
Collective Intelligence – Course Notes

Collective Intelligence
Course Notes for IPM-22fmiCOLLIEG

Tamás Takács, Zoltán Barta
PhD students, Department of Artificial Intelligence

Faculty of Informatics

2025

Preface

These notes accompany the Master’s course Collective Intelligence (IPM-22fmiCOLLIEG), offered by
the Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University (ELTE).
The material was prepared by Tamás Takács and Zoltán Barta, PhD students, under the supervision
of Dr. László Gulyás. The course offers a comprehensive introduction to collective intelligence, fo-
cusing on agent-based modeling, game theory, and multi-agent reinforcement learning (MARL). The
accompanying exercises were developed for interactive use in Google Colab.

Course Structure

The course is divided into three main thematic blocks:

• Agent-Based Modeling: Fundamentals and simulation of collective behavior in agent-based
systems.

• Game Theory: Formal analysis and modeling of agent interactions as games.

• Multi-Agent Reinforcement Learning: Training and coordination of intelligent agents using
RL principles.

Assignments

Two assignments are required for course completion:

• Assignment 1: Individual project in agent-based modeling.

• Assignment 2: Group project on a selected MARL topic. Example topics include: Coopera-
tive Mingle, Formation, Mechanism Design, Particle Swarm Optimization, Pathfinding, Patrolling,
Search and Rescue, Sorting, and TurtleBot3s.

1

Collective Intelligence – Course Notes

Practice Notebooks

The primary course content is delivered through interactive Google Colab notebooks. The table below
summarizes the practices and provides access links.

Practice Title / Access Link
1 Introduction to Collective Intelligence
2 An Introduction to NetLogo
3 NetLogo Simulations
4 NetLogo Model Design
5 Games: Models of Multi-Agent Interaction
6 Solution Concepts for Games
7 Introduction to Single-Agent RL
8 Introduction to Multi-Agent RL
9 Introduction to TorchRL
10 Centralized Training with Decentralized Execution
11 Heterogeneous Teams in MARL (MADDPG)
12 Communication in MARL

Note: Practice 1 is available exclusively via the ELTE SharePoint system.

Included Materials

This document contains the preface, all practice materials (2–12), both assignments, and, as an ap-
pendix, the first course presentation in PDF format.

2

https://ikelte-my.sharepoint.com/:p:/g/personal/cjrnie_inf_elte_hu/EcFV6Qk7cpREqUc90AgWlwkBTpSINfUhWA9tEaOEGMJV2g?e=tWTm5E
https://colab.research.google.com/drive/1pQFLdz9FTYhxdqRARke-EM2y5U3fgfKw?usp=sharing
https://colab.research.google.com/drive/1grRWSE2OBtZD9oMQUjpbebuHW6rq7Bof?usp=sharing
https://colab.research.google.com/drive/1zoYjeb89G4LvH3Ru47nQUCAtmx5dwHbl?usp=sharing
https://colab.research.google.com/drive/10DxnVBxxx4j_ktNskyAhoIddXGmEnwMe?usp=sharing
https://colab.research.google.com/drive/18Ow4ba8ujFPz1WE3CS_SRshfZE_DBn_j?usp=sharing
https://colab.research.google.com/drive/17Rw3stAwZaB5VhTRcCaOJfQEqsgYtFKt?usp=sharing
https://colab.research.google.com/drive/1Qm8OOaFD-AYrpN2f7qOej13fZJ1WpvvG?usp=sharing
https://colab.research.google.com/drive/1_Gn8-YLZ2E3U0tg0y9isnIT3ZTjd-f6a?usp=sharing
https://colab.research.google.com/drive/1cCpEJiVLmX_VktfstWKZDOudLShccWbp?usp=sharing
https://colab.research.google.com/drive/1GMAXuYfgxqPl0a-Kn4yoU4FZOdsGWm4Z?usp=sharing
https://colab.research.google.com/drive/1M5tBxgSxuH6pIYIgPwy2bn16gFjrlg5E?usp=sharing

👤 Tamás Takács, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice introduces NetLogo and the basics of agent-based modeling. Students will get familiar with key

concepts: what an agent is, the types of agents in NetLogo, and how simulations run. The aim is to show why

NetLogo is a good tool for learning ABMs and help students identify the main components they will need. After

this practice, students should be ready to start building more complex models.

2. Practice - An Introduction to NetLogokeyboard_arrow_down

2.1 Why NetLogo?

2.1.1 Close Competitors

2.1.2 Code Comparison

2.1.3 New Competitors

2.2 Building Blocks

2.2.1 The Environment

2.2.2 The Agents

2.2.3 The Observer

2.2.4 Starting Up NetLogo

2.2.5 Appetizer Commands

2.2.6 The Color Property

2.2.7 Shapes

2.2.8 The Breed Property

2.2.9 The Pen Mode Property

2.2.10 Moving the Agents

2.2.11 Patches

2.3 Programming in NetLogo

2.3.1 Commands

2.3.2 Interface Elements

2.3.3 Reporters

2.3.4 Styling

2.3.5 Variables

Table of Contentskeyboard_arrow_down

2.3.6 Agentsets

2.3.7 Conditionals

2.3.7 Loops

2.3.8 Lists

2.3.9 Program Structure

2.3.10 Higher-Order Procedure

2.3.11 Breeds

NetLogo is a programmable modeling environment for simulating natural and social phenomena, based on Logo

by Seymour Papert. It is designed to model complex system development over time.

1. Complex System a system made up of many interacting components or agents, where the interactions give

rise to emergent behaviors that cannot be easily predicted from the behavior of individual components

(congested road network).

2. Social Phenomena: behaviors, patterns, or events that arise within societies due to the interactions and

relationships among individuals or groups (voting patterns, Romania 2024).

3. Logo: high-level, interpreted, dynamically-typed programming language designed for educational purposes.

Comes with functional paradigms, symbolic processing and turtle graphics.

4. Programmable Modeling Environment: a software tool that allows users to create, simulate, and analyze

computational models of complex systems. It provides a framework for defining agents, their behaviors, and

interactions within an environment (NetLogo).

Are there any other programmable modeling environments out there? Yes, there are.

Many competing modeling environments use programming languages inspired by or similar to Logo. Most of

these platforms integrate another high-level programming language, such as Java, to enhance the user

experience. However, much of the Java code in these systems has become outdated.

2.1 Why NetLogo?keyboard_arrow_down

Feature GAMA

License Open-source (GPL v3.0) Open-sou

Programming Language GAML (Gama Modeling Language) for simulations; Java for extensions NetLogo l

Operating Systems Cross-platform: Windows, Linux, macOS Cross-pla

Primary Domain Spatially explicit agent-based simulations Social and

User Support Tutorials, manual, FAQ, forums, documentation, selected publications, examples Documen

GIS Capabilities Advanced GIS support, allowing integration and manipulation of spatial data Basic GIS

3D Capabilities Supports 3D simulations and visualizations Basic 3D

Learning Curve Moderate; requires understanding of GAML and modeling concepts Beginner-

Performance Suitable for large-scale simulations; performance depends on model complexity Best suite

Debugging Reports syntactic and semantic errors and gives semantic warnings that indicate “flaws in the logic of the model” Limited am

Simulation Speed Slowest (tested on Game of Life) Fastest (t

Multi-Threading Yes No

Latest Version 2.11 (as of January 20, 2025) 6.4.0 (as o

Reference: Raab, R., Lenger, K., Stickler, D., Granigg, W., & Lichtenegger, K. (2022). An Initial Comparison of

Selected Agent-Based Simulation Tools in the Context of Industrial Health and Safety Management. Proceedings

of the 2022 8th International Conference on Computer Technology Applications, 106-112. Presented at the

Vienna, Austria. doi:10.1145/3543712.3543745

2.1.1 Close Competitors:

2.1.2 Code Comparison:

New competitor modeling environments aim to leverage multi-threading and more efficient, faster programming

languages as their backbone to outperform traditional Java-based platforms. The market remains highly

competitive, with ongoing efforts to develop the most comprehensive and versatile programmable modeling

software.

2.1.3 New Competitors:

Reference: Datseris, G., Vahdati, A. R., & DuBois, T. C. (2022). Agents.jl: a performant and feature-full agent-based

modeling software of minimal code complexity. SIMULATION, 100(10), 1019-1031.

doi:10.1177/00375497211068820

Other notable advantages of NetLogo:

Extensive documentation (literally contains everything a good documentation needs)

Huge collections of pre-written simulations on Biology, Medicine, Physics, Chemistry and more

Very easy to get into

2.2.1 The Environment

The whole world is a discrete grid. Each basic region is called a patch.

2.2 Building Blockskeyboard_arrow_down

The environment is composed of agents called turtles that can independently move. Each turtle has a position,

coordinates, and a heading, expressed in degrees. 0° is north.

2.2.2 The Agents

Reference: https://ccl.northwestern.edu/netlogo/

Agents possess descriptive features as well such as their size, color and shape. (Mostly used for visualization

purposes)

Reference: https://ccl.northwestern.edu/netlogo/

Just like space, time in simulations is also discrete, progressing in units called ticks. A tick represents a moment

in simulation time during which agents perform their actions. By default, a scheduler ensures agents act in a

random order each tick, though this behavior can be customized as needed.

https://www.google.com/url?q=https%3A%2F%2Fccl.northwestern.edu%2Fnetlogo%2F
https://www.google.com/url?q=https%3A%2F%2Fccl.northwestern.edu%2Fnetlogo%2F

Reference: https://ccl.northwestern.edu/netlogo/

Each agent is equipped with a set of properties:

who: A unique identifier assigned to each agent, distinguishing it from others in the simulation.

heading: The direction the agent is facing, typically measured in degrees.

xcor and ycor: The agent's coordinates on the grid, defining its position in the simulation environment.

shape, size, color: Visual attributes of the agent, determining how it appears in the simulation.

hidden: A boolean property indicating whether the agent is visible or hidden in the simulation.

The observer in NetLogo acts as an overseer, responsible for managing and modifying the environment and

agents without being an agent itself. It can execute commands to create, move, or modify turtles, patches, and

links, as well as control the simulation by adjusting global settings, running procedures, and monitoring overall

behavior.

2.2.3 The Observer

2.2.4 Starting Up NetLogo (6.4.0)

https://www.google.com/url?q=https%3A%2F%2Fccl.northwestern.edu%2Fnetlogo%2F

Opening NetLogo presents a minimalist interface with a blank project, including an empty grid window by default.

The easiest way to begin interacting with this environment is through the Command Center.

By default, you are acting as the observer, which grants full control over the entire environment with a global

perspective. In observer mode, commands are executed at the global level and can directly manipulate the

environment, agents, and simulation settings.

create-turtles 1

This code may appear simple, but it performs multiple actions behind the scenes:

Action: It creates 1 new turtle in the simulation.

Default Properties: The newly created turtle is assigned default values for its properties, such as:

A unique identifier (who number, in this case it will be 0).

Randomly chosen initial heading (direction).

A random xcor and ycor (position) within the world's boundaries.

Default visual properties like shape , color , size , and hidden status (not hidden by default).

2.2.5 Appetizer Commands

Scope: This command is executed from the observer context, meaning the observer initiates the creation of

the turtle(s) in the environment.

inpsect turtle 0

The command inspect turtle is used to inspect all properties of a turtle.

In this window, you can observe additional properties of the turtle that were not mentioned previously:

label: A text string displayed next to the turtle. By default, it is empty, but it can be customized to display

numbers, words, or other information.

label-color: The color of the text in the turtle's label, displayed as a numerical color code.

breed: The classification of the turtle, used to group turtles into subcategories for specific behaviors or

roles. By default, turtles belong to the turtles breed.

pen-size: The width of the pen used by the turtle when drawing on the grid, measured in pixels.

pen-mode: Determines the drawing behavior of the turtle's pen. Possible values include up (not drawing),

down (drawing as it moves), or erase (erasing lines as it moves).

There is also an input field at the bottom of the Inspect window, which allows you to directly modify properties or

execute commands for the selected agent or object (such as a turtle, patch, or link) in the simulation.

For example, to change the label of a turtle, you can use the following command:

set label "Shrek"

The set command modifies the properties of the agent selected in the Inspect window. However, if you want to

do this from the observer level, you need to use the ask command to specify which agent you are targeting:

ask turtle 0 [set label "Donkey"]

This observer-level command is slightly modified from the original, with the inclusion of the ask keyword, along

with the breed (turtle) and the unique identifier (who) of the agent in question. The ask command in NetLogo

allows the observer to direct specific agents (or groups of agents) to perform actions.

NOTE:

1. The set command works within the context of the selected agent and can modify its own

properties directly.

2. Using the ask command, an agent can modify the properties of another agent. When an

agent uses ask , it essentially "steps into" the context of the target agent(s).

Exercise:

1. Use the create-turtles command in the Command Center to add a new turtle.

2. Right-click on the newly created turtle (Turtle 1) and select "Inspect" to open its Inspect

window.

3. In the input field of Turtle 1's Inspect window, try changing Turtle 0's label to "Shrek" again.

You might have noticed that the color of Turtle 0 is set to 55 , which might seem unusual. This is a greenish

color in NetLogo's color scheme. Additionally, the label-color is set to 9.9 , which corresponds to white.

Let's try changing the label-color of Turtle 0 to a different value, such as 19.9 :

set label-color 19.9

Surprisingly, nothing seems to happen. So, let's explore what's going on behind the scenes and understand how

colors are coded in NetLogo.

Reference: https://ccl.northwestern.edu/netlogo/bind/article/shapes-and-colors-in-netlogo.html

NetLogo uses a continuous color scale based on numbers ranging from 0 to 140 . These numbers represent

specific colors on the NetLogo color wheel:

Whole Numbers: Each whole number corresponds to a base color (e.g., 0 is black, 15 is red, 65 is green,

etc.).

2.2.6 The Color Property

https://www.google.com/url?q=https%3A%2F%2Fccl.northwestern.edu%2Fnetlogo%2Fbind%2Farticle%2Fshapes-and-colors-in-netlogo.html

Decimal Points: Decimal values (e.g., 19.9) create shades or variations of the base color. For example:

9.9 : The lightest shade of a color, often close to white and 19.9 : A lighter variation of red.

Let's try changing the label-color of Turtle 0 to a value that is outside the bounds of NetLogo's color system:

set label-color 155

Interestingly, the label-color turns red. This happens because NetLogo handles out-of-bounds color values by

applying the following formula: color = set_color % 140 (graceful handling).

For some phenomena, modeling how agents look can be just as important as modeling their behavior. In other

cases, creating visually appealing and creative visualizations can enhance our understanding and enjoyment of

the modeling process.

NetLogo uses vectorized shapes for turtles, which are built from basic geometric components. By default, turtles

use the default shape, but NetLogo also provides a library of pre-defined shapes that can be assigned to turtles

to represent different roles or states visually. These shapes can be customized to suit the needs of your model.

Other notable shapes include the following: airplane , bug , butterfly , person , house , car .

NetLogo has way more turtle shapes than the default ones for us to choose from. All we need to do is to click the

Import From Library button, which will bring up a long list of shapes to choose from.

2.2.7 Shapes

Reference: https://ccl.northwestern.edu/netlogo/bind/article/shapes-and-colors-in-netlogo.html

The breed property defines a classification of agents, specifying their roles within the system. NetLogo provides a

fallback breed called turtles , which is the default class for all agents unless explicitly assigned to another

breed. This ensures that agents always have a default classification, even if no additional breeds are defined.

You can define additional breeds to represent different roles or behaviors in the system. For example, in a

simulation of hunters and prey, you could create two separate breeds:

Hunters: Agents that have specific goals and actions, such as chasing prey.

Prey: Agents with different behaviors, like avoiding hunters or foraging for resources.

2.2.8 The Breed Property

The pen-mode property enables agents to leave a visual trail, following their trajectory as they move around the

environment. The property can take the following values:

up : The pen is lifted, and no trail is drawn as the agent moves.

down : The pen is lowered, drawing a trail along the agent's path.

2.2.9 The Pen Mode Property

https://www.google.com/url?q=https%3A%2F%2Fccl.northwestern.edu%2Fnetlogo%2Fbind%2Farticle%2Fshapes-and-colors-in-netlogo.html

erase : The pen erases any previously drawn trails as the agent moves.

This feature allows for the creation of intricate visual patterns, showing emergent behaviors in multi-agent

systems through simple movement rules. Let's set the pen-mode of Turtle 0 to down .

set pen-mode "down"

Basic movement in NetLogo involves the following commands:

forward : Moves the agent in the direction specified by its current heading property.

right and left : Adjust the heading value of the agent, changing its direction of movement.

The left command subtracts the specified angle from the current heading , while right adds the specified

angle to it. It's important to note that in NetLogo, the heading value is measured in degrees, with 0 degrees

representing north. For example:

If an agent's heading is 180 (facing south) and you execute right 180 , the agent will turn to face north

(back to a heading of 0).

Exercise: Use Turtle 0 to draw a perfect equilateral triangle (a triangle with three equal sides and

60-degree angles) on the simulation grid.

You will use the pen-mode property and the basic movement commands (forward and right) to

accomplish this.

2.2.10 Moving the Agents

In NetLogo, there are four types of agents: turtles, patches, links, and the observer. Commands can be directed to

any of these agents, including patches.

Patches are arranged in a grid with each patch having specific coordinates. The patch at coordinates (0, 0) is

called the origin, and the coordinates of other patches are determined by their horizontal and vertical distances

from this origin.

pxcor : The horizontal coordinate (increases as you move to the right).

pycor : The vertical coordinate (increases as you move upward).

These coordinates work similarly to the standard mathematical coordinate plane.

Commands in NetLogo can target a specific turtle or specific patch or the entire set of turtles or patches.

Turtles Patches

One ask turtle 0 [set color red] ask patch 2 3 [set pcolor red]

All ask turtles [set color red] ask patches [set pcolor red]

See https://ccl.northwestern.edu/netlogo/docs/dictionary.html for additional commands.

2.2.11 Patches

https://www.google.com/url?q=https%3A%2F%2Fccl.northwestern.edu%2Fnetlogo%2Fdocs%2Fdictionary.html

Patches also have a set of properties that can be manipulated, such as their color or label. For example, you can

change the color of a patch to standard white by setting its color property to 9.9 . Here's how you can do it:

ask patch 9 4 [set pcolor 9.9]

So what would be needed to create, for example, a chessboard pattern on the grid? Is there anything beyond the

Inspect Window and the Command Center to write more complex code, such as loops, creating breeds, handling

complex data structures, and manipulating multiple elements at once? Of course, there is: The Code Tab.

Instructions to agents can be classified according to three criteria:

whether they are built into NetLogo (primitive) or user implemented (procedure)

whether the instruction produces an output (report) or not (command)

whether an instruction takes inputs or not

NOTE:

NetLogo is case insensitive, so case conventions are purely for reader convenience.

