygons as

well. In this case, it simplify the ring (exterior and interior) of the polygon. If you simplify a polygon

layer, be careful: do not simplify the features one by one, because you will get topological errors (gaps

or overlaps). Use a topology data structure instead as in this chapter you have seen.

How it works (step-by-step):

Input:

- A curve made up of a series of ordered points.

- A tolerance (ε) — the maximum allowed deviation between the original and simplified curve.

Basic Steps:

- Start with the first and last point of the polyline. These will always be part of the simplified

result.

- Find the point farthest from the line segment between the first and last points. This is the point

that causes the most "bending."

- If this distance is greater than ε:

o Keep this point.

o Recursively apply the same process to the two segments:

o From the first point to the farthest point.

o From the farthest point to the last point.

- If the maximum distance ≤ ε, remove all intermediate points — the entire curve segment can be

approximated by the straight line.

Recursive Nature:

The algorithm uses divide and conquer, splitting the polyline wherever the maximum deviation is too

large, until all segments are within tolerance.

Spatial Databases

100

.

Source of image: Wikipédia. (https://it.wikipedia.org/wiki/Algoritmo_Ramer-Douglas-Peucker)

Spatial Databases

101

Chapter 10: Appendix – databases and files in these lecture notes
The CSV (Comma Separated Values) files stores data in a table-like structure as a plain text. Each line

represents a database record, and the columns are separated by a delimiter (such as a comma, semicolon,

tab, etc.).

europa.csv

This file contains the names, area, polulation, population density and the capital city of European

countries.

SQL

.sql scripts are used for backing up and the migrating databases. They contains the whole table structure

and data as well. Be careful, MySQL and PostgreSQL scripts are incompatible with each other.

library.sql

It contains the library database. The tables are catalogue, publication, publication_group, borrowing,

borrower, librarian, department.

hungary.sql

Table structure of hungary database. EPSG/SRID 23700 for all tables, except castles.

th
 t

a
b

le
s

o
f

d
a
ta

se
t

h
u

n
g
a
ry

 Field name Data type

county co_id serial4 Primary key

co_name varchar(254) Name of county

(=vármegye)

co_county_code int4 A custom code for the

county

co_geom geometry (MultiPolygon) Geometry field

district d_id serial4 Primary key

d_name varchar(254) District name (járás)

d_county_code int4 the code of the county,

which contains the district

d_district_code int4 A custom code for district

d_geom geometry (MultiPolygon) Geometry field

settlement s_id serial4 Primary key

s_name varchar(254) Name of the settlement

s_name_de varchar(254) german name

s_jaras_kod int4 the code of the district ,

which contains the

settlement

s_geom geometry (MultiPolygon) Geometry field

Spatial Databases

102

settlement_centroid sc_id int4 Primary key

sc_name varchar(254) Name of the settlement

sc_geom geometry Geometry field (the

centorid of built up areas)

builtup_area ba_id int4 Primary key

ba_name varchar(254) Name of the settlement

ba_geom geometry (MultiPolygon) Geometry field (only the

built up areas)

motorway mo_id int4 Primary key

mo _wayid varchar(254) OSM identifier

mo _hu_ed_dire varchar(254) direction of the motorway

from Budapest

mo _alt_name varchar(254) Old name of the motorway

(in the most cases is

NULL)

mo_alt_bridge varchar(254) is it a bridge?

mo _highway varchar(254) type: motorway

mo _int_ref varchar(254) Other number of the road

mo _lanes varchar(254) Number of lanes

mo _maxspeed varchar(254) Maximum speed

mo _oneway varchar(254) Is it a one way road?

mo _ref varchar(254) Number of the road

mo _surface varchar(254) covering material

mo _toll varchar(254) is there a toll?

mo _geom geometry(multilinestring) Geometry field

highway hi_id int4 Primary key

hi _wayid varchar(254) OSM identifier

hi _hu_ed_dire varchar(254) direction of the road from

Budapest

hi _bridge varchar(254) is it a bridge?

hi _foot varchar(254) can people walk on road?

hi _highway varchar(254) road type

hi _horse varchar(254) Can people use horse

carriage?

hi _int_ref varchar(254) Other road numbering

hi _maxspeed varchar(254) Maximum speed

Spatial Databases

103

hi _name varchar(254) road name

hi _oneway varchar(254) One way?

hi _ref varchar(254) Number of the road

hi _surface varchar(254) covering material

hi _toll varchar(254) is there a toll?

hi _tunnel varchar(254) is it a tunnel?

hi _geom geometry(multilinestring) Geometry field

primary highway ph_id int4 Primary key

ph _wayid varchar(254) OSM identifier

ph _hu_ed_dire varchar(254) Road direction from

Budapest

ph_bicycle varchar(254) Can peole ride a bicycle?

ph_bridge varchar(254) Is it a bridge?