2.3 Programming in NetLogokeyboard_arrow_down

Commands are procedures that don't have any output, but only side effects on the environment.

to go
 clear-all
 create-turtles 10

2.3.1 Commands

 ask turtles [forward 1]
end

This code defines a procedure called go , which performs the following actions:

1. clear-all : Resets the environment by clearing all agents, patches, and any previously drawn elements on

the grid.

2. create-turtles 10 : Creates 10 new turtles, each with default properties like random positions and

headings.

3. ask turtles [forward 1] : Asks all turtles to move forward by 1 step in the direction they are currently

facing.

This command can then be called in the Command Center with the following line:

go

Is there another way to interact with the Code Pane from the Interface Tab? Yes, through Interface Elements,

which allow users to modify and interact with the simulation without directly changing the code. The most notable

elements include:

Button: Executes a specific procedure or command when clicked.

Slider: Adjusts numeric values dynamically to control variables.

Switch: Toggles between true and false for boolean variables.

Chooser: Allows selection from a predefined list of options.

Input: Accepts user-provided text or numeric input.

Monitor: Displays the current value of a variable in real time.

Plot: Visualizes data over time or for specific conditions.

Output: Prints text or data to a log-like area in the interface.

Note: Displays descriptive text or instructions for the user.

Exercise: Figure out which Interface Element would be appropriate to call this command once

without interacting with the Command Center.

Can you also determine how to call this function continuously within a loop?

2.3.2 Interface Elements

Reporters are procedures that compute a value and report it.

to-report double [num]
 report 2 * num
end

The above code defines a reporter named double that performs the following actions:

1. Input Parameter: It takes a single input, num , which is the value to be processed.

2. Computation: It multiplies the input (num) by 2.

3. Reporting the Result: The report keyword is used to return the computed value (i.e., 2 * num).

This reporter can be called in the Command Center or within other procedures to compute the double of a given

number. For example:

2.3.3 Reporters

show double 5

In the code above, num acts as an input parameter to the command.

Exercise: Figure out which Interface Element would be most appropriate to monitor the value of the

double reporter.

There isn't an official NetLogo style guide. Nonetheless the official documentation is fairly consistent and follows

some good habits:

use camel case beginning with a lower-case letter for procedure (e.g. myProcedure , Java style)

do not use underscores in names

name command procedure with nouns and reporters with verbs

2.3.4 Styling

Variables in NetLogo can be divided into three main groups:

Local variables, defined as part of a procedure: let <name> <value>

Agent variables, defined as part of each agent: <agent*>-own [<name(s)>]

Global variables, accessible by every agent and procedure: globals [<name(s)>]

Exercise: Create a global variable named radius and set its value to 5 in a command named

setup . Subsequently, create a reporter called calculate-area that calculates the area of a circle.

In this function, create a local variable named area that computes the area of the circle using the

formula area = π × radius² , where radius is the global variable. The reporter should then return

the computed area of the circle.

Use a Button interface element to run the setup command once, then utilize a Monitor interface

element to show the result with 3 decimal places!

Hints:

Use the globals keyword to define the global variable radius .

Use the set command to assign the value 5 to radius .

pi is already a predefined constant in NetLogo, so you don’t need to define it manually.

Solution:

Click to show/hide solution

NOTE:

NetLogo variables are dynamically typed.

2.3.5 Variables

Primitive types are numbers, booleans, lists, strings, along with the usual operations: + , - , * ,

/ , ^ , > , >= , = , != , < , <= , and , or , not , xor .

All numbers are floating points; be aware of approximations.

When performing arithmetic operations be aware of spaces: the lack of parentheses might

bring ambiguity in parsing the operation and result in something different.

When asking to update an agent variables a subset of all the agents, called agentset , can be used. An agentset

contains one or more agents, all of the same type, and it's always randomly ordered.

ask one-of turtles [<command>]

The one-of primitive in NetLogo randomly selects one agent from a given set of agents, such as turtles, patches,

or links. For example, one-of turtles randomly selects one turtle from the current set of turtles. Additionally,

you can create subsets of agents using conditions (e.g., turtles with [color = red]) and then instruct these

specific subsets with targeted commands.

let some-patches patches with [pxcor < 3]
ask some-patches [set pcolor red]

2.3.6 Agentsets

Conditionals in NetLogo allow agents to make decisions based on specific criteria using commands like if ,

ifelse , and ifelse-value . For example, if pcolor = black [set pcolor white] changes a patch's color

to white only if its current color is black.

if (<condition>) [<command(s)>]

ifelse (<condition>)
 [<command(s) if true]
 [<command(s) if false]

ifelse-value (<condition)
 [<reporter(s) if true]
 [<reporter(s) if false]

if (random-float 1 < 0.5)
 [show "heads"]

ifelse (random-float 1 < 0.5)
 [show "heads"]
 [show "tails"]

ask turtles [
 set color ifelse-value (energy < 0)
 [red]
 [green]
]

2.3.7 Conditionals

Conditions are logical expressions (=, <, >, and, or, etc.) that evaluate to true or false .

NOTE:

When using if or ifelse in an ask block, the condition is evaluated for each agent

individually.

ask turtles [if xcor > 0 [set color red]]

Loops in NetLogo allow repeated execution of commands, enabling dynamic and iterative behaviors. Common

looping constructs include repeat , which runs a block of commands a fixed number of times, and while , which

runs as long as a specified condition is true.

loop [<command(s)>]

repeat <num> [<command(s)>]

foreach <list> [[<item>] -> <command(s)>]

loop [ifelse (counter > 100)
 [stop]
 [set counter counter + 1]
]

repeat 5 [
 ask one-of turtles [set color red]
]

foreach [1 2 3] [[num] -> show num * 2]

NOTE:

Loops inside an ask block are executed independently for each agent.

ask turtles [repeat 5 [forward 1]]

2.3.7 Loops

Lists in NetLogo are ordered collections of items, which can include numbers, strings, agents, or other lists. They

are data structures that support operations like adding, removing, or accessing elements.

(list <element(s)>)

[element(s)]

(list 1 "two" true)

2.3.8 Lists

[1 "two" true]

NOTE:

In NetLogo, lists are immutable, ordered, and potentially heterogeneous.

Some examples:

let colors ["red" "blue" "green"]
show item 1 colors

The output will the firsts element or item in the list, which is blue .

let my-list [1 2 3]
set my-list replace-item 1 my-list 99

my-list will contain the values of [1, 99, 3] after using replace-item .

The lput primitive command adds an element to the end of a list, while fput adds an element to the beginning.

The flexibility of NetLogo and its agent-centered way of building models quickly escalates to complex models that

are difficult to work with.

Try to keep your structure as close as possible to:

global variable declaration;

agent variable declaration;

setup procedure, in which global variables are initialized, agents are created and the environment is

initialized;

go procedure, which implements one cycle of the simulation.

2.3.9 Program Structure

Even though NetLogo is not a higher-order language we can simulate this behavior using anonymous

procedures/reporters.

[[<var(s)>] -> <body>]

[] : Encloses the entire anonymous procedure or reporter.

[<var(s)>] : Specifies input variables (like function parameters) in a nested bracket. These variables can

be used within the body.

-> : Indicates the start of the body of the procedure or reporter.

<body> : The actual commands or expressions to execute. If it's a reporter, the result of this expression is

returned.

Higher-order procedure:*

[[x y] -> setxy y x]

Anonymous procedures assigned to variables (tasks):

2.3.10 Higher-Order Procedure

globals [stack push]

to setup
 set stack [] ; Initializes the stack as an empty list.
 set push [el -> set stack lput el stack] ; Defines the push task.
 run push 10
end

Higher-order reporter:

foreach [1 2 3] [[x] -> show x * x]

Unlike traditional procedures or reporters, anonymous ones are not stored in the Code Tab and cannot be reused

unless redefined. While NetLogo doesn't directly support higher-order functions, anonymous procedures allow for

similar behavior in many cases.

NOTE:

Map, filter, and reduce are basic constructors that allow efficient and elegant operations on

lists.

map applies an anonymous reporter to every element in a list.

filter applies a predicate (in the form of an anonymous reporter) to a list and returns only

those items that satisfy the predicate.

reduce applies an anonymous reporter from left to right, resulting in a single value.

map [a -> a * a] [1 2 3]

filter [a -> a > 5] [1 9 2]

reduce [[a b] -> a + b] [1 9 2]

In NetLogo breeds are a way to "subclass" the turtle type.

breed [<single name> <agentset name>]

breed [hunter hunters]
breed [prey preys]

After a breed has been created, the ask command can be used with the breed name (e.g., ask hunters) to

execute actions for agents of that specific breed. All commands and properties applicable to turtles can also be

used with the newly defined breed.

2.3.11 Breeds:keyboard_arrow_down

Exercise: Now that we've learned how to interact with the Code Pane, call functions from the

Interface Tab, and use loops through interface elements, your task is to create a custom command

called setup-chessboard . This command will clear the simulation environment and create a

classic chessboard pattern on the grid using black and white patch colors.

breed [hunter hunters]
breed [prey preys]

After a breed has been created, the ask command can be used with the breed name (e.g., ask hunters) to

execute actions for agents of that specific breed. All commands and properties applicable to turtles can also be

used with the newly defined breed.

Exercise: Now that we've learned how to interact with the Code Pane, call functions from the

Interface Tab, and use loops through interface elements, your task is to create a custom command

called setup-chessboard . This command will clear the simulation environment and create a

classic chessboard pattern on the grid using black and white patch colors.

Optional:

Modify the grid size to fit different chessboard sizes (e.g., 8x8, 16x16).

Use custom patch colors instead of black and white.

Add another Button to clear the chessboard or overlay agents on specific patches.

Solution:

Click to show/hide solution

to setup-chessboard
 clear-all
 ask patches [
 if (pxcor + pycor) mod 2 = 0 [set pcolor black]
 if (pxcor + pycor) mod 2 = 1 [set pcolor white]
]
end

Exercise: Design a garden pattern on the NetLogo grid using patches and turtles. The garden will

consist of alternating flowerbeds (colored patches) and turtles (acting as flowers) placed in specific

areas.

Tasks:

1. Write a procedure called setup-garden to:

Clear the environment.

Color the patches in a checkerboard pattern to represent flowerbeds.

Place turtles (flowers) only on the green patches.

2. Customize the turtles:

Set their shape to a flower (use circle if flower is unavailable in your version).

Randomize their size and color to make the garden more realistic.

3. Use ticks to control the simulation. On each tick, make the turtles grow slightly (increase their

size).

Hints:

Use the ask patches command to create the checkerboard pattern.

Use the ask turtles command to set their properties dynamically.

Utilize loops, conditions (if statements), and lists where needed.

Solution:

Click to show/hide solution

to setup-garden
 clear-all

 ask patches [
 if (pxcor + pycor) mod 2 = 0 [set pcolor green]
 if (pxcor + pycor) mod 2 = 1 [set pcolor brown]
]

 ask patches with [pcolor = green] [
 sprout 1 [
 set shape "circle"
 set size random-float 1.5 + 0.5
 set color one-of [red pink yellow orange]
]
]
 reset-ticks
end

to grow
 ask turtles [
 set size size + 0.1
]
 tick
end

👤 Tamás Takács, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice notebook introduces students to the fundamental structure of NetLogo's basic models and the

resources available in the NetLogo Model Library. Through hands-on exercises, students will gain experience in

loading and analyzing standard models, executing multiple simulations in parallel, and systematically

documenting their NetLogo code. The activities also reinforce core skills developed in Practice 2, guiding students

in combining essential NetLogo building blocks to design and implement elementary agent-based models.

3. Practice - NetLogo Simulationskeyboard_arrow_down

3.1 Models Library

3.1.1 Benchmark Simulations

3.2 The Fire Model

3.2.1 Mechanics

3.2.2 Running the Simulation

3.2.3 The Code

3.2.4 Preview Commands Editor

3.2.5 BehaviorSpace

3.2.6 The Info Tab

3.3 Schelling's Segregation Model

3.3.1 Plot Interface Element

3.3.2 The Code

3.3.3 Modifying the Code

3.4 Virus on a Network Model

3.4.1 Links

3.4.2 Network Building

3.4.3 The Main Loop

Table of Contentskeyboard_arrow_down

Last Practice

In our last practice, we covered:

An introduction to NetLogo and its competitor programmable modeling environments

The advantages of using NetLogo

World and Agents

Turtles and their properties

The Observer

Reporters and Commands

Variables and their types

Conditionals and loops

Lists and higher-order functions

Tasks, including map , filter , and reduce

Working with Breeds

That’s quite a lot! Now, let’s dive into how these concepts are applied in simulations using the Models Library.

The NetLogo Models Library is a comprehensive resource included with NetLogo, containing pre-built simulation

models spanning diverse disciplines such as biology, economics, physics, and social sciences.

It includes over 200 models, categorized for easy navigation (e.g., Biology, Social Science, and Computer

Science).

Models like Wolf Sheep Predation and Segregation have become benchmarks for studying agent-based

systems.

Models are fully editable, allowing users to modify parameters, add features, or adapt them for custom

research needs.

3.1 Models Librarykeyboard_arrow_down

3.1.1 Benchmark Simulations

Your Model Library should look somehow like this under File > Models Library.

File > Models Library > Sample Models > Earth Science > Fire

3.2 The Fire Modelkeyboard_arrow_down

Interface Tab

The Fire Model is a simple yet illustrative agent-based simulation used to study the spread of fire through a forest,

represented on a 2D grid. The environment consists of three primary elements:

1. Trees: Represented as green patches on the grid.

2. Fires: Represented by red turtles that simulate active fire.

3. Embers: Representing fading fire agents, marking burned areas.

The setup button initializes the forest grid based on a key variable called density . This global variable

determines the proportion of the grid occupied by trees and is controlled by a slider in the interface. The density

variable is only utilized during the setup phase and remains constant throughout the simulation, even if the slider

is adjusted during runtime.

The go button initiates the core simulation loop, which governs the spread of fire:

Fire agents ignite adjacent trees based on predefined rules.

Burned trees transition into embers, and fire agents disappear once their task is complete.

The model includes a monitor labeled percent burned , which reports the percentage of the grid area affected by

fire. This value is calculated by a reporter function that dynamically tracks the burned areas during the simulation.

3.2.1 Mechanics

Let's run the simulation with the initial density value of 57%.

3.2.2 Running the Simulation

Exercise: Run the setup command in the Interface tab and press the go button to start the

simulation.

Observe what happens to the forest:

Does the forest burn down completely? If yes, why? If no, why not?

What is the percent burned value displayed in the monitor?

Try to explain your observations based on the behavior of fire spread before looking into the

code.

Exercise: Find the epidemic threshold—the critical tree density where the fire just barely spreads

across the entire forest (agents reach the right side of the grid):

Adjust tree density and observe when the fire reaches the right edge.

Record the percent burned at densities above, below, and near the threshold.

Explain why the fire behaves differently at these densities.

In modeling, this epidemic threshold is more accurately referred to as a phase transition—a point where a small

change in an input parameter causes a dramatic shift in the system's behavior, leading to the collapse of a

previously stable state.

For this simulation, there is a closed-form solution: with a tree density of 57%, there is nearly a 0% chance of the

fire reaching the right side of the grid. However, as density increases to 62%, this probability jumps to nearly 100%.

Reference: Phase Transition Robertson, Duncan & Caldart, Adrián. (2008). Natural Science Models in

Management: Opportunities and Challenges. E:CO Emergence: Complexity and Organization. 10.

Reference: NetLogo - 1997 Uri Wilensky.

Initial Setup

globals [
 initial-trees ;; how many trees (green patches) we started with
 burned-trees ;; how many have burned so far
]

breed [fires fire] ;; bright red turtles -- the leading edge of the fire
breed [embers ember] ;; turtles gradually fading from red to near black

to setup
 clear-all
 set-default-shape turtles "square" ;; turn turtles into square shapes
 ask patches with [(random-float 100) < density] ;; make some green trees
 [set pcolor green]

 ask patches with [pxcor = min-pxcor] ;; make a column of burning trees
 [ignite]

 set initial-trees count patches with [pcolor = green] ;; set tree counts
 set burned-trees 0
 reset-ticks
end

Helper Commands

;; creates the fire turtles
to ignite ;; patch procedure
 sprout-fires 1
 [set color red]
 set pcolor black
 set burned-trees burned-trees + 1
end

;; achieve fading color effect for the fire as it burns
to fade-embers
 ask embers
 [set color color - 0.3 ;; make red darker
 if color < red - 3.5 ;; are we almost at black?
 [set pcolor color
 die]] ;; Removes the turtle, only the black patch remains
end

Main Loop

3.2.3 The Code

to go
 if not any? turtles ;; either fires or embers
 [stop]
 ask fires
 [ask neighbors4 with [pcolor = green]
 [ignite]
 set breed embers]
 fade-embers
 tick
end

Exercise: Modify the code to allow the fire to spread to all 8 neighboring patches (not just the 4

directly adjacent ones).

Run the setup command in the Interface tab and press go to start the simulation.

Observe how the fire spreads. Does it behave differently with the change?

Does the forest burn down completely? If yes, why? If no, why not?

Determine the new density for which a phase transition happens. How does it compare to

the original density threshold?

Do you think the critical density needs to be halved or adjusted differently? Explain why this

might be the case.

The Preview Commands Editor in NetLogo is a helpful tool that allows you to test your setup and go commands

before running an experiment. It ensures that your commands are valid and that the model behaves as expected,

helping to catch errors early and avoid wasting time on misconfigured experiments.

3.2.4 Preview Commands Editor

BehaviorSpace in NetLogo is a tool that allows you to run and analyze parameterized experiments by automating

the execution of your model with different variable combinations. The Preview Commands Editor is connected to

BehaviorSpace because it allows you to validate and fine-tune the setup and go commands used in your

experiment before running it.

Pressing the New button brings up the following window:

3.2.5 BehaviorSpace

Experiment Name: Assigns a name to the experiment for identification.

Vary Variables as Follows: Specifies which variables will change during the experiment and their values.

["density" 30 40 50 60 70]

Repetitions: Defines how many times the experiment will repeat for each parameter combination. Set it to

100 to average the results over 100 runs at each density value.

Execute Combinations in Sequential Order: Ensures that variable combinations are tested in the order

specified.

Measure Runs Using These Reporters as Metrics: Specifies the values to record during the experiment.

count fires

Run Metrics Every Step: Records the specified metrics at every step of the simulation.

Pre Experiment Commands: Commands to initialize the simulation before each run.

Stop Condition: Defines when the simulation should stop.

Time Limit: Specifies a maximum runtime for the simulation in seconds (0 means no limit).

Each experiment in NetLogo can be exported as an .xml file, allowing it to be reused or shared later to ensure

reproducibility.

NetLogo also efficiently bundles all components—interface elements (in XML), the Info tab, and the Code tab—

into a single .nlogo file for easy management and distribution.

NetLogo includes a built-in documentation tool that helps users effectively document their models. This tool's

structure can also serve as a skeleton for documenting other projects. It typically follows the structure below:

What is it?: A brief overview of the model and its purpose.

How it works?: Explains the underlying mechanics, rules, and logic driving the model's behavior.

How to use it?: Instructions for running the model, including details on controls, sliders, buttons, and other

interface elements.

Things to Notice: Key behaviors or patterns to observe when running the model.

Things to Try: Suggestions for experimenting with the model, such as changing parameters or testing

specific scenarios.

Extending the Model: Ideas for adding new features or expanding the model's functionality.

NetLogo Features: Highlights specific NetLogo commands or tools used in the model.

Related Models: Lists similar models in the NetLogo library or other related projects.

Credits and References: Acknowledgments for contributors and references to materials that inspired or

informed the model.

How to Cite: Citation format for the model, useful for academic or research purposes.

Copyright and License: Details on the model's licensing terms and copyright information.

Utilizes Markdown syntax, just like this document.

3.2.6 The Info Tabkeyboard_arrow_down

Exercise: Create a reporter called percent-burned that calculates and reports the percentage of

burned trees in the simulation.

Modify the code to use neighbors instead of neighbors4 , allowing the fire to spread to all 8

neighboring patches.

Set up a parameterized experiment in BehaviorSpace with the following conditions:

density set to 37%.

100 repetitions of the experiment.

Metrics logged at every simulation step.

Analyze the experiment results at step 25:

Calculate the mean and standard deviation of the percent-burned values across all

runs.

Determine if any of the runs reached 90% burned trees.

Solution:

Click to show/hide solution

to-report percent-burned
 report (burned-trees / initial-trees) * 100
end

Exercise: Update the model so that fires start from all edges of the grid lattice instead of just one

side.

Run the simulation and observe how the fire spreads:

Determine the density percentage at which the phase transition occurs when fire spreads

from all directions.

Compare the results to the original setup where fire started from one edge.

Is the fire approximately four times as effective when starting from all edges? Explain your

observations.

Solution:

Click to show/hide solution

ask patches with [(pxcor = min-pxcor) or (pxcor = max-pxcor) or (pycor = min-pycor)
 [ignite]

Exercise: Extend the functionality of the model by incorporating the effect of wind on fire spread.

This means that fire can spread not only to immediate neighbors but also to the neighbors of those

neighbors.

Modify the fire-spreading logic to include wind as a factor influencing the spread of fire.

Determine the phase transition density for fire spread under wind influence.

Solution:

Click to show/hide solution

to go
 if not any? turtles ;; either fires or embers
 [stop]
 ask fires
 [;; Spread to all patches within a radius of 2
 ask patches in-radius 2 with [pcolor = green]
 [ignite]
 set breed embers
]
 fade-embers

 tick
end

Exercise: Extend the functionality of the model by adding tree regrowth at each step.

Modify the code so that trees can regrow with a certain percentage per step, controlled by a slider

(e.g., regrowth-rate).

Add a slider to the interface to control the regrowth percentage.

Update the go procedure to allow patches (previously burned or empty) to regrow into trees

based on the slider value.

Run your experiments again and observe how regrowth affects fire spread dynamics.

Determine the new phase transition density with tree regrowth enabled.

Solution:

Click to show/hide solution

to go
 if not any? turtles ;; either fires or embers
 [stop]
 ask fires
 [;; Spread to all patches within a radius of 2
 ask patches in-radius 2 with [pcolor = green]
 [ignite]
 set breed embers
]

 regrow-trees
 fade-embers
 tick
end

to regrow-trees
 ask patches with [pcolor < red - 3.5]
 [
 if random-float 100 < regrowth
 [set pcolor green] ;; Regrow a tree
]
end

Exercise: Update the model to calculate the percentage burned based on the number of burned

patches currently on the map, rather than using the initial number of trees (since trees can now

regrow).

Modify the percent-burned reporter to dynamically calculate the percentage of burned

patches at any given moment.

Ensure the calculation accounts only for patches with pcolor = black .

Solution:

Click to show/hide solution

to-report percent-burned
 report ((count patches with [pcolor < red - 3.5] / (251 * 251)) * 100)
end

Extra Exercise: Create and analyze a parameterized simulation using the following steps:

1. Set up a simulation in BehaviorSpace with:

density values ranging from 25% to 30% (in increments of 1%).

regrowth-rate values ranging from 2% to 5% (in increments of 1%).

10 repetitions for each combination of parameters.

A time limit of 10 seconds per simulation.

2. Use the newly created percent-burned reporter to record the percentage of burned trees at

the last step of each simulation.

3. Export the simulation results to a CSV file.

4. In Python:

Calculate the mean of the percent-burned values at the last step for each parameter

combination.

Plot the results in 4 separate histograms, one for each regrowth-rate value (2%, 3%,

4%, and 5%).

Each histogram should display the percentage burned for density values from 25% to

30% (6 bars).

File > Models Library > Sample Models > Social Science > Segregation

Schelling's model of segregation has been regarded as one of the first agent-based models to address a

significant social issue. It was created by Thomas Schelling, an economist who won the Nobel Prize for his

contributions to economics during the Cold War. The segregation model naturally focuses on the social issue of

segregation. He published it in 1972 and was originally called Schelling's Tipping Model.

In Schelling's original concept, the model represented a traditional American urban landscape, primarily inhabited

by Black and White Americans. Racism and its resulting segregation were significant societal issues, and

Schelling aimed to understand the mechanisms behind how racism influenced the urban landscape.

The basic idea was to create two types of agents, each with a preference for the composition of their neighboring

agents expressed as a percentage. For example, a similar-wanted value of 30% means an agent will be

considered happy if at least 30% of its neighbors are of the same type. This concept of happiness is crucial, as

the goal of the model was to explore the tolerance level at which segregation does not occur while ensuring that

all agents remain happy.

In this model, if an agent is unhappy, it attempts to move to a random empty location.

3.3 Schelling's Segregation Modelkeyboard_arrow_down

The density setup go and go once interface elements should be familiar by now. What they do here is exactly

the same as what they did at the Fire Model.

There are four monitors with different reporters in the model:

One reports the total number of agents, which remains constant and reflects the density value.

The percent-similar monitor calculates the average percentage of an agent's neighbors that are the same

color as the agent.

The num-unhappy monitor reports the total number of unhappy agents.

The percent-unhappy monitor reports the percentage of unhappy agents on the grid.

Fun Facts:

1. In 1972, Schelling did not have access to computers capable of performing complex

calculations in hours. Instead, he used a checkerboard with pennies and dimes, manually

moving them around to observe the effects of his model.

2. Schelling described segregation as a "macro behavior" resulting from "micro motives." He later

wrote a book titled Micromotives and Macrobehavior.

The plot interface element in NetLogo allows us to visualize how a global variable changes over time, providing

insights into how the system responds to small changes in the environment.

Plot Name: Specifies the name of the plot, which will be displayed in the interface.

X-Axis Settings: Allows you to label the x-axis and set its minimum and maximum values.

Y-Axis Settings: Allows you to label the y-axis and set its minimum and maximum values.

Auto-Scale: Automatically adjusts the minimum and maximum values for better scaling during the

simulation.

Legend: Adds a legend to identify what each pen represents.

3.3.1 Plot Interface Element

Setup Commands: You can add commands to run before plotting begins, such as initializing variables or

preparing the environment.

Pen Options:

Multiple Pens: Track multiple variables on the same plot using different pens with different colors.

Pen Names: You can assign a unique name to each pen for clarity.

Plot Types: Pens support bar plots, point plots, and line plots. In your example, a line plot is used.

Plotting Intervals: You can specify how frequently the pen updates, controlling the time intervals for

plotting.

Basic Pen Updates: A typical pen update looks like the following: plot <reporter>

Exercise: Explore the tipping points in the model with a density of 95%.

Find the tolerance level where the number of unhappy agents reaches 0, and no segregation

occurs.

Identify the tolerance level where more than 90% of agents remain unhappy, and the

simulation does not converge (does not end).

While studying population dynamics of two groups of equal size, Schelling found a threshold such that:

 leads to a random population configuration.

 leads to a segregated population.

The value of was approximately

()𝐵 seg

(<)𝐵 a 𝐵 seg

(≥)𝐵 a 𝐵 seg

()𝐵 seg ().1
3

Reference: NetLogo - 1997 Uri Wilensky.

So what do the X marks on the grid represent when setup is run?

The X marks indicate agents who are currently unhappy with their living situation. These agents will move to a

new location in the next simulation step. Agents that are not marked with X are satisfied and will remain in their

current position.

Global Variable Definitions

globals [
 percent-similar ; on the average, what percent of a turtle's neighbors
 ; are the same color as that turtle?
 percent-unhappy ; what percent of the turtles are unhappy?
]

Turtle Properties (each turtle will have these)

turtles-own [
 happy? ; indicates whether at least %-similar-wanted percent of
 ; that turtle's neighbors are the same color as the turtle
 similar-nearby ; how many neighboring patches have a turtle with my color?
 other-nearby ; how many have a turtle of another color?
 total-nearby ; sum of previous two variables
]

Setup

3.3.2 The Code

Breeds are not used in this model because agents are only created during the setup phase, their color

(representing race) does not change, and their movement is not influenced by their color. This simplifies the

implementation.

to setup
 clear-all
 ; create turtles on random patches.
 ask patches [
 set pcolor white
 if random 100 < density [; set the occupancy density
 sprout 1 [
 ; 105 is the color number for "blue"
 ; 27 is the color number for "orange"
 set color one-of [105 27]
 set size 1
]
]
]
 update-turtles
 update-globals
 reset-ticks
end

Helper Functions

The [color] of myself is used to explicitly reference the color of the turtle executing the command (the

caller), distinguishing it from the color of the agents in the agentset (turtles-on neighbors).

For visualizations, there are two if statements controlling different representations. In the case of the square

visualization, there is an ifelse within the true branch of the first if . If the agent is happy, it is displayed as a

square; if not, it is displayed as an X shape.

to update-turtles
 ask turtles [
 ; in next two lines, we use "neighbors" to test the eight patches
 ; surrounding the current patch
 set similar-nearby count (turtles-on neighbors) with [color = [color] of myself]
 set other-nearby count (turtles-on neighbors) with [color != [color] of myself]
 set total-nearby similar-nearby + other-nearby
 set happy? similar-nearby >= (%-similar-wanted * total-nearby / 100)
 ; add visualization here
 if visualization = "old" [set shape "default" set size 1.3]
 if visualization = "square-x" [
 ifelse happy? [set shape "square"] [set shape "X"]
]
]
end

Here, two local variables are defined. These should not be confused with agent variables, as they are not updated

here but are only used within the sum command. Their role is determined by the calling order in the setup

command.

to update-globals
 let similar-neighbors sum [similar-nearby] of turtles
 let total-neighbors sum [total-nearby] of turtles
 set percent-similar (similar-neighbors / total-neighbors) * 100
 set percent-unhappy (count turtles with [not happy?]) / (count turtles) * 100
end

Main Loop

If all turtles are happy, stop the simulation; otherwise, move the unhappy turtles and update both agent and global

variables.

to go
 if all? turtles [happy?] [stop]
 move-unhappy-turtles
 update-turtles
 update-globals
 tick
end

to move-unhappy-turtles
 ask turtles with [not happy?]
 [find-new-spot]
end

The find-new-spot command is applied to all unhappy turtles. It rotates the agent in a random direction (right

turn) and moves it forward by a random distance between 0 and 10 patches. If the destination is already occupied

by another agent, the turtle continues searching for a new spot on the grid.

This computation might seem inefficient. Let’s create a new command that identifies empty patches on the grid

and moves agents randomly to one of those patches.

to find-new-spot
 rt random-float 360
 fd random-float 10
 if any? other turtles-here [find-new-spot] ; keep going until we find an unoccupied patch
 move-to patch-here ; move to center of patch
end

Exercise: Create a new find-new-spot command to optimize agent movement.

Instead of having the agent repetitively move to random spaces, first infer all empty patches

on the grid where no turtles are present.

Update the agent to move randomly to one of the inferred empty patches.

How does this updated command perform compared to the original one?

Solution:

Click to show/hide solution

to find-new-spot
 let empty-patches patches with [not any? turtles-here]

 if any? empty-patches [
 move-to one-of empty-patches
]
end

Exercise: Add a goodness level to the agents in the simulation and modify their behavior based on

this attribute.

1. For the setup stage, add two sliders:

orange-good-percentage : Controls the percentage of orange agents who are "good"

(e.g., 80% means 80% of orange agents are good).

blue-good-percentage : Controls the percentage of blue agents who are "good".

2. Create a slider called %-good-wanted to control the percentage of good neighbors required

for an agent to be happy.

3. Modify the model dynamics so that:

Agents prioritize having enough "good" neighbors based on %-good-wanted .

If the required number of good neighbors is not met, agents fall back to checking

similarity in race (%-similar-wanted).

If neither condition is met, the agent becomes unhappy and moves.

4. Run the simulation with the following parameters:

Set orange-good-percentage and blue-good-percentage to 50%.

Test what happens when %-good-wanted is larger than %-similar-wanted .

5. Observe and analyze the results:

How does the newly added "good" attribute affect segregation?

How does it influence tipping dynamics when agents move?

Solution:

Click to show/hide solution

Two new agent attributes are created: good-neighbors and good?

turtles-own [
 happy? ; whether the turtle is happy
 similar-nearby ; count of neighboring turtles of the same color
 other-nearby ; count of neighboring turtles of different colors
 total-nearby ; total number of neighbors
 good-neighbors ; count of "good" neighbors
 good? ; whether this turtle is "good"
]

The setup command is extended to handle the new dynamics introduced by good? attribute.

to setup
 clear-all
 ; create turtles on random patches
 ask patches [
 set pcolor white

3.3.3 Modifying the Code

 if random 100 < density [; set the occupancy density
 sprout 1 [
 ; Assign color randomly
 set color one-of [105 27] ; 105 = blue, 27 = orange
 set size 1
 ; Assign good or bad status based on sliders
 ifelse color = 105 [; Blue agents
 set good? (random-float 100 < blue-good-percentage)
] [
 set good? (random-float 100 < orange-good-percentage)
]
]
]
]
 update-turtles
 update-globals
 reset-ticks
end

The update-turtles command has been extended to prioritize good agents in the neighborhood.

If the required number of good agents is not met, it falls back to the similarity-based threshold for

happiness.

to update-turtles
 ask turtles [
 ;; Count good neighbors
 set good-neighbors count (turtles-on neighbors) with [good?]
 ;; Count neighbors by color
 set similar-nearby count (turtles-on neighbors) with [color = [color] of myself
 set other-nearby count (turtles-on neighbors) with [color != [color] of myself]
 set total-nearby similar-nearby + other-nearby
 ;; Determine happiness
 ifelse good-neighbors >= (%-good-wanted * total-nearby / 100) [
 set happy? true ;
] [
 set happy? similar-nearby >= (%-similar-wanted * total-nearby / 100) ; Fall
]
 ;; Visualization
 if visualization = "old" [set shape "default" set size 1.3]
 if visualization = "square-x" [
 ifelse happy? [set shape "square"] [set shape "X"]
]
]
end

Exercise: Can you think of any other visualization types that could be used here? Instead of showing

the two types of agents, one could display one of their attributes to provide a different perspective.

Add at least two new visualizations!

Solution:

Click to show/hide solution

Changing the appearance of the agents is not straightforward in this implementation. Extending the

visualization to show agents in different colors based on their goodness level can completely

disrupt how the environment dynamics work. This is because, in the update-turtles command,

nearby similar and other agent counts are calculated based on the color attribute. If the color

attribute is altered for visualization, it directly impacts the dynamics of the model.

To address this issue, one solution is to store the agent's original color in an original-color

attribute during the setup phase. This ensures the model can always reference the original color

for dynamics. Additionally, agents can have a separate display-color attribute that is used solely

for visualization, allowing their appearance to change without affecting the underlying dynamics.

turtles-own [
 happy? ; whether the turtle is happy
 similar-nearby ; number of neighboring turtles of the same color
 other-nearby ; number of neighboring turtles of different colors
 total-nearby ; total number of neighbors
 good-neighbors ; number of "good" neighbors
 good? ; whether the turtle is "good"
 original-color ; stores the turtle's initial color
 display-color ; controls the visualization color
]

to setup
 clear-all
 ask patches [
 set pcolor white
 if random 100 < density [
 sprout 1 [
 set color one-of [105 27] ; 105 = blue, 27 = orange
 set original-color color ; Store the initial color
 set display-color color ; Initialize display-color to match the original
 set size 1
 ;; Assign good or bad status based on sliders
 ifelse color = 105 [; Blue agents
 set good? (random-float 100 < blue-good-percentage)
] [
 set good? (random-float 100 < orange-good-percentage)
]
]
]
]
 update-turtles
 update-globals
 reset-ticks
end

to update-turtles
 ask turtles [
 ;; Count good neighbors
 set good-neighbors count (turtles-on neighbors) with [good?]

 ;; Count neighbors by original color
 set similar-nearby count (turtles-on neighbors) with [original-color = [origina
 set other-nearby count (turtles-on neighbors) with [original-color != [original
 set total-nearby similar-nearby + other-nearby

 ;; Determine happiness
 ifelse good-neighbors >= (%-good-wanted * total-nearby / 100) [
 set happy? true
] [
 set happy? similar-nearby >= (%-similar-wanted * total-nearby / 100)
]

 ;; Visualization
 if visualization = "old" [
 set shape "default"
 set display-color original-color
 set size 1.3
]
 if visualization = "square-x" [
 ifelse happy? [set shape "square"] [set shape "X"]
 set display-color original-color
]
 if visualization = "happy" [
 set shape "square"
 ifelse happy? [set display-color green] [set display-color red]
]

 if visualization = "goodness" [
 set shape "square"
 ifelse good? [set display-color pink] [set display-color black]
]

 set color display-color
]
end

Extra Exercise: Modify the code to include a controllable number of agent types in the environment,

rather than just orange and blue.

Add a new slider to control the number of agent types.

Ensure each agent type is assigned a unique color dynamically based on the number of types

specified.

Update the dynamics to account for similarity checks across all agent types.

File > Models Library > Sample Models > Networks > Virus on a Network

The Virus on a Network model was created by Uri Wilensky in 2008 to simulate the spread of a virus within a

social network. The simulation begins with a network-building process, where parameters such as number-of-

nodes , average-node-degree , and initial-outbreak-size define the structure of the network. This setup

creates a network that closely resembles the structure of a social network. The model uses agents and links to

represent nodes and their connections, respectively.

Remember: Links are also considered as agents in the NetLogo environment.