ph_foot varchar(254) Can people walk there?

ph_highway varchar(254) road type

ph_horse varchar(254) can people ride a horse

carriage?

ph_int_ref varchar(254) other road numbering

ph_maxspeed varchar(254) maximum speed

ph_name varchar(254) Name of the road section

ph_oneway varchar(254) One way road?

ph_ref varchar(254) Number of the primary

road

ph_surface varchar(254) covering material

ph_toll varchar(254) Is there a toll?

ph_tunnel varchar(254) Is it a tunnel?

ph_geom geometry(multilinestring) Geometry field

secondary highway sh_id int4 Primary key

sh_wayid varchar(254) OSM identifier

sh_bicycle varchar(254) can people ride a bicycle?

sh_bridge varchar(254) is it a bridge?

sh_foot varchar(254) can people walk there?

sh_highway varchar(254) road type

sh_horse varchar(254) can people ride a horse

carriage?

Spatial Databases

104

sh_maxspeed varchar(254) maximum speed

sh_name varchar(254) name of the road section

sh_oneway varchar(254) one way?

sh_ref varchar(254) Number of the secondary

road

sh_surface varchar(254) covering material

sh_toll varchar(254) is there a toll?

sh_tunnel varchar(254) is there a tunnel?

sh_geom geometry(multilinestring) Geometry field

tertiary highway th_id int4 Primary key

th_wayid varchar(254) OSM identifier

th_bicycle varchar(254) can people ride a bicycle?

th_bridge varchar(254) is it a bridge?

th_foot varchar(254) can people walk there?

th_highway varchar(254) road type

th_horse varchar(254) can people ride a horse

carriage?

th_maxspeed varchar(254) maximum speed

th_name varchar(254) name of the road section

th_oneway varchar(254) one way?

th_ref varchar(254) Number of the tertiary

road

th_surface varchar(254) coverint material

th_toll varchar(254) is there a toll?

th_tunnel varchar(254) is it a tunnel?

th_geom geometry(multilinestring) Geometry field

railway r_id serial4 Primary key

r_name varchar(48) Nam of the section, if there

is

r_type varchar(16) type

r_linenumber varchar(10) Number of the line

r_status varchar(15) Current status of the

section.

r_agency varchar(5) Agency name

r_geom geometry(multilinestring) Geometry field

Spatial Databases

105

river_polygon rp_id int4 Primary key

rp_name varchar(254) Name

rp_geom geometry(multipolygon) Geometry field

river_line rl_id int4 Primary key

rl_name varchar(254) River name

rl_category varchar(50) River category

rl_geology varchar(50) The geological

environment of the river

rl_steepness varchar(50) Steepness

rl_crossing varchar(6) Crossing identifier

rl_desc varchar(250) Detaild description

rl_geom geometry(multilinestring) Geometry field

river ri_id int4 Primary key

ri_name varchar(254) Primary name of the river

ri_name_hu varchar(254) Hungarian name

ri_geom geometry(multilinestring) Geometry field

creek cr_id int4 Primary key

cr_name varchar(254) Name

cr_geom geometry(multilinestring) Geometry field

lake la_id serial4 Primary key

la_name varchar(100) Lak name

la_category varchar(30) Lake category

la_elevation numeric Elevation above sea level

la_general varchar(50) general environment of the

lake

la_depth numeric lake depth

la_desc varchar(150) description

la_geom geometry(multipolygon) Geometry field

hungary_border mo_id int4 Primary key

mo_name varchar(254) Name of the county

mo_geom geometry(multipolygon) Geometry field

geobox gid serial(4) Primary key

gl_id float(8) other id

gl_lat_d float(8) latitude in degree

Spatial Databases

106

gl_lat_m numeric latitude in minute

gl_lon_d float(8) longitude in degree

gl_lon_m numeric longitude in minute

gl_elevation numeric elevation above sea level

gl_full_name varchar(254) name of the geobox

gl_type varchar(254) type of the geobox

gl_county_country varchar(254) Name of the county and

country where it can be

found

gl_terep numeric difficulty of the road

gl_waypoint varchar(254) short id

gl_description varchar(254) geobox description

gl_felhaszn varchar(254) owner

gl_email varchar(254) owner email

gl_field_30 numeric latitude in degrees

gl_field_31 numeric longitude in degress

gl_geom geometry(point(23700)) Geometry field

nature_protection np_id in(4) Primary key

np_name varchar(254) Name of the protected area

np_type varchar(50) National park (nemzeti

park) or local protected

area (tájvédelmi körzet)

np_geom geometry(MultiPolygon) Geometry field

castles ca_id int(4) Primary key

 ca_name varchar(254) Name of the castle

ca_geom geometry(geometry,4326) Geometry field (EPSG:

4326)

 spatial_ref_sys Built in PostGIS table, it

stores the projections and

spatial reference system.