This graph does not follow a Rényi or Barabási graph but instead represents a random geometric graph (RGG). In

graph theory, a random geometric graph is the simplest type of spatial network. It is an undirected graph created

by randomly placing N nodes in a metric space and connecting two nodes with a link if and only if their distance is

within a specified range, such as smaller than a given neighborhood radius, r.

3.4 Virus on a Network Modelkeyboard_arrow_down

3.4.1 Links

Links are used to represent connections or relationships between agents. They are commonly used in models

involving networks, such as social networks, transportation systems, or ecological relationships. Link also have

properties and can be inspected the same way as turtles or patches.

Links have the following unique properties compared to turtles and patches:

end1 and end2 : Represent the two agents connected by the link, specifying the source and target nodes.

hidden? : Indicates whether the link is hidden from view, similar to how it is used in the Fireflies simulation.

thickness : Specifies the visual thickness of the link on the grid.

shape : Defines the shape of the link. The default is a straight line, but other options are available (e.g.,

arrows for directed links).

tie-mode : Tie connects two turtles so that the movement of one turtles affects the location and heading of

another. When a link's tie-mode is set to “fixed” or “free” end1 and end2 are tied together. If the link is

directed end1 is the “root agent” and end2 is the “leaf agent”. That is when end1 moves (using fd , jump ,

setxy , etc.) end2 also moves the same distance and direction.

When a link between two nodes is undirected, end1 is always the older node, meaning the node with the lowest

who ID. However, when the link is directed, end1 represents the source node, and end2 represents the target

node.

Examples:

Create an undirected link between turtle 0 and turtle 1 :

ask turtle 0 [create-link-with turtle 1]

Create an directed link between turtle 0 and turtle 1 :

ask turtle 0 [create-link-to turtle 1]

Query all links connected to turtle 0 :

ask turtle 0 [show link-neighbors]

Change link properties (the same as with turtles or patches):

ask links [set color red set thickness 0.5]

Note: Once the first link has been created, directed or undirected, all unbreeded links must match

(links also support breeds, much like turtles).

Let's see how it is done in the code:

turtles-own
[
 infected? ;; if true, the turtle is infectious
 resistant? ;; if true, the turtle can't be infected
 virus-check-timer ;; number of ticks since this turtle's last virus-check
]

to setup
 clear-all
 setup-nodes
 setup-spatially-clustered-network
 ask n-of initial-outbreak-size turtles
 [become-infected]
 ask links [set color white]
 reset-ticks
end

The setup command, when called, first creates all the nodes in the network based on the number-of-nodes

parameter. It then creates links between these nodes according to the RGG process. After that, it randomly selects

initial-outbreak-size turtles to become infected. Finally, it sets the color of all links to white.

Node Setup:

to setup-nodes
 set-default-shape turtles "circle"
 create-turtles number-of-nodes
 [
 ; for visual reasons, we don't put any nodes *too* close to the edges
 setxy (random-xcor * 0.95) (random-ycor * 0.95)
 become-susceptible
 set virus-check-timer random virus-check-frequency
]
end

3.4.2 Network Building

At the start of the simulations are agents becomes susceptible (not infected nor resistant to the virus). This also

sets their color blue. Then their virus check timer becomes a number between 0 (inclusive) and virus-check-

frequency - 1 (exclusive)

to become-susceptible ;; turtle procedure
 set infected? false
 set resistant? false
 set color blue
end

The num-links is the number of links needed to be created so that the network will have a proper average-

node-degree . We know on average how many links will be connected to a node, the number of nodes, and also

that are network is undirected, so the calculation is divided by 2.

While the global link count remains below the required threshold, an agent is selected from a filtered agentset.

This agentset consists of all other turtles that are not part of the calling agent's link-neighborhood. From this set,

the closest agent is chosen based on distance myself . If a valid choice is made (i.e., the selected agent is not

empty), an undirected link is created between the two agents.

The second line is purely for visualization purposes, using spring and force-based physics to adjust the positions

of the nodes.

to setup-spatially-clustered-network
 let num-links (average-node-degree * number-of-nodes) / 2
 while [count links < num-links]
 [
 ask one-of turtles
 [
 let choice (min-one-of (other turtles with [not link-neighbor? myself])
 [distance myself])
 if choice != nobody [create-link-with choice]
]
]
 ; make the network look a little prettier
 repeat 10
 [
 layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1
]
end

If all turtles are either resistant or susceptible, the simulation stops. Otherwise, each agent increments its virus-

check-timer by 1. When the timer reaches its threshold, it resets. The main loop concludes with the virus

spreading (handled in a separate command) and the agents performing a virus check.

to go
 if all? turtles [not infected?]
 [stop]
 ask turtles
 [
 set virus-check-timer virus-check-timer + 1

3.4.3 The Main Loopkeyboard_arrow_down

 if virus-check-timer >= virus-check-frequency
 [set virus-check-timer 0]
]
 spread-virus
 do-virus-checks
 tick
end

This command asks the infected agentset to check all their non-resistant neighbors and attempt to infect them

based on the virus-spread-chance . If successful, the neighboring agents become infected, their color changes

to red, and their infected? variable is set to true .

to become-resistant ;; turtle procedure
 set infected? false
 set resistant? true
 set color gray
 ask my-links [set color gray - 2]
end

to become-infected ;; turtle procedure
 set infected? true
 set resistant? false
 set color red
end

to spread-virus
 ask turtles with [infected?]
 [ask link-neighbors with [not resistant?]
 [if random-float 100 < virus-spread-chance
 [become-infected]]]
end

The virus check asks all turtles that are infected and due for a check to attempt recovery. If recovery is successful,

the agent has a chance to gain resistance based on the gain-resistance-chance . If successful, the agent

becomes resistant ; otherwise, it becomes susceptible . If recovery is unsuccessful, the agent remains

infected .

to do-virus-checks
 ask turtles with [infected? and virus-check-timer = 0]
 [
 if random 100 < recovery-chance
 [
 ifelse random 100 < gain-resistance-chance
 [become-resistant]
 [become-susceptible]
]
]
end

Exercise: Experiment with the variables that influence the dynamics of the virus:

Adjust the following hyperparameters in both directions:

virus-spread-chance

virus-check-frequency

recovery-chance

gain-resistance-chance

Observe and record the effects of these changes on the simulation dynamics.

Analyze which hyperparameter the model is most sensitive to and explain why this might be

the case.

Exercise: Increase the number-of-nodes and the average-node-degree hyperparameter.

Observe how the changes affect the dynamics of the virus spread.

Compare the susceptible/resistant ratio to the previous configuration.

Exercise: Set the gain-resistance-chance to 0%.

Observe whether the model can recover from the virus without agents gaining resistance.

With virus-spread-chance set at 2.5%, identify the tipping point where the virus can no

longer spread effectively.

Rényi Solution:

Click to show/hide solution

to setup-renyi-network
 let num-links (average-node-degree * number-of-nodes) / 2
 while [count links < num-links]
 [
 ask one-of turtles
 [
 let choice one-of other turtles with [not link-neighbor? myself]
 if choice != nobody [create-link-with choice]
]
]
 ; arrange nodes for better visualization
 layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1
end

Barabási Solution:

Click to show/hide solution

to setup-barabasi-network
 clear-all
 set-default-shape turtles "circle"

 ;; Initialize with two connected nodes
 create-turtles 2 [
 setxy random-xcor random-ycor
 become-susceptible
 set virus-check-timer random virus-check-frequency
]
 ask turtle 0 [create-link-with turtle 1]

 while [count turtles < number-of-nodes] [

 create-turtles 1 [
 setxy random-xcor random-ycor
 become-susceptible
 set virus-check-timer random virus-check-frequency
]

 ;; new-turtle = turtle with no link
 let new-turtle one-of turtles with [not any? my-links]
 ;; calculates total-degree of all nodes (at start its 2)
 let total-degree sum [count my-links] of turtles
 ;; generate a random value for preferential attachment
 let r random-float total-degree
 let cumulative-sum 0
 let selected-node nobody

 ask turtles [
 set cumulative-sum cumulative-sum + count my-links
 if (cumulative-sum >= r and selected-node = nobody) [
 set selected-node self
]
]

 if selected-node != nobody [
 ask new-turtle [
 create-link-with selected-node
]
]
]

 ;; Optional: improve visualization
 repeat 10 [
 layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1
]
end

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

👤 Tamás Takács, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice notebook presents a range of methods and techniques for developing agent-based models from the

ground up. As a foundational example, we will construct a basic variation of Axtell's Economy model,

incrementally applying core modeling concepts. The notebook also features selected large-scale ABM projects

from the broader modeling community to illustrate the structure and standards of professional NetLogo models.

By the end of this practice, students will be equipped with the skills necessary to design and implement complex

agent-based models independently and will be prepared to complete the first assignment.

4. Practice - NetLogo Model Designkeyboard_arrow_down

4.1 Simple Economy Model

4.1.1 The Rules

4.1.2 First Step - setup

4.1.3 Second Step - go

4.1.4 The transact Command

4.1.5 Key Characteristics of the Emergent Distribution

4.1.6 Extending the Model

4.2 Flattening The Curve

4.2.1 Modeling Commons

4.2.2 The Code

4.2.3 The go Loop

4.2.4 Traveling

4.2.5 Infecting

4.2.6 Closing Borders

4.2.7 Not Living

4.2.8 Cure

4.3 Game Development?

4.3.1 The Play Loop

4.3.2 Movement

Table of Contentskeyboard_arrow_down

In our last practice, we covered:

The Models Library and Benchmark Simulations

The Fire model

Extensions of the Fire model

Phase Transitions and Tipping Points

BehaviorSpace experiments

The Info Tab

Schelling's Segregation model

Extensions of Schelling's Segregation model

Plotting

The Virus on a Network model

Links

Extensions of the Virus on a Network model

That’s quite a lot again! Now, let’s dive into how you can design and create your own NetLogo model completely

from scratch.

Last Practice

In 1996, Josh Epstein and Rob Axtell published one of the first definitive books on agent-based modeling and

social science, Growing Artificial Societies, which featured artificial economic agents.

We will create a simple model of economic agents, inspired in part by Epstein and Axtell's work and a paper by

Dragulescu and Yakovenko (2000).

Dragulescu, A., & Yakovenko, V. M. (2000). Statistical mechanics of money. The European Physical Journal B,

17(4), 723–729. doi:10.1007/s100510070114

4.1 Simple Economy Modelkeyboard_arrow_down

500 people start off with $100 each (starting with a uniform distribution).

At every tick, each person gives $1 to another person randomly.

If you run out of money, you can't give any more money away until someone gives you money.

Simple, right? Let's try to implement it in NetLogo!

4.1.1 The Rules

Designing the setup procedure is usually the first step, followed by the go procedure. These two components are

not always required, but they are a style heavily utilized in NetLogo. Let's start with an empty project:

File > New

First, let's set our grid parameters before adding anything to the model. These can be edited to your liking;

however, in this example, we will use the following parameters:

Location of Origin: Corner, Bottom Left

max-pxcor: 500

min-pycor: 80

Patch size: 1

4.1.2 First Step - setup

Font size: 10

Frame rate: 30

One of the first things to add is a setup button next to the 2D environment grid. After adding the setup button,

go to the Code Tab and create a basic skeleton for the setup function. A setup function should always include

the clear-all and reset-ticks commands.

to setup
 clear-all
 ;; setup code
 reset-ticks
end

Looking at the first rule of the exercise, it requires us to create 500 agents and assign them $100 as a starting

point. This can be implemented using the create-turtles command and defining agent attributes. Additionally,

we can set them to a circular shape with green color and size 2 for convenience.

turtles-own [wealth]

create-turtles 500 [
 set wealth 100
 set shape "circle"
 set color green
 set size 2
]

Running the setup creates the turtles, but we cannot see them because all turtles are created at the (0, 0)

patch by default. Let's modify the code so that the agents spawn in specific locations.

Note: NetLogo will create all turtles at the (0, 0) patch if no location is specified in the command.

to setup
 clear-all
 create-turtles 500 [
 set wealth 100
 set shape "circle"
 set color green
 set size 5
 setxy wealth random-ycor
]
 reset-ticks
end

The goal is to visualize the wealth distribution. Rich agents should move to the right side of the grid, while poorer

agents move to the left. Initially, all agents start in a random row with their x-coordinate (horizontal alignment) set

to match their wealth.

In the go procedure, turtles must transact their wealth if they have any. This can be done by calling a transact

command (defined later). All go commands should end with the tick command.

4.1.3 Second Step - go

ask turtles with [wealth > 0] [transact]

This ensures only agents with wealth can give money to others. However, our grid size only allows a total wealth

of $500 for a single agent. To avoid errors, we limit the simulation with the following condition:

ask turtles [if wealth <= max-pxcor [set xcor wealth]]

This ensures that agents with wealth exceeding 500 do not move further right on the grid. The final go procedure

looks like this:

to go
 ask turtles with [wealth > 0] [transact]
 ask turtles [if wealth <= max-pxcor [set xcor wealth]]
 tick
end

Don't forget to also add the go Button to the Interface Tab.

The transact command reduces one unit of wealth from the agent and gives it to a random agent. The set

command is used to reduce wealth, while ask one-of other turtles is used to transfer wealth to a random

recipient.

to transact
 set wealth wealth - 1
 ask one-of other turtles [set wealth wealth + 1]
end

At this point, the simulation should work as intended. Agents will move horizontally across the grid, visualizing the

wealth distribution as the simulation progresses.

Exercise: Run the setup command in the Interface tab and press the go button to start the

simulation.

Analyze the wealth distribution in the system:

Based on your observations, hypothesize the probability density function (PDF) that the wealth

distribution might follow.

What factors could contribute to the shape of the wealth distribution?

Provide a formal justification for your guess before verifying with additional experiments.

The simulation works, agents are moving around, and wealth is being redistributed. However, to better understand

the inner dynamics of the model, we need additional insights through plots and monitors that provide valuable

analytics.

4.1.4 The transact Command

Let's create a point plot that visualizes the wealth distribution. The x-axis will represent each agent's unique who

ID, and the y-axis will represent their wealth. The plot will be named "Turtle Distribution", and we will also include a

legend displaying the total wealth in the system, which remains constant at 100 * 500 agents).

To achieve this, we need to plot each agent's who ID against their respective wealth as points on the graph. This

can be done easily using the following configuration:

We set the plot's maximum x and y ranges using the set-plot-x-range and set-plot-y-range commands.

These define the bounds of the plot: the x-axis for the agents' IDs and the y-axis for their wealth. Then, we ask the

turtles to plot their x and y coordinates, which correspond to their who ID and wealth, respectively. This ensures

each agent's wealth is represented as a point on the plot.

Exercise: Observe the wealth distribution in the simulation. Over time, the dynamics of the

simulation result in a noisy distribution of wealth among the agents. As the simulation progresses

through many steps, the wealth starts to become increasingly unequal.

What part of the simulation dynamics contributes to this phenomenon?

Why does wealth inequality emerge despite the random nature of the transactions?

Exercise: Create another plot, but this time switch the roles of the x and y axes. In this plot, we aim

to explore how different amounts of wealth are distributed among agents. Follow these steps:

Use a bar plot with wealth as the x-axis and the number of turtles as the y-axis.

50, 000(

Set the interval for the wealth bins to 5.

Set the maximum x value to 500 (wealth) and the maximum y value to 40 turtles.

Label the plot wealth distribution and add a legend indicating the total number of wealth

($50,000).

Think about what this plot reveals. How does the wealth distribution change over time?

Solution:

Click to show/hide solution

set-plot-y-range 0 40
set-plot-x-range 0 500
histogram [wealth] of turtles

For additional analytics, we want to calculate two key metrics:

1. The wealth of the top 10% of agents in the environment (to understand how much wealth is controlled by

the richest agents).

2. The total wealth of the bottom 50% of agents (to assess the distribution of wealth among the poorer

agents).

To achieve this, we can create two reporters in our NetLogo code: one to calculate the total wealth of the top 10%

of agents and another to calculate the total wealth of the bottom 50% of agents.

to-report top-10-pct-wealth
 report sum [wealth] of max-n-of (count turtles * 0.10) turtles [wealth]
end

to-report bottom-50-pct-wealth
 report sum [wealth] of min-n-of (count turtles * 0.50) turtles [wealth]
end

The max-n-of reporter retrieves the n turtles with the highest wealth values, where n is 10% of the total number

of turtles (in this case, count turtles * 0.1). Similarly, the min-n-of reporter retrieves the n turtles with the

lowest wealth values, based on the wealth attribute.

To complete the task, add two respective monitor elements to the interface.

We can also plot these values on a Plot Element to observe how the wealth distribution changes over time. With

the reporters for the top 10% wealth and bottom 50% wealth already created, these values can be dynamically

added to a plot during the simulation.

Which results in something like this:

As the simulation progresses, the lines on the plot will likely cross each other. Over time, the top 10% of agents

will control the majority of the wealth in the economy, while the bottom 50% of agents will control only around

20% of the total wealth. This illustrates the emergence of wealth inequality in the system. Is this always the case?

Exercise: Using the BehaviorSpace experiment tool, create an experiment named wealth-

distribution to measure the top 10% and bottom 50% wealth values in the system.

Ensure the experiment collects these metrics only at the end of the simulation; intermediate

steps are not needed.

Set the experiment to run for a total of 10 repetitions to account for variability.

Limit the simulation to 10,000 ticks.

Analyze the final wealth distribution from the results.

Based on the dynamics of this wealth redistribution system, the wealth distribution tends to evolve into a

Boltzmann-Gibbs distribution, which is also referred to as an exponential distribution in statistical mechanics.

1. The probability of an agent having wealth follows: where is the average

wealth in the system.

2. The random exchange of wealth between agents leads to this exponential distribution, as it mirrors the

energy exchange dynamics observed in gas molecules in statistical mechanics.

Exercise: Create a Slider element to control the number of agents in the simulation dynamically.

Follow these steps:

Add a global variable (e.g., agent-count) to store the number of agents.

Configure the Slider in the Interface tab with appropriate minimum, maximum, and default

values (e.g., min: 10, max: 500, default: 100).

Ensure the setup procedure uses the value of agent-count to create the corresponding

number of turtles.

Update the plot configurations dynamically to reflect changes in the number of agents:

Set the x-axis range of the plot to 0 to agent-count .

Ensure the plots scale dynamically as the number of agents changes.

4.1.5 Key Characteristics of the Emergent Distribution:

(𝑤) [𝑃 (𝑤) =]1
⟨𝑤⟩

𝑒−𝑤/⟨𝑤⟩ (⟨𝑤⟩)

Exercise: Modify the rules of the system to allow agents to go into debt. Specifically:

Remove the restriction that prevents agents with 0 wealth from giving money.

Allow agents to give money even if their wealth drops below 0 .

Observe the effect of this rule change on the wealth distribution over time:

Does the system still follow an exponential distribution?

What happens to the wealth dynamics as debt accumulates in the system?

Solution:

Click to show/hide solution

to go
 ask turtles [transact]
 ask turtles [if wealth <= max-pxcor [set xcor wealth]]
 tick
end

4.1.6 Extending the Model

Exercise: Change the transaction rule so agents give out more money per transaction (e.g., from $1

to $5 or more).

What happens to the wealth distribution?

Does inequality increase or decrease?

Solution:

Click to show/hide solution

to transact
 ;; give a dollar to another turtle
 set wealth wealth - 2
 ask one-of other turtles [set wealth wealth + 2]
end

Exercise: Change the rules so that richer agents have a lower chance of receiving money, based on

their wealth.

Try different probability functions, such as 1 / wealth or 1 / sqrt(wealth) .

Observe how this affects the wealth distribution and inequality.

Inverse Attained Wealth Probability:

Click to show/hide solution

to transact
 set wealth wealth - 1
 let recipient one-of other turtles with [

 random-float 1 < (1 / max (list sqrt wealth 1))
]
 if recipient != nobody [
 ask recipient [set wealth wealth + 1]
]
end

Total Wealth Proportional Probability:

Click to show/hide solution

to transact
 let total-wealth sum [wealth] of turtles
 let recipient one-of other turtles with [
 random-float 1 < (1 - (wealth / total-wealth))
]
 if recipient != nobody [
 set wealth wealth - 1
 ask recipient [set wealth wealth + 1]
]
end

Exponential Decay Function:

Click to show/hide solution

to transact
 let total-wealth sum [wealth] of turtles

 let recipient one-of other turtles with [
 random-float 1 < exp(-0.1 * wealth) ;; Higher wealth = smaller probability
]
 if recipient != nobody [
 set wealth wealth - 5
 ask recipient [set wealth wealth + 5]
]
end

Exercise: Modify the giving rule so that wealthier agents give out more money based on the

percentage of their wealth.

Change the rule so that every agent gives out a fixed percentage (e.g., 5%) of their current

wealth in each transaction.

Experiment with different percentage values (e.g., 2% , 10% , or 20%).

Observe how this rule affects the wealth distribution and inequality over time.

Solution:

Click to show/hide solution

to transact
 let amount-to-give max (list floor (wealth * (transact-percentage / 100)) 1)
 set wealth wealth - amount-to-give
 ask one-of other turtles [
 set wealth wealth + amount-to-give
]
end

With 5%:

With 20%:

This percentage-based payment functions as a form of taxation, disproportionately impacting wealthier agents

more than poorer ones. As the tax percentage decreases, the wealth distribution becomes more uniform, with

agents converging toward similar living standards. Conversely, increasing the tax percentage flattens the wealth

distribution, reducing inequality. However, if the tax rate becomes excessively high, the system reverts to an

exponential Boltzmann-Gibbs distribution.

Fun Facts:

1. The original model of Epstein and Axtell was called the Sugarscape model, which can be

found in the Models Library.

2. This redistribution phenomenon aligns with the broader concept in economics and sociology

that, in systems with random exchanges and without redistributive policies, wealth tends to

become concentrated among a small fraction of the population.

3. The simulation outcome mirrors the energy distribution among particles in an ideal gas, where

energy is exchanged randomly during collisions.

Extra Exercise: Modify the model to introduce the following features:

Add a new attribute called transaction-cap to turtles, representing the maximum amount

an agent can give in a single transaction (based on their wealth).

Introduce a reputation system: Each agent starts with a reputation value of 100. Agents

with higher reputation are more likely to receive money.

Update the transact procedure:

Agents give an amount based on their transaction-cap (e.g., up to 10% of their

wealth).

The recipient is selected randomly but weighted by their reputation (higher reputation

= higher chance).

Reputation increases for agents who receive money and decreases for agents who give

money.

Update the plots:

Create a plot to track the average reputation of agents over time.

Modify the wealth distribution plot to include both wealth and reputation effects.

Observe how introducing transaction-cap and reputation affects the wealth and reputation

distributions over time. Try varying the initial values for transaction-cap and reputation to see

their effects on inequality.

The COVID-19 pandemic, one of the most significant global health crises in recent history, exposed the challenges

of managing an unprecedented epidemic that disrupted economies and healthcare systems worldwide. The

complexity of disease transmission, coupled with the uncertainty surrounding symptoms, prevention strategies,

and public health guidelines, made decision-making incredibly difficult for policymakers.

In such critical situations, simulation models, particularly agent-based models (ABMs), can play a huge role in

exploring potential scenarios and evaluating intervention strategies. While it is impossible to fully replicate the

intricacies of a global epidemic, abstracting key elements into a model allows for a deeper understanding of

disease dynamics and the potential impact of policy decisions.

However, modeling public health crises comes with its own set of challenges. Simulations must account for

limited data, uncertainty in hyperparameters, and the inherent variability of human behavior. Furthermore,

developing and deploying these models requires rigorous validation and ethical considerations, as they inform

decisions that directly impact millions of lives.

While not a substitute for real-world experimentation, agent-based models offer a valuable decision-support tool

for analyzing scenarios, testing assumptions, and informing evidence-based policy-making during epidemics and

other complex healthcare crises.

4.2 Flattening The Curvekeyboard_arrow_down

4.2.1 Modeling Commons

Modeling Commons is a website for sharing and discussing agent-based models written in NetLogo. There are at

least 1,000 models contributed by modelers from around the world.

One notable model that gained attention during the COVID-19 pandemic was titled "Covid-19: How quarantine can

flatten the curve". This model, while relatively simple in design, focused on exploring the effectiveness of

quarantine measures in reducing the spread of infection and "flattening the curve" within a population.

Reference: Modelling Commons - Vsevolod Suschevskiy

The code adheres to the typical NetLogo structure, with global variables, breeds, and agent-specific attributes

clearly defined. The borders global variable serves as a flag to indicate whether the borders are currently closed.

The primary agents in the model are the actor breed, which are responsible for carrying and spreading the

infection. The borders breed, on the other hand, is used primarily for visualization purposes and to act as

immovable barriers that restrict movement within the environment. Each actor is equipped with an additional

attribute, days , which tracks the number of days an agent has been infected with the virus.

globals [
 borders? ;; Flag to track if borders are closed
]

breed [actors actor] ;; Main agents representing the population
breed [borders border] ;; Temporary breed for creating border visuals

actors-own [
 days ;; Tracks the number of days an actor has been infected
]

The setup code primarily focuses on initializing the environment, using a somewhat convoluted approach to

visualize the borders and set up the simulation. It involves generating the borders through algorithmic placement,

spawning healthy agents within the grid, and designating one of the agents as the initial infected individual.

4.2.2 The Code

https://www.google.com/url?q=https%3A%2F%2Fm.modelingcommons.org%2Faccount%2Flogin
https://www.google.com/url?q=https%3A%2F%2Fmodelingcommons.org%2Fbrowse%2Fone_model%2F6229%23model_tabs_browse_info
https://www.google.com/url?q=https%3A%2F%2Fmodelingcommons.org%2Fbrowse%2Fone_model%2F6229%23model_tabs_browse_info

to setup
 clear-all
 reset-ticks
 clear-plot

 set borders? FALSE ;; Initialize borders as open

 ;; Scenario-based setup
 (ifelse senario = "base" [
 ;; Base scenario: spawn a proportion of the population on black patches
 ask n-of (count patches with [pcolor = black] * population / 100) patches [
 sprout-actors 1 [
 set shape "person"
 set color white ;; Healthy actors start as white
]
]
 ask one-of actors [set color red] ;; Infect one random actor
]
 ;; Communities and borders scenario
 senario = "communities" or senario = "communities and borders" [
 create-borders 10 [
 setxy 0 0
 set heading one-of [90 270] ;; Borders align horizontally or vertically
]

 ;; Draw initial border lines
 ask borders [
 repeat 4 [
 repeat sqrt (count patches) [
 set pcolor grey ;; Create a horizontal line of borders
 fd 1
]
 rt 90 ;; Turn to create the next segment
 repeat sqrt (count patches) + sqrt (count patches) / 4 [
 set pcolor grey ;; Extend the border vertically
 fd 1
]
]
]

 ;; Add additional borders for larger grids
 if sqrt (count patches) > 20 [
 ask borders [
 setxy sqrt(sqrt(count patches)) sqrt(sqrt(count patches)) ;; Place at center
 repeat 4 [
 repeat sqrt (count patches) [
 set pcolor grey
 fd 1
]
 rt 90
 repeat sqrt (count patches) + sqrt (count patches) / 4 [
 set pcolor grey
 fd 1
]

]
]
]

 ;; Create a central border
 create-borders 1 [
 setxy sqrt(count patches) / 2 sqrt(count patches) / 2
 set heading 90
]

 ;; Extend central borders
 ask border 10 [
 repeat 2 [
 repeat sqrt (count patches) [
 fd 1
 set pcolor grey
]
 rt 90
]
]

 ;; Clean up temporary borders
 ask borders [die]

 ;; Spawn actors based on population percentage
 ask n-of (count patches with [pcolor = black] * population / 100) patches with [pcolor = bl
 sprout-actors 1 [
 set shape "person"
 set color white
]
]
 ask one-of actors [set color red] ;; Infect one random actor
]
 [stop] ;; End setup if no valid scenario
)
end

The go loop is relatively straightforward but relies on several utility functions to handle various aspects of the

simulation. Here's a breakdown of its functionality:

The loop terminates if there are no infected agents (red-colored actors) remaining.

Agents move around the map using the travel function.

Infection spreads to neighboring agents through the infect function.

If the proportion of infected agents surpasses the close-when threshold, borders are closed using the

close-borders function.

The not-live function handles deaths among infected agents.

Recovery is managed via the cure function.

Finally, the simulation advances to the next tick, and the loop continues.

4.2.3 The go Loop

to go
 ;; Stop if there are no infected (red) actors
 if not any? actors with [color = red] [stop]

 ;; Model dynamics
 travel ;; Move actors around
 infect ;; Spread infection
 if count actors with [color = red] / count actors > close-when [
 close-borders ;; Close borders when infection threshold is met
]
 not-live ;; Handle deaths from infection
 cure ;; Handle recovery

 tick ;; Advance simulation time
end

The travel function is straightforward yet effectively simulates the concept of movement. It selects a proportion

of agents standing on black patches (indicating areas not blocked by borders) based on the travel-rate . If the

travel-rate is set to 100, all agents will travel; if it is set to 1, only 1% of the agents will travel. The exact number

of agents selected to travel depends on the density global parameter.

All selected traveling agents are temporarily moved to patch (0, 0) . At this location, the patch agent (the patch

itself) is asked to instruct all actors on it to move to a random patch that is both unoccupied and has a black

color. This ensures that agents do not move back to their original location, facilitating valid movement across the

grid.

to travel
 ;; Move a proportion of actors based on travel-rate
 ask n-of (count actors-on patches with [pcolor = black] * travel-rate / 100)
 actors-on patches with [pcolor = black] [
 setxy 0 0
]
 ;; Move actors to random unoccupied black patches
 ask patch 0 0 [
 ask actors-here [
 if not any? patches with [not any? turtles-here and pcolor = black] [stop]
 move-to one-of patches with [not any? turtles-here and pcolor = black]
]
]
end

4.2.4 Traveling

The infect function is straightforward, with no complex dynamics. It instructs all infected actors (red-colored

agents) to check their eight neighboring patches. For each neighboring patch, if an actor is present and not

already infected, there is a chance, determined by the infection-rate , that the actor becomes infected. If the

neighboring actor is already infected, no action is taken.

4.2.5 Infecting

 to infect
 ;; Infected actors (red) spread infection to healthy neighbors
 ask actors with [color = red] [
 ask neighbors [
 ask actors-here with [color = white] [
 if random 100 <= infection-rate [set color red]
]
]
]
end

The close-borders procedure operates only in the communities and borders scenario and when the borders

are still open. It selects a specified number (number-of-border) of patches to serve as initial border closures,

changing their color to yellow. The procedure then iteratively propagates the closure by expanding the yellow area

to neighboring black patches, repeating this process close-borders-law times. This ensures that travel, which

can only occur on black patches, is restricted. Finally, the borders? flag is set to indicate that the borders are now

closed.

to close-borders
 if not borders? [
 if senario = "communities and borders" [
 ;; Mark random patches as closed borders
 ask n-of number-of-borders patches with [pcolor = black] [
 set pcolor yellow
]
 ;; Expand borders by specified steps
 repeat close-borders-law [
 ask patches with [pcolor = yellow] [
 ask neighbors with [pcolor = black] [set pcolor yellow]
]
]
 set borders? TRUE ;; Borders are now closed
]
]
end

4.2.6 Closing Borders

The not-live function, which handles the process of dying, is also relatively simple in this simulation. Infected

actors (red-colored agents) increment their days counter at every tick to track how long they have been infected.

As the number of days increases, the probability of dying also increases. The chance of death reaches a

maximum of 20%, simulating a higher mortality risk over time. This essentially means that each agent has the

following probability of dying:

4.2.7 Not Living

𝑃 () = {not-live𝑖
0

() ×−30days_infected𝑖
100

1
5

if ≤ 30days_infected𝑖
if > 30days_infected𝑖

to not-live
 ;; Infected actors (red) age and may die over time
 ask actors with [color = red] [
 set days days + 1
 if random 100 <= days - 30 [
 if random 100 < 20 [die] ;; Chance of death increases with time
]
]
end

The cure process can occur for actors that are infected. The probability of an infected actor iii being cured can be

represented by the following formula:

Exercise: Experiment with the hyperparameters of the model.

Adjust the values for each hyperparameter (e.g., population , infection-rate , travel-

rate , cure-rate , and others).

Log the results of each simulation run, including the shape of the infection curve and the total

number of deaths.

Analyze how each hyperparameter influences the dynamics of the simulation, particularly the

infection curve and mortality rate.

Exercise: Adjust travel and border rules to minimize deaths.

Fix the infection-related parameters (e.g., infection-rate , cure-rate , etc.) to their default

values.

Modify the travel and border-related rules (e.g., travel-rate , close-borders-law , and

number-of-borders).

Run the simulation and log the results for each configuration, focusing on the total death

count.

Can you find a set of hyperparameters that minimizes the death count?

Exercise: Modify the infection dynamics by allowing agents to infect others within a variable radius.

Add a slider infection-radius in the Interface tab to allow the user to control the radius of

infection.

Modify the infect procedure so that it checks all agents within the specified radius, not just

neighbors.

Run simulations with different values of infection-radius and observe how the infection

spreads over time.

Solution:

Click to show/hide solution

to infect
 ask actors with [color = red] [
 ask turtles in-radius infection-radius [
 if [color] of self = white [;; Check if the neighbor is healthy

4.2.8 Cure

𝑃 () = () ×cure𝑖
cure_rate
100

1
2

 if random 100 <= infection-rate [
 set color red ;; Infect the agent
]
]
]
]
end

Exercise: Add a vaccination strategy to the model.

Create a slider vaccination-rate that determines the percentage of healthy actors

vaccinated at the start.

Vaccinated actors should be immune to infection and represented by a unique color (e.g.,

blue).

Modify the setup procedure to randomly vaccinate a proportion of the population based on

vaccination-rate .

Analyze the effect of vaccination on the infection curve and total deaths.

Solution:

Click to show/hide solution

actors-own [
 days ;; Tracks the number of days an actor has been infected
 vaccinated? ;; Tracks if an actor is vaccinated
]

set vaccinated? false

vaccinate
ask one-of actors with [not vaccinated?] [set color red]

to vaccinate
 ask n-of (vaccination-rate * count actors / 100) actors with [not vaccinated?] [
 set vaccinated? true
 set color blue ;; Vaccinated actors are immune and represented by blue
]
end

to infect
 ask actors with [color = red] [
 ask turtles in-radius infection-radius [
 if [color] of self = white and [not vaccinated?] of self [
 if random 100 <= infection-rate [
 set color red ;; Infect the agent
]
]
]
]
end

Extra Exercise: Add super-spreader agents with higher infection rates.

Create a certain percentage of the population as super-spreaders at the start of the

simulation.

Super-spreaders should have a higher infection radius and infection rate compared to regular

agents.

Modify the setup and infect procedures to account for super-spreaders.

The implementation and development of this project were carried out by Ramesh Maddegoda in June 2021.

Can you create simple games in NetLogo? Absolutely! By leveraging the built-in tools and features, you can design

simulations that use keyboard inputs such as W , A , S , and D for movement, as well as button clicks to trigger

specific events within the environment. NetLogo also supports other mouse and keyboard inputs, allowing for a

wide range of interactive possibilities.

Let's explore what creative games can be built in NetLogo!

Let's just quickly go through what makes this game being a thing possible. Let's look at some global variables,

agent attributes and breeds.

4.3 Game Development?keyboard_arrow_down

breed [players player]
breed [player-bullets player-bullet]
breed [enemy-bullets enemy-bullet]
breed [landing-zones landing-zone]
breed [enemies enemy]
breed [explosions explosion]
breed [final-statuses final-status]

; Global variables
globals [
 mouse-was-down
 stop-game
]

; Private varaiabled
players-own [
 health
]

enemies-own [
 health
]

There are several breeds utilized in this code, each serving a distinct and specific purpose. Let's break them down:

Player: Represents the main agent controlled by you.

Player-bullets: These are the bullet agents fired by the player.

Enemy-bullets: Bullets fired by enemy agents targeting the player.

Landing-zones: Designated areas where enemy agents spawn.

Enemy: Represents the hostile agents that the player must defeat.

Explosion: Simulates explosions using orange agents that scatter outward from the point of impact.

Final-statuses: Used to display emojis or symbols on the screen at the end of the game by coloring specific

patches.

The setup command is straightforward but crucial for initializing the game. It creates the player agent and

positions it at the bottom of the grid. The player is assigned a plane-shaped appearance, customized color,

heading, and a health attribute, which is shared by both players and enemies as agent-specific attributes.

Additionally, it sets up the landing zones where enemy agents will spawn and creates the enemy agents with

similar properties to the player. Finally, the setup command draws the blue borders around the grid to define the

play area visually.

to setup

 clear-all
 reset-ticks

 set stop-game false

 setup-players
 setup-landing-zones
 setup-enemies

 set mouse-was-down false

 ask patches with [count neighbors != 8]
 [set pcolor blue]
end

to setup-players
 create-players 1
 ask players [
 set shape "Airplane"
 set color green
 set size 3
 setxy 40 5
 set heading 0
 set health 100
]
end

to setup-enemies
 ask enemies [
 set shape "Airplane"
 set size 3
 set color red
 set heading 180
 set health 100
]
end

to setup-landing-zones
 let x 0
 create-landing-zones 4
 ask landing-zones [
 set shape "square"
 set size 5
 set color grey
 set x (x + 15)
 setxy x (max-pycor - 3)
 hatch-enemies 1 [
 create-link-from myself [
 set color black
]
]
]
end

The stop-game command is responsible for managing the game's state, determining when the game should end

based on specific conditions. The mouse-was-down command tracks the status of mouse clicks, enabling

interactions or triggering events within the simulation based on user input.

4.3.1 The Play Loop

The play loop is designed to run indefinitely but can be terminated when the stop-game global variable is set to

true . This variable is triggered when either all enemy planes' health reaches 0 or the player's health is depleted.

to play
 tick
 if stop-game = true [
 stop
]

 player-rules
 player-bullet-rules
 enemy-bullet-rules
 enemy-rules
 explosion-rules
 check-mouse-button
end

The player-rules command is straightforward: it checks if the player's health has reached 0. If so, it triggers the

game-over command, which creates the emoji effect and sets the stop-game variable to true , effectively

ending the game.

to player-rules
 ask players [
 if health <= 0 [
 game-over
]
 set label round(health)
 facexy mouse-xcor mouse-ycor
]
end

to game-over
 hatch-final-statuses 1 [
 setxy 40 40
 set shape "face sad"
 set size 15
 set label ""
 set color yellow
]
 set stop-game true
end

The enemy-rules command follows a similar structure to player-rules but includes additional logic for enemy

behavior. It checks whether an enemy's health has dropped to 0, and if so, triggers the explode command and

removes the agent. If an enemy is far from the player (beyond a distance of 50), it patrols the environment in a

predefined motion. However, if it comes within 50 units of the player, it begins to approach and fire bullets. The

explosion effect for enemies is also handled within this command. Let’s take a closer look at the explode

command.

to explode
 hatch-explosions 25 [

 set shape "Default"
 set color orange
 set size 2
 set heading random 360
 set label ""
]
 sound:play-note "Gunshot" 0 64 2
end

The explode command simply hatches turtles of the explosion breed, creating the visual representation of the

explosion. However, it does not handle their movement. The movement and behavior of these explosion agents

are managed by the explosion-rules command, which is executed in the play loop.

to explosion-rules
 ask explosions [
 fd 0.01
 if [pcolor] of patch-here = blue [
 die
]
]
end

The x-bullet-rules command controls the bullet behavior in the model. It asks all bullet agents to move

forward by one unit. The bullets are removed under specific conditions:

if they reach the borders of the grid

if they enter the landing zones

or if they collide with enemy bullets within a radius of 3.

Additionally, if a bullet hits an enemy within a radius of 3, it reduces the enemy's health by 0.01. When bullets

collide or hit their targets, they trigger the explode command, which hatches explosion agents to create a

visual effect, similar to the explosions caused by enemy deaths.

to bullet-explode
 hatch-explosions 3 [
 set shape "Default"
 set color grey
 set size 1
 set heading random 360
 set label ""
]
 sound:play-note "Gunshot" 50 64 2
end

The check-mouse-button command is another key part of the model. It monitors whether the mouse button was

pressed during the previous tick. If it detects that the mouse was clicked, it hatches a bullet from the player's

position.

Lastly, the go-up command handles player movement, allowing the player to move upward when the W key is

pressed.

4.3.2 Movementkeyboard_arrow_down

to go-up
 ask players [
 set heading 0
 if ycor < max-pycor [
 set ycor (ycor + 1)
]
]
end

The player's vertical position (ycor) stays within the defined bounds, preventing the player from exceeding the

grid's upper limit.

Extra Exercise: Add Power-ups

Create a new power-up breed that spawns randomly on the grid.

Make power-ups provide benefits to players, such as increased speed, additional health, or

temporary immunity.

Ensure power-ups disappear after a certain time or after being collected by the player.

Extra Exercise: Add Obstacles

Create stationary or moving obstacles that block bullets and player movement.

Ensure obstacles are randomly generated during the setup procedure of the game.

Extra Exercise: Multiplayer Support

Add support for multiple players controlled by different keys (e.g., WASD for Player 1 and

Arrow Keys for Player 2).

Implement cooperative gameplay where players work together to defeat enemies.

Extra Exercise: Add difficulty levels:

Implement a difficulty scaling system where the number and health of enemies increase as

the player progresses.

Optionally, increase the speed or frequency of enemy bullets over time.

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

👤 Tamás Takács, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

Multi-agent systems are composed of autonomous agents whose interactions shape the behavior of complex environments. To rigorously

analyze and design such systems, it is essential to employ formal frameworks that describe how agents make decisions, respond to one

another, and distribute rewards or penalties. This practice notebook introduces students to the foundational concepts and models from

game theory that underpin multi-agent interaction, including normal-form games, repeated games, stochastic games, and settings with

partial observability and communication. Through a series of structured examples and simulations, students will learn to represent, analyze,

and experiment with a variety of multi-agent environments. By the end of this module, students will be able to formally describe multi-agent

scenarios, identify appropriate models for different classes of problems, and implement simulations that highlight the core principles of

strategic interaction.

These formal models are grounded in game theory, and are known as games. Games serve as abstract representations of interaction,

ranging from one-shot choices to ongoing processes in complex environments. Depending on what agents can observe and how the

environment evolves, we can classify games into a hierarchy of increasing complexity.

5. Practice - Games: Models of Multi-Agent Interactionkeyboard_arrow_down

5.1 Hierarchy of Game Models

5.1.1 Necessary Imports

5.2 Normal-Form Games

5.2.1 Rock-Paper-Scissors (Zero-Sum Matrix Game)

5.2.2 Coordination Game (Common-Reward)

5.2.3 Prisoner's Dilemma (General-Sum)

5.2.4 Types of Normal-Form Games

5.3 Repeated Normal-Form Games

5.3.1 Formal Structure

5.3.2 Finite vs Infinite Repetition

5.3.3 Example: Repeated Prisoner's Dilemma

5.4 Stochastic Games (Markov Games)

Table of Contents

5.4.1 Definition

5.4.2 Game Flow

5.4.3 Markov Property

5.4.4 From Games to Environments

5.4.5 Example: Multi-Agent Grid Foraging

5.5 Partially Observable Stochastic Games (POSGs)

5.5.1 POSG Components

5.5.2 Game Flow (with Partial Observability)

5.5.3 Observability Variants

5.5.4 Decentralized POMDPs (Dec-POMDPs)

5.5.5 Example: Grid World with Local Vision

5.6 Modeling Communication in Multi-Agent Systems

5.6.1 Joint Action Space with Communication

5.6.2 Communication in POSGs

5.6.3 Learned Semantics

5.6.4 Example: Grid-World Foraging with Message Passing

5.6.5 Limitations

5.7 Knowledge Assumptions in Multi-Agent Games

5.7.1 Complete Knowledge Games

5.7.2 Incomplete Knowledge in MARL

5.7.3 From Simulator to Knowledge

5.7.4 Symmetry, Asymmetry, and Common Knowledge

5.7.5 Open Multi-Agent Systems

5.8 Dictionary: Reinforcement Learning ↔ Game Theory

At the simplest level, we consider normal-form games, where agents act simultaneously in a single round of interaction, with no state

transitions or memory. Moving up, we introduce stochastic games, where the environment has multiple states and evolves based on the

agents' joint actions. At the top of the hierarchy are partially observable stochastic games, where agents do not have access to the full state

of the environment and must act based on incomplete or noisy observations.

5.1 Hierarchy of Game Modelskeyboard_arrow_down

5.1.1 Necessary Importskeyboard_arrow_down

import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.patches as patches
import numpy as np
import random
from IPython.display import HTML, display, clear_output
import ipywidgets as widgets

Hierarchy of Game Modelskeyboard_arrow_down

Show code

A normal-form game models a one-shot interaction between two or more agents. Each agent selects an action from a finite set, and all

actions are executed simultaneously. The outcome - a joint action - determines the reward each agent receives.

Let:

 be the set of agents

 be the action set for agent

 be the joint action space

 be the reward function for agent

Each agent selects a stochastic policy that defines a distribution over actions. After sampling actions, the resulting tuple

 is evaluated by each to produce the reward .

5.2 Normal-Form Gameskeyboard_arrow_down

𝐼 = {1, . . . , 𝑛}
𝐴𝑖 𝑖

𝐴 = × ×. . . ×𝐴1 𝐴2 𝐴𝑛

: 𝐴 → ℝ𝑅 𝑖 𝑖

: → [0, 1]𝜋𝑖 𝐴𝑖

𝑎 = (, . . . ,)𝑎1 𝑎𝑛 𝑅 𝑖 𝑟𝑖

Each player chooses one of three actions. One player's win is the other's loss.

Agent 1 / Agent 2 Rock Paper Scissors

Rock 0, 0 -1, 1 1, -1

Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

The game is zero-sum: the total reward is always 0.

5.2.1 Rock-Paper-Scissors (Zero-Sum Matrix Game)keyboard_arrow_down

actions = ['Rock', 'Paper', 'Scissors']
rps_payoff = {
 ('Rock', 'Rock'): (0, 0),
 ('Rock', 'Paper'): (-1, 1),
 ('Rock', 'Scissors'): (1, -1),
 ('Paper', 'Rock'): (1, -1),
 ('Paper', 'Paper'): (0, 0),
 ('Paper', 'Scissors'): (-1, 1),
 ('Scissors', 'Rock'): (-1, 1),
 ('Scissors', 'Paper'): (1, -1),
 ('Scissors', 'Scissors'): (0, 0),
}

def play_rps(policy1, policy2):
 a1 = random.choices(actions, weights=policy1)[0]
 a2 = random.choices(actions, weights=policy2)[0]
 r1, r2 = rps_payoff[(a1, a2)]
 print(f"Agent 1: {a1} | Agent 2: {a2} → Rewards: ({r1}, {r2})")
 return r1, r2

uniform_policy = [1/3, 1/3, 1/3]
play_rps(uniform_policy, uniform_policy)

Agent 1: Paper | Agent 2: Scissors → Rewards: (-1, 1)
(-1, 1)

Agents are rewarded only when they make the same choice.

Agent 1 / Agent 2 A B

A 10, 10 0, 0

B 0, 0 10, 10

Both players benefit from mutual agreement.

This is a common-reward game: agents share the same payoff.

5.2.2 Coordination Game (Common-Reward)keyboard_arrow_down

coordination_payoff = {
 ('A', 'A'): (10, 10),
 ('A', 'B'): (0, 0),
 ('B', 'A'): (0, 0),
 ('B', 'B'): (10, 10),
}

def play_coordination(policy1, policy2):
 actions = ['A', 'B']
 a1 = random.choices(actions, weights=policy1)[0]
 a2 = random.choices(actions, weights=policy2)[0]
 r1, r2 = coordination_payoff[(a1, a2)]
 print(f"Agent 1: {a1} | Agent 2: {a2} → Rewards: ({r1}, {r2})")
 return r1, r2

play_coordination([0.4, 0.6], [0.6, 0.4])

Agent 1: B | Agent 2: A → Rewards: (0, 0)
(0, 0)

Each agent chooses to cooperate or defect. Defection is individually optimal, but mutual cooperation yields a better outcome for both.

Agent 1 / Agent 2 Cooperate (C) Defect (D)

Cooperate (C) -1, -1 -5, 0

Defect (D) 0, -5 -3, -3

This is a general-sum game: there is no fixed relationship between the rewards.

5.2.3 Prisoner's Dilemma (General-Sum)

Normal-form games can be classified by how agent rewards relate to each other:

Type Mathematical Condition Description

Zero-Sum One agent's gain is another's loss

Common-Reward Fully cooperative: same reward shared

General-Sum No constraint Rewards may align or conflict

These distinctions help us reason about strategic incentives: whether agents should compete, cooperate, or mix both behaviors.

5.2.4 Types of Normal-Form Games

(𝑎) = 0∑ 𝑖 𝑅 𝑖

(𝑎) = (𝑎) ∀𝑖, 𝑗𝑅 𝑖 𝑅 𝑗

A repeated normal-form game models sequential interaction between agents by replaying the same normal-form game over multiple time

steps. This structure allows agents to adapt their actions based on past behavior, enabling strategic reasoning over time.

Unlike one-shot games, repeated interactions let agents build trust, retaliation, cooperation, and revenge, giving rise to rich dynamics in

multi-agent environments.

5.3 Repeated Normal-Form Gameskeyboard_arrow_down

Let be a normal-form game. In a repeated normal-form game:

The same game is played over time steps:

Each agent selects action at time , based on policy

Policies can now condition on interaction history:

Each joint action yields a reward:

Agents can remember past behavior or use summary statistics of the history to guide future decisions. Some famous policies:

Policy Description

Tit-for-Tat Start with cooperate, then repeat opponent's last move

Grim Trigger Cooperate until opponent defects once, then always defect

Always Defect Defect no matter what

Always Cooperate Always cooperate regardless of past moves

Random Choose actions uniformly at random

5.3.1 Formal Structure

Γ = (𝐼, { , {)𝐴𝑖}𝑖∈𝐼 𝑅 𝑖}𝑖∈𝐼

Γ 𝑇 𝑡 = 0, 1, . . . , 𝑇 − 1
∈𝑎𝑡

𝑖 𝐴𝑖 𝑡 𝜋𝑖

(∣) where = (, , . . . ,)𝜋𝑖 𝑎𝑡
𝑖 ℎ𝑡 ℎ𝑡 𝑎0 𝑎1 𝑎𝑡−1

= (, . . . ,)𝑎𝑡 𝑎𝑡
1 𝑎𝑡

𝑛

= ()𝑟𝑡
𝑖 𝑅 𝑖 𝑎𝑡

In finite repetition, agents often act differently near the end (e.g., end-game defection).

In infinite repetition, we often use a discount factor to weigh future rewards.

This introduces a termination probability at each time step.

For , the game is still considered “infinite,” since the number of rounds is unbounded in expectation.

5.3.2 Finite vs Infinite Repetition

𝛾 ∈ [0, 1]

1 − 𝛾
𝛾 < 1

Agent 1 / Agent 2 Cooperate (C) Defect (D)

Cooperate (C) -1, -1 -5, 0

Defect (D) 0, -5 -3, -3

When repeated, this game reveals fascinating dynamics:

Tit-for-Tat can enforce cooperation over time

Defectors can exploit naive cooperators

Strategy adaptation is key to long-term reward

We’ll now simulate a multi-round Axelrod-style tournament between famous strategies.

5.3.3 Example: Repeated Prisoner's Dilemmakeyboard_arrow_down

PAYOFFS = {
 ("C", "C"): (-1, -1),
 ("C", "D"): (-5, 0),
 ("D", "C"): (0, -5),
 ("D", "D"): (-3, -3),
}

def always_cooperate(_, __): return "C"
def always_defect(_, __): return "D"
def tit_for_tat(_, history):
 return "C" if not history else history[-1][1]

def grim_trigger(_, history):
 if any(h[1] == "D" for h in history): return "D"
 return "C"

def random_strategy(_, __): return random.choice(["C", "D"])

STRATEGIES = {
 "Always Cooperate": always_cooperate,
 "Always Defect": always_defect,
 "Tit-for-Tat": tit_for_tat,
 "Grim Trigger": grim_trigger,
 "Random": random_strategy,
}

def play_rounds(strategy1, strategy2, rounds=20):
 history1, history2 = [], []
 rewards1, rewards2 = 0, 0
 for _ in range(rounds):
 move1 = strategy1(1, history1)
 move2 = strategy2(2, history2)
 r1, r2 = PAYOFFS[(move1, move2)]

 rewards1 += r1
 rewards2 += r2
 history1.append((move1, move2))
 history2.append((move2, move1))
 return rewards1, rewards2

def axelrod_tournament(strategies=STRATEGIES, rounds=20):
 names = list(strategies.keys())
 n = len(names)
 scores = np.zeros((n, n))

 for i in range(n):
 for j in range(n):
 s1, s2 = strategies[names[i]], strategies[names[j]]
 r1, r2 = play_rounds(s1, s2, rounds)
 scores[i, j] = r1

 fig, ax = plt.subplots(figsize=(8, 6))
 im = ax.imshow(scores, cmap="coolwarm", vmin=np.min(scores), vmax=np.max(scores))
 ax.set_xticks(np.arange(n))
 ax.set_yticks(np.arange(n))
 ax.set_xticklabels(names, rotation=45, ha="right")
 ax.set_yticklabels(names)
 plt.title(f"Axelrod Tournament: Total Rewards over {rounds} Rounds")
 plt.colorbar(im, ax=ax)
 plt.tight_layout()
 plt.show()

axelrod_tournament(rounds=150)

def simulate_game(strategy1, strategy2, rounds=50):
 history1, history2 = [], []
 rewards1, rewards2 = [], []
 total1, total2 = 0, 0

 for _ in range(rounds):
 move1 = strategy1(1, history1)
 move2 = strategy2(2, history2)
 r1, r2 = PAYOFFS[(move1, move2)]
 total1 += r1
 total2 += r2
 rewards1.append(total1)
 rewards2.append(total2)
 history1.append((move1, move2))
 history2.append((move2, move1))

 return rewards1, rewards2

def animate_rewards(strategy_name_1, strategy_name_2, rounds=50):
 strategy1 = STRATEGIES[strategy_name_1]

Agent 1 Agent 2

       

Always Defect Random



 strategy2 = STRATEGIES[strategy_name_2]

 rewards1, rewards2 = simulate_game(strategy1, strategy2, rounds)

 fig, ax = plt.subplots(figsize=(8, 5))
 ax.set_xlim(0, rounds)
 ax.set_ylim(min(rewards1 + rewards2) - 5, max(rewards1 + rewards2) + 5)
 ax.set_xlabel("Round")
 ax.set_ylabel("Cumulative Reward")
 ax.set_title(f"{strategy_name_1} vs {strategy_name_2}")

 line1, = ax.plot([], [], lw=2, color='blue', label=strategy_name_1)
 line2, = ax.plot([], [], lw=2, color='red', label=strategy_name_2)
 ax.legend()

 def init():
 line1.set_data([], [])
 line2.set_data([], [])
 return line1, line2

 def update(frame):
 x = list(range(frame + 1))
 line1.set_data(x, rewards1[:frame + 1])
 line2.set_data(x, rewards2[:frame + 1])
 return line1, line2

 ani = animation.FuncAnimation(fig, update, frames=rounds, init_func=init,
 interval=200, blit=True)
 plt.close(fig)
 return HTML(ani.to_jshtml())

strategy_options = list(STRATEGIES.keys())
dropdown_1 = widgets.Dropdown(options=strategy_options, value='Tit-for-Tat', description='Agent 1')
dropdown_2 = widgets.Dropdown(options=strategy_options, value='Always Defect', description='Agent 2')
output = widgets.Output()

def on_change(change):
 output.clear_output(wait=True)
 with output:
 display(animate_rewards(dropdown_1.value, dropdown_2.value))

dropdown_1.observe(on_change, names='value')
dropdown_2.observe(on_change, names='value')

display(widgets.HBox([dropdown_1, dropdown_2]))
display(output)

on_change(None)

A stochastic game models multi-agent interaction in a dynamic environment where the state evolves over time based on the agents' actions

and probabilistic transitions.

This structure brings us closer to realistic multi-agent systems, where decisions are not made in isolation but in evolving, context-dependent

environments.

5.4 Stochastic Games (Markov Games)keyboard_arrow_down

A stochastic game consists of:

A finite set of agents:

A finite set of states: (with a subset of terminal states)

For each agent :

A finite action set

A reward function:

where

A transition function:

An initial state distribution:

5.4.1 Definition

𝐼 = {1,… , 𝑛}
𝑆 ⊂ 𝑆𝑆

𝑖 ∈ 𝐼

𝐴𝑖

: 𝑆 × 𝐴 × 𝑆 → ℝ𝑅 𝑖

𝐴 = × ×⋯ ×𝐴1 𝐴2 𝐴𝑛

𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] with 𝑇 (𝑠, 𝑎,) = 1∑
𝑠′

𝑠 ′

𝜇 : 𝑆 → [0, 1] with 𝜇(𝑠) = 1∑
𝑠∈𝑆

At each time step :

1. The environment is in a state

2. Each agent selects action

3. The joint action is taken

4. The environment transitions to

5. Each agent receives reward

6. The game continues unless:

a terminal state is reached, or

a fixed time horizon is completed

Agents condition their policies on the state-action history .

5.4.2 Game Flow

𝑡

∈ 𝑆𝑠 𝑡

∼ (∣)𝑎𝑡
𝑖 𝜋𝑖 𝑎𝑖 ℎ𝑡

= (, . . . ,)𝑎𝑡 𝑎𝑡
1 𝑎𝑡

𝑛

∼ 𝑇 (, , ⋅)𝑠 𝑡+1 𝑠 𝑡 𝑎𝑡

= (, ,)𝑟𝑡
𝑖 𝑅 𝑖 𝑠 𝑡 𝑎𝑡 𝑠 𝑡+1

∈𝑠 𝑡+1 𝑆

= (, , , . . . ,)ℎ𝑡 𝑠0 𝑎0 𝑠1 𝑠 𝑡

Stochastic games inherit the Markov property:

This means future transitions depend only on the current state and actions - not on the entire past.

5.4.3 Markov Property

𝑃 (, ∣ , , … , ,) = 𝑃 (, ∣ ,)𝑠 𝑡+1 𝑟𝑡 𝑠 𝑡 𝑎𝑡 𝑠0 𝑎0 𝑠 𝑡+1 𝑟𝑡 𝑠 𝑡 𝑎𝑡

Stochastic games generalize:

Normal-form games (single state, no transitions)

Repeated games (same state, deterministic loop)

MDPs (single-agent stochastic games)

They can be classified as:

Zero-sum:

Common-reward: for all

General-sum: Arbitrary reward structure

5.4.4 From Games to Environments

= 0∑ 𝑖 𝑅 𝑖

=𝑅 𝑖 𝑅 𝑗 𝑖, 𝑗

5.4.5 Example: Multi-Agent Grid Foragingkeyboard_arrow_down

A simple environment might look like:

States: Positions of agents and items on a grid

Actions: Move (up/down/left/right), pick, or noop

Transitions: Agents move deterministically; items disappear once picked

Rewards: +1 for picking an item (shared or individual)

GRID_SIZE = 5
ITEM_POS = (3, 3)
MAX_STEPS = 10

ACTIONS = ["UP", "DOWN", "LEFT", "RIGHT", "PICK", "NOOP"]
ACTION_TO_DELTA = {
 "UP": (-1, 0), "DOWN": (1, 0),
 "LEFT": (0, -1), "RIGHT": (0, 1),
 "PICK": (0, 0), "NOOP": (0, 0)
}

class ForagingGame:
 def __init__(self):
 self.agent_positions = [(0, 0), (4, 4)]
 self.item_present = True
 self.timestep = 0
 self.history = []

 def step(self, actions):
 rewards = [0, 0]
 new_positions = []

 for i, action in enumerate(actions):
 if action in ACTION_TO_DELTA:
 dx, dy = ACTION_TO_DELTA[action]
 x, y = self.agent_positions[i]
 nx, ny = min(max(x + dx, 0), GRID_SIZE - 1), min(max(y + dy, 0), GRID_SIZE - 1)
 new_positions.append((nx, ny))
 else:
 new_positions.append(self.agent_positions[i])

 self.agent_positions = new_positions

 if self.item_present and "PICK" in actions:
 pickers = [i for i, act in enumerate(actions) if act == "PICK" and self.agent_positions[i] == ITEM_POS]
 if pickers:
 reward = 1.0 / len(pickers)
 for i in pickers:
 rewards[i] = reward
 self.item_present = False

 self.timestep += 1
 self.history.append((tuple(self.agent_positions), tuple(actions), tuple(rewards)))
 return rewards, self.timestep >= MAX_STEPS or not self.item_present

 def render(self):
 fig, ax = plt.subplots(figsize=(5, 5))
 ax.set_xlim(0, GRID_SIZE)
 ax.set_ylim(0, GRID_SIZE)
 ax.set_xticks(range(GRID_SIZE+1))
 ax.set_yticks(range(GRID_SIZE+1))
 ax.grid(True)

 if self.item_present:
 ax.add_patch(patches.Circle((ITEM_POS[1]+0.5, ITEM_POS[0]+0.5), 0.3, color='orange'))

 for i, (x, y) in enumerate(self.agent_positions):
 ax.add_patch(patches.Rectangle((y+0.1, x+0.1), 0.8, 0.8, color='blue' if i==0 else 'green'))
 ax.text(y + 0.5, x + 0.5, f"A{i}", ha='center', va='center', color='white', weight='bold')

 plt.gca().invert_yaxis()
 plt.title(f"Step {self.timestep}")
 plt.show()

game = ForagingGame()

def agent_policy(agent_id, state, history):
 x, y = state[agent_id]
 if (x, y) == ITEM_POS:
 return "PICK"
 if x < ITEM_POS[0]: return "DOWN"
 if x > ITEM_POS[0]: return "UP"
 if y < ITEM_POS[1]: return "RIGHT"

if y > ITEM POS[1]: return "LEFT"

 if y > ITEM_POS[1]: return LEFT
 return "NOOP"

while True:
 state = game.agent_positions
 actions = [agent_policy(i, state, game.history) for i in range(2)]
 rewards, done = game.step(actions)
 game.render()
 if done:
 print(f"Final rewards: {rewards}")
 break

A Partially Observable Stochastic Game (POSG) extends stochastic games by introducing incomplete information. Instead of seeing the full

environment state and past actions, each agent receives a noisy, local, or partial observation about the environment.

This mirrors real-world situations:

Autonomous vehicles sense the world via imperfect sensors

Players in card games don't see each other's hands

Agents in games operate under fog-of-war or limited vision

5.5 Partially Observable Stochastic Games (POSGs)keyboard_arrow_down

A POSG includes everything from a stochastic game:

Finite set of agents:

Finite set of states: and terminal states

Action sets: for each agent

Reward functions:

State transitions:

Additional POSG elements:

For each agent :

Observation space:

Observation function:

5.5.1 POSG Components

𝐼 = {1, . . . , 𝑛}
𝑆 ⊂ 𝑆𝑆

𝐴𝑖 𝑖

: 𝑆 × 𝐴 × 𝑆 → ℝ𝑅 𝑖

𝑇 (∣ ,)𝑠 𝑡+1 𝑠 𝑡 𝑎𝑡

𝑖

𝑂𝑖

(∣ ,) (or : 𝐴 × 𝑆 × → [0, 1])𝑂𝑖 𝑜𝑡
𝑖 𝑠 𝑡 𝑎𝑡−1 𝑂𝑖 𝑂𝑖

At each time step :

1. The environment is in state

2. Each agent receives an observation

3. Based on its observation history , each agent selects action

4. The joint action is taken

5. The environment transitions to

6. Each agent receives reward

The process repeats until a terminal state or time limit is reached.

5.5.2 Game Flow (with Partial Observability)

𝑡

𝑠 𝑡

𝑖 ∼ (∣ ,)𝑜𝑡
𝑖 𝑂𝑖 𝑜𝑡

𝑖 𝑠 𝑡 𝑎𝑡−1
= (, . . . ,)ℎ𝑡

𝑖 𝑜0𝑖 𝑜𝑡
𝑖 𝑎𝑡

𝑖

= (, . . . ,)𝑎𝑡 𝑎𝑡
1 𝑎𝑡

𝑛

𝑠 𝑡+1
= (, ,)𝑟𝑡

𝑖 𝑅 𝑖 𝑠 𝑡 𝑎𝑡 𝑠 𝑡+1

Type Description

Fully Observable — the agent sees everything

State-Only Local — local grid view or limited FOV

Noisy Observation is a distribution with randomness

Unobserved Opponent Actions — agent sees state + own action only

Communication via Observation includes nearby agents’ messages, if in range

5.5.3 Observability Variants

=𝑜𝑡
𝑖 𝑠𝑡

⊂𝑜𝑡
𝑖 𝑠𝑡

𝑂𝑖

= (,)𝑜𝑡
𝑖 𝑠𝑡 𝑎𝑡

𝑖

𝑜𝑡
𝑖

A POSG with common reward (i.e.,) is called a Decentralized POMDP (Dec-POMDP). These models are central to cooperative

multi-agent planning where agents must coordinate using only local observations.

5.5.4 Decentralized POMDPs (Dec-POMDPs)

= ∀𝑖, 𝑗𝑅 𝑖 𝑅 𝑗

Imagine two agents in a 2D grid tasked with collecting items. Each agent:

Sees only the 3x3 region around itself (partial view of state)

Cannot see the other agent’s action

Receives +1 if an item is collected by either agent (common reward)

We'll now simulate this scenario with local fields of view and limited perception.

5.5.5 Example: Grid World with Local Visionkeyboard_arrow_down

class PartialObsForagingVis:
 def __init__(self, grid_size=7, vision=2):
 self.grid_size = grid_size
 self.vision = vision
 self.agent_positions = [(0, 0), (6, 6)]
 self.item_pos = (3, 3)
 self.item_collected = False
 self.step_count = 0
 self.max_steps = 15
 self.agent_colors = ['blue', 'green']
 self.terminated = False

 def reset(self):
 self.agent_positions = [(0, 0), (6, 6)]
 self.item_pos = (3, 3)
 self.item_collected = False
 self.step_count = 0
 self.terminated = False

 def step(self, actions):
 new_positions = []
 for i, action in enumerate(actions):
 x, y = self.agent_positions[i]
 dx, dy = {
 "UP": (-1, 0),
 "DOWN": (1, 0),
 "LEFT": (0, -1),
 "RIGHT": (0, 1),
 "NOOP": (0, 0)
 }.get(action, (0, 0))
 nx, ny = min(max(x + dx, 0), self.grid_size - 1), min(max(y + dy, 0), self.grid_size - 1)
 new_positions.append((nx, ny))

 self.agent_positions = new_positions

 if not self.item_collected and self.item_pos in self.agent_positions:
 self.item_collected = True
 print("🍎 Item collected!")

 self.step_count += 1
 if self.step_count >= self.max_steps or self.item_collected:
 self.terminated = True

 def render(self):
 fig, ax = plt.subplots(figsize=(6, 6))
 ax.set_xlim(0, self.grid_size)
 ax.set_ylim(0, self.grid_size)
 ax.set_xticks(range(self.grid_size + 1))
 ax.set_yticks(range(self.grid_size + 1))
 ax.grid(True)
 ax.set_title(f"Step {self.step_count}", fontsize=14)

 if not self.item_collected:
 item_x, item_y = self.item_pos
 ax.add_patch(patches.Circle((item_y + 0.5, item_x + 0.5), 0.25, color='red'))
 ax.text(item_y + 0.5, item_x + 0.5, "🍎 ", ha='center', va='center', fontsize=16)

 for i, (x, y) in enumerate(self.agent_positions):
 # Agent
 ax.add_patch(patches.Rectangle((y + 0.1, x + 0.1), 0.8, 0.8,
 color=self.agent_colors[i], label=f"Agent {i}"))
 ax.text(y + 0.5, x + 0.5, f"A{i}", color='white', weight='bold', ha='center', va='center')

 vis_left = max(y - self.vision, 0)
 vis_right = min(y + self.vision + 1, self.grid_size)
 vis_bottom = max(x - self.vision, 0)
 vis_top = min(x + self.vision + 1, self.grid_size)

 ax.add_patch(patches.Rectangle(

 (vis_left, vis_bottom),
 vis_right - vis_left,
 vis_top - vis_bottom,
 linewidth=0.5,
 edgecolor=self.agent_colors[i],
 facecolor=self.agent_colors[i],
 alpha=0.15
))

 ax.set_aspect('equal')
 plt.gca().invert_yaxis()
 plt.tight_layout()
 plt.show()

env = PartialObsForagingVis()

actions_list = [
 ("DOWN", "UP"),
 ("DOWN", "UP"),
 ("DOWN", "UP"),
 ("DOWN", "LEFT"),
 ("RIGHT", "LEFT"),
 ("RIGHT", "NOOP")
]

for actions in actions_list:
 env.step(actions)
 env.render()
 if env.terminated:
 break

Communication in multi-agent environments allows agents to share private information, coordinate actions, or collectively plan toward

shared goals. In game-theoretic terms, communication is often modeled as a separate action channel that agents can use in parallel with

their environment-interacting actions.

This allows stochastic games and POSGs to represent message exchange protocols, ranging from:

Discrete symbols (e.g. "go north")

Continuous vectors (e.g. location, intent)

Probabilistic messages (noisy, partial, or lossy)

5.6 Modeling Communication in Multi-Agent Systemskeyboard_arrow_down

For each agent , the action space is split into:

where:

 = Environment actions (move, collect, attack, etc.)

 = Communication actions (e.g. sending bits or vectors)

A full joint action looks like:

The key property of communication:

It does not affect the environment state transition directly.

Formally:

Communication is ephemeral by default — it only lasts a single timestep — but agents can remember received messages through their

internal states.

5.6.1 Joint Action Space with Communication

𝑖

= ×𝐴𝑖 𝑋 𝑖 𝑀 𝑖

𝑋 𝑖

𝑀 𝑖

𝑎 = ⟨(,), (,), . . . , (,)⟩𝑥1 𝑚1 𝑥2 𝑚2 𝑥𝑛 𝑚𝑛

𝑇 (∣ 𝑠, 𝑎) = 𝑇 (∣ 𝑠, ⟨ , . . . , ⟩)𝑠 ′ 𝑠 ′ 𝑥1 𝑥𝑛

In partially observable settings, agents may not see the true state, but can receive partial observations and messages from others.

Each agent has an observation function:

5.6.2 Communication in POSGs

𝑖

(∣ ,)𝑂𝑖 𝑜𝑡
𝑖 𝑠 𝑡 𝑎𝑡−1

You can augment the observation vector:

where:

 is the partial view of the state

 is the received message from agent (possibly ∅)

This allows modeling:

Noisy communication:

Message loss:

Range-limited communication:

 if distance

= [, , . . . ,]𝑜𝑡
𝑖 𝑠 𝑡 𝑤𝑡−1

1 𝑤𝑡−1
𝑛

𝑠 𝑡

𝑤𝑡−1
𝑗 𝑗

= + 𝑁(0,)𝑤𝑡−1
𝑗 𝑚𝑡−1

𝑗 𝜎2

𝑃 (= ∅) > 0𝑤𝑡−1
𝑗

= ∅𝑤𝑡−1
𝑗 (𝑖, 𝑗) > 𝑅

In most MARL scenarios, the agents do not begin with a shared meaning of communication actions.

Instead, communication is modeled as abstract actions in , and agents must:

Learn what messages to send

Learn how to interpret received messages

This process may lead to the emergence of:

Implicit protocols (e.g., “1” means “go left”)

Shared vocabularies (symbols or continuous signals)

Multi-agent languages through reinforcement (Foerster et al. 2016)

5.6.3 Learned Semantics

𝑀 𝑖

Agents move in a 2D grid, collecting items cooperatively. Each can:

Take a move action

Send a message from a fixed set (e.g., intended target location)

They observe:

Their local field of view

Past messages from other agents (possibly with noise or loss)

Messages can express:

Position of observed items

Intended direction

Role coordination (e.g., “I'm defender”)

5.6.4 Example: Grid-World Foraging with Message Passing

Messages are only observed, never directly influence the environment.

Agents may require many episodes to learn communication semantics.

5.6.5 Limitationskeyboard_arrow_down

class CommGridWorld:
 def __init__(self, grid_size=7, vision=2):
 self.grid_size = grid_size
 self.vision = vision
 self.agent_positions = [(0, 0), (6, 6)]
 self.item_pos = (3, 3)
 self.item_collected = False
 self.step_count = 0
 self.max_steps = 20
 self.agent_colors = ['blue', 'green']
 self.messages = [None, None]
 self.terminated = False

 def reset(self):
 self.agent_positions = [(0, 0), (6, 6)]
 self.item_pos = (3, 3)
 self.item_collected = False
 self.step_count = 0
 self.messages = [None, None]

 self.terminated = False

 def step(self, actions, messages):
 new_positions = []
 for i, action in enumerate(actions):
 x, y = self.agent_positions[i]
 dx, dy = {
 "UP": (-1, 0), "DOWN": (1, 0),
 "LEFT": (0, -1), "RIGHT": (0, 1),
 "NOOP": (0, 0)
 }.get(action, (0, 0))
 nx, ny = min(max(x + dx, 0), self.grid_size - 1), min(max(y + dy, 0), self.grid_size - 1)
 new_positions.append((nx, ny))

 self.agent_positions = new_positions
 self.messages = messages

 if not self.item_collected and self.item_pos in self.agent_positions:
 self.item_collected = True
 print("🍎 Item collected!")

 self.step_count += 1
 if self.step_count >= self.max_steps or self.item_collected:
 self.terminated = True

 def render(self):
 fig, ax = plt.subplots(figsize=(6, 6))
 ax.set_xlim(0, self.grid_size)
 ax.set_ylim(0, self.grid_size)
 ax.set_xticks(range(self.grid_size + 1))
 ax.set_yticks(range(self.grid_size + 1))
 ax.grid(True)
 ax.set_title(f"Step {self.step_count}", fontsize=14)

 if not self.item_collected:
 item_x, item_y = self.item_pos
 ax.add_patch(patches.Circle((item_y + 0.5, item_x + 0.5), 0.25, color='red'))
 ax.text(item_y + 0.5, item_x + 0.5, "🍎 ", ha='center', va='center', fontsize=16)

 for i, (x, y) in enumerate(self.agent_positions):
 ax.add_patch(patches.Rectangle((y + 0.1, x + 0.1), 0.8, 0.8,
 color=self.agent_colors[i]))
 ax.text(y + 0.5, x + 0.5, f"A{i}", color='white', weight='bold', ha='center', va='center')

 vis_left = max(y - self.vision, 0)
 vis_right = min(y + self.vision + 1, self.grid_size)
 vis_bottom = max(x - self.vision, 0)
 vis_top = min(x + self.vision + 1, self.grid_size)
 ax.add_patch(patches.Rectangle(
 (vis_left, vis_bottom),
 vis_right - vis_left,
 vis_top - vis_bottom,
 linewidth=0.5,
 edgecolor=self.agent_colors[i],
 facecolor=self.agent_colors[i],
 alpha=0.15
))

 msg = self.messages[i]
 if msg and msg != "None":
 ax.text(y + 0.5, x - 0.2, f"💬 {msg}", fontsize=10, ha='center', va='top', color=self.agent_colors[i])

 ax.set_aspect('equal')
 plt.gca().invert_yaxis()
 plt.tight_layout()
 plt.show()

action_options = ["UP", "DOWN", "LEFT", "RIGHT", "NOOP"]
message_options = ["None", "Going to item", "Need help", "I see item", "Target: (3,3)"]

agent0_action = widgets.Dropdown(options=action_options, description='A0 Act:')
agent0_message = widgets.Dropdown(options=message_options, description='A0 Msg:')
agent1_action = widgets.Dropdown(options=action_options, description='A1 Act:')
agent1_message = widgets.Dropdown(options=message_options, description='A1 Msg:')
step_button = widgets.Button(description="Step")

env = CommGridWorld()
env.render()

def on_step_clicked(b):
 clear_output(wait=True)
 env.step([agent0_action.value, agent1_action.value],

<ipython-input-27-430ad5be29c8>:94: UserWarning: Glyph 128172 (\N{SPEECH BALLOON}) missing from font(s) DejaVu Sans.
 plt.tight_layout()

A0 Act:

A0 Msg:

A1 Act:

A1 Msg:

RIGHT

I see item

LEFT

Going to item

Step

 [agent0_message.value, agent1_message.value])
 env.render()
 display(agent0_action, agent0_message, agent1_action, agent1_message, step_button)

step_button.on_click(on_step_clicked)

display(agent0_action, agent0_message, agent1_action, agent1_message, step_button)

Understanding what agents know about their environment and one another is fundamental in both classical game theory and MARL. The

assumptions made about agents' knowledge define the epistemic structure of the game and directly impact learning strategies, reasoning,

and coordination.

5.7 Knowledge Assumptions in Multi-Agent Gameskeyboard_arrow_down

In classical game theory, it is typically assumed that agents have complete knowledge of the game they are playing. That is, each agent

knows:

The action spaces of all agents

The reward functions of all agents

For state-based games:

The full state space

The state transition function

(In POSGs) the observation functions of all agents

This setup is referred to as a complete knowledge game (Owen, 2013).

Such knowledge enables agents to:

Anticipate others' best responses

Perform multi-step planning (when is known)

Use policy reconstruction and equilibrium computation

5.7.1 Complete Knowledge Games

𝐴𝑖

𝑅 𝑖

𝑆

𝑇

𝑂𝑖

𝑇

In real-world MARL settings, complete game knowledge is rarely available.

Agents typically:

Do not know their own reward function explicitly

Do not observe the reward or actions of others

Cannot access , , or

Only observe:

Their own reward

The next state (in SGs)

Or their partial observation (in POSGs)

This places MARL settings under incomplete information games (Harsanyi, 1967).

To interact effectively, agents must learn from experience by:

Estimating unknown game components (model-based learning)

Inferring other agents' policies (agent modeling)

Adapting to non-stationary behaviors (meta-learning)

5.7.2 Incomplete Knowledge in MARL

𝑇 𝑅 𝑖 𝑂𝑖

𝑟𝑡
𝑖

𝑠 𝑡+1

𝑜𝑡+1
𝑖

Even when game dynamics are not known, MARL often assumes access to a black-box simulator , which can be queried as:

This enables empirical learning of transitions and rewards:

5.7.3 From Simulator to Knowledge

𝑇𝑏

(𝑟,) ∼ (𝑠, 𝑎)𝑠 ′ 𝑇𝑏

Pr ((𝑠, 𝑎) = (𝑟,)) ≈ 𝑇 (∣ 𝑠, 𝑎), (𝑠, 𝑎,) =𝑇𝑏 𝑠 ′ 𝑠 ′ 𝑅 𝑖 𝑠 ′ 𝑟𝑖

Knowledge assumptions can also vary across agents:

Symmetric knowledge: All agents have the same knowledge.

Asymmetric knowledge: Some agents have privileged information.

Common knowledge: Not only does everyone know , but everyone knows that everyone knows it — ad infinitum.

While these concepts are foundational in game theory and epistemic logic, they've seen limited use in MARL so far, except in:

Zero-sum games: where knowledge of opponent payoff structure is exploited.

Common-reward games: where a shared reward function can be assumed.

For example, knowing may allow agent to simulate agent 's policy and respond optimally.

5.7.4 Symmetry, Asymmetry, and Common Knowledge

𝑋

𝑅 𝑗 𝑖 𝑗

Most game models assume:

A fixed number of agents

That this number is known to all agents

However, emerging MARL research considers open environments where:

Agents may enter or leave dynamically

Systems must support scalable, decentralized reasoning

Such settings challenge the very idea of fixed game definitions and lead toward lifelong, adaptive, and open-agent systems.

5.7.5 Open Multi-Agent Systems

𝑛

RL Term GT Term Description

environment game Model specifying the possible actions, observations, and rewards of agents, and the dynamics of how the state e

agent player Entity which makes decisions. “Player” may also denote a specific role in the game (e.g., row player, white player)

reward payoff , utility Scalar value received by an agent/player after taking an action or upon outcome resolution.

policy strategy Function that maps observations (or histories) to a probability distribution over actions.

deterministic policy pure strategy Chooses a single action with probability 1.

probabilistic policy mixed strategy Assigns a probability distribution over possible actions.

joint policy profile Tuple of strategies or actions, one per agent/player.

5.8 Dictionary: Reinforcement Learning ↔ Game Theorykeyboard_arrow_down

In real-world MARL settings, complete game knowledge is rarely available.

Agents typically:

Do not know their own reward function explicitly

Do not observe the reward or actions of others

Cannot access , , or

Only observe:

Their own reward

The next state (in SGs)

Or their partial observation (in POSGs)

This places MARL settings under incomplete information games (Harsanyi, 1967).

To interact effectively, agents must learn from experience by:

Estimating unknown game components (model-based learning)

Inferring other agents' policies (agent modeling)

Adapting to non-stationary behaviors (meta-learning)

5.7.2 Incomplete Knowledge in MARL

𝑇 𝑅 𝑖 𝑂𝑖

𝑟𝑡𝑖
𝑠𝑡+1

𝑜𝑡+1
𝑖

Even when game dynamics are not known, MARL often assumes access to a black-box simulator , which can be

queried as:

This enables empirical learning of transitions and rewards:

5.7.3 From Simulator to Knowledge

𝑇𝑏

(𝑟,) ∼ (𝑠, 𝑎)𝑠′ 𝑇𝑏

Pr ((𝑠, 𝑎) = (𝑟,)) ≈ 𝑇 (∣ 𝑠, 𝑎), (𝑠, 𝑎,) =𝑇𝑏 𝑠′ 𝑠′ 𝑅 𝑖 𝑠′ 𝑟𝑖

Knowledge assumptions can also vary across agents:

Symmetric knowledge: All agents have the same knowledge.

Asymmetric knowledge: Some agents have privileged information.

Common knowledge: Not only does everyone know , but everyone knows that everyone knows it — ad infinitum.

While these concepts are foundational in game theory and epistemic logic, they've seen limited use in MARL so far,

except in:

Zero-sum games: where knowledge of opponent payoff structure is exploited.

Common-reward games: where a shared reward function can be assumed.

For example, knowing may allow agent to simulate agent 's policy and respond optimally.

5.7.4 Symmetry, Asymmetry, and Common Knowledge

𝑋

𝑅 𝑗 𝑖 𝑗

Most game models assume:

A fixed number of agents

That this number is known to all agents

However, emerging MARL research considers open environments where:

Agents may enter or leave dynamically

Systems must support scalable, decentralized reasoning

5.7.5 Open Multi-Agent Systems

𝑛

Such settings challenge the very idea of fixed game definitions and lead toward lifelong, adaptive, and open-agent

systems.

RL Term GT Term Descript

environment game Model specifying the possible actions, observations, and rewards of agents, an

agent player Entity which makes decisions. “Player” may also denote a specific role in the ga

reward payoff , utility Scalar value received by an agent/player after taking an action or upon outcom

policy strategy Function that maps observations (or histories) to a probability distribution over

deterministic policy pure strategy Chooses a single action with probability 1.

probabilistic policy mixed strategy Assigns a probability distribution over possible actions.

joint policy profile Tuple of strategies or actions, one per agent/player.

joint reward payoff profile Rewards (payoffs) received by all agents for a joint action.

deterministic joint policy pure strategy profile All agents choose actions with probability 1.

stochastic joint policy mixed strategy profile All agents may act probabilistically.

5.8 Dictionary: Reinforcement Learning ↔ Game Theorykeyboard_arrow_down

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

👤 Tamás Takács, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

In previous practices, we explored models that characterize how agents interact and make decisions in shared

environments. This notebook addresses a deeper and fundamental question:

What does it mean for agents to act optimally in these settings?

Game theory provides a rigorous answer through solution concepts—formal criteria that specify which joint behaviors

(policies) are stable, rational, or desirable in multi-agent systems. These concepts, including best response, Nash

equilibrium, minimax, correlated equilibrium, and others, serve as benchmarks for evaluating and designing learning

algorithms in multi-agent reinforcement learning (MARL).

Through analytical explanations, worked examples, and simulation exercises, this practice guides students in

understanding, applying, and comparing key solution concepts. By the end of this practice, students will be able to

identify the appropriate solution concepts for various game models and critically assess the strengths and limitations

of each within the context of multi-agent learning and decision making.

A MARL problem can be fully specified as the combination of:

A game model (e.g., normal-form game, stochastic game, POSG), and

A solution concept (e.g., Nash equilibrium, social welfare optimum, no-regret learning)

6. Practice - Solution Concepts for Gameskeyboard_arrow_down

6.1 Game Model + Solution Concept = MARL Problem

6.1.1 Necessary Imports

Table of Contents

6.2 Joint Policy and Expected Return

6.2.1 Histories and Observation Function

6.2.2 Expected Return via History Enumeration

6.2.3 Recursive Expected Return (Bellman Form)

6.2.4 POSG Environment Assumptions

6.2.5 Simulation Approach

6.3 Best Response

6.3.1 Best Response in Matrix (Normal-Form) Games

6.3.2 Applications of Best Response

6.3.3 Multiple Best Responses

6.4 Minimax

6.4.1 Definition (Minimax Solution)

6.4.2 Interpretation

6.4.3 Best Response Interpretation

6.4.4 Example: Rock-Paper-Scissors

6.5 Minimax Solution via Linear Programming

6.5.1 Linear Program for Agent

6.5.2 Example: Rock-Paper-Scissors

6.6 Nash Equilibrium

6.6.1 Definition

6.6.2 Properties

6.6.3 Examples

6.6.4 Check for Nash Equilibrium

6.6.5 Computing Equilibria

6.7 -Nash Equilibrium

6.7.1 Definition

6.7.2 Important Notes

6.7.3 Example: Coordination Game

6.7.4 Checking -Nash Equilibria

6.8 Correlated and Coarse Correlated Equilibrium

6.8.1 Correlated Equilibrium (CE)

6.8.2 Example: Chicken Game

6.8.3 Coarse Correlated Equilibrium (CCE)

6.8.4 Hierarchy

6.8.5 Extension to Sequential Games

6.9 Conceptual Limitations of Equilibrium Solutions

6.9.1 Sub-optimality

6.9.2 Non-uniqueness

6.9.3 Incompleteness

6.10 Pareto Optimality

6.10.1 Definition

6.10.2 Intuition

6.10.3 Example: Chicken Game (Matrix Form)

6.10.4 Pareto Frontier Visualization

𝜖

𝜖

6.11 Social Welfare and Fairness

6.11.1 Social Welfare

6.11.2 Social Fairness (Nash Social Welfare)

6.11.3 Example: Battle of the Sexes

6.11.4 Visualization: Welfare and Fairness

6.12 No-Regret

6.12.1 Definition: Regret

6.12.2 No-Regret Condition

6.12.3 Example: Prisoner's Dilemma (Empirical Regret)

6.12.4 No-Regret in General Game Models

6.12.5 Limitations

6.12.6 Relation to Equilibria

6.12.7 Summary Table

The game model defines the mechanics of multi-agent interaction. The solution concept defines the desired outcome -

i.e., what the agents are trying to achieve through learning.

For example:

In common-reward games, a natural solution concept is to maximize expected return across all agents.

In general-sum games, the solution becomes more nuanced, and different concepts (e.g., Nash equilibrium,

Pareto optimality) offer different perspectives.

6.1 Game Model + Solution Concept = MARL Problemkeyboard_arrow_down

6.1.1 Necessary Importskeyboard_arrow_down

!pip install nashpy

Collecting nashpy
 Downloading nashpy-0.0.41-py3-none-any.whl.metadata (6.6 kB)
Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.11/dist-packages (from na
Requirement already satisfied: scipy>=0.19.0 in /usr/local/lib/python3.11/dist-packages (from na
Requirement already satisfied: networkx>=3.0.0 in /usr/local/lib/python3.11/dist-packages (from
Requirement already satisfied: deprecated>=1.2.14 in /usr/local/lib/python3.11/dist-packages (fr
Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.11/dist-packages (from d
Downloading nashpy-0.0.41-py3-none-any.whl (27 kB)
Installing collected packages: nashpy
Successfully installed nashpy-0.0.41

import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.patches as patches
import numpy as np
import random
from IPython.display import HTML, display, clear_output
import ipywidgets as widgets
from collections import defaultdict
from scipy.optimize import linprog
import nashpy as nash

A solution to a multi-agent game is defined by a joint policy:

6.2 Joint Policy and Expected Returnkeyboard_arrow_down

Each agent selects actions based on its observations and history. To evaluate the performance of such a joint

policy, we define the expected return:

This quantifies the utility that agent expects to receive when all agents act according to .

To make this definition general, we define within the most expressive model used in this book — the Partially

Observable Stochastic Game (POSG) — which subsumes stochastic games and normal-form games.

𝜋 = (, … ,)𝜋1 𝜋𝑛

𝜋𝑖

(𝜋)𝑈𝑖

𝑖 𝜋

(𝜋)𝑈𝑖

Let be the full history up to time .

Define as the observation history. The joint observation probability is:

We assume discounted returns with absorbing terminal states.

6.2.1 Histories and Observation Function

= {(, , , , }ℎ ̂𝑡 𝑠𝜏 𝑜𝜏 𝑎𝜏)𝑡−1𝜏=0 𝑠 𝑡 𝑜𝑡 𝑡

𝜎() = (, … ,)ℎ ̂𝑡 𝑜0 𝑜𝑡

𝑂(∣ ,) = (∣ ,)𝑜𝑡 𝑎𝑡−1 𝑠 𝑡 ∏
𝑖∈𝐼

𝑂𝑖 𝑜𝑖
𝑡 𝑎𝑡−1 𝑠 𝑡

Let be the set of all full histories. The expected return is:

Where:

 is the probability of history under the model

 is the discounted reward

If agents act independently, the joint action probability factorizes:

6.2.2 Expected Return via History Enumeration

𝐻

(𝜋) = Pr(∣ 𝜋) ⋅ ()𝑈𝑖 ∑
∈𝐻ℎ ̂𝑡

ℎ ̂𝑡 𝑢𝑖 ℎ ̂𝑡

Pr(∣ 𝜋)ℎ ̂𝑡
() = (, ,)𝑢𝑖 ℎ ̂𝑡 ∑ 𝑡−1

𝜏=0 𝛾
𝜏𝑅 𝑖 𝑠𝜏 𝑎𝜏 𝑠𝜏+1

𝜋(∣) = (∣)𝑎𝜏 ℎ𝜏 ∏
𝑗∈𝐼

𝜋𝑗 𝑎𝑗
𝜏 ℎ𝑗

𝜏

We define two value functions:

Value function:

Action-value function:

The overall expected return becomes:

This recursive form forms the basis for learning algorithms like value iteration and actor-critic methods in MARL.

6.2.3 Recursive Expected Return (Bellman Form)

() = 𝜋(𝑎 ∣ 𝜎()) (, 𝑎)𝑉 𝜋
𝑖 ℎ ̂ ∑

𝑎∈𝐴

ℎ ̂ 𝑄𝜋
𝑖 ℎ ̂

(, 𝑎) = 𝑇 (∣ 𝑠(), 𝑎) [(𝑠(), 𝑎,) + 𝛾 𝑂(∣ 𝑎,) (⟨ , 𝑎, , ⟩)]𝑄𝜋
𝑖 ℎ ̂ ∑

𝑠′

𝑠 ′ ℎ ̂ 𝑅 𝑖 ℎ ̂ 𝑠 ′

∑
𝑜′

𝑜′ 𝑠 ′ 𝑉 𝜋
𝑖 ℎ ̂ 𝑠 ′ 𝑜′

(𝜋) = [(⟨ , ⟩)]𝑈𝑖 𝔼 ∼𝜇, ∼𝑂(⋅∣∅,)𝑠0 𝑜0 𝑠0 𝑉 𝜋
𝑖 𝑠0 𝑜0

Finite state space

Per-agent action sets and observation sets

Observation function:

Transition function:

Reward function:

Policies: depend on the observation history

6.2.4 POSG Environment Assumptions

𝑆

𝐴𝑖 𝑂𝑖

(| ,)𝑂𝑖 𝑜𝑖 𝑎𝑡−1 𝑠 𝑡

𝑇 (|𝑠, 𝑎)𝑠 ′

(𝑠, 𝑎,)𝑅 𝑖 𝑠 ′

(|)𝜋𝑖 𝑎𝑖 ℎ𝑡
𝑖 = (, … ,)ℎ𝑡

𝑖 𝑜0𝑖 𝑜𝑡
𝑖

We simulate multiple episodes (trajectories), each consisting of:

1. Sampling initial state

2. Sampling observations

3. Iteratively choosing actions using policies

4. Sampling next states, rewards, and observations

5. Accumulating discounted rewards per agent

Finally, we compute the average return over episodes.

6.2.5 Simulation Approachkeyboard_arrow_down

∼ 𝜇𝑠0
∼ (⋅|∅,)𝑜0𝑖 𝑂𝑖 𝑠0

(|)𝜋𝑖 𝑎𝑖 ℎ𝑡
𝑖

(𝜋)𝑈𝑖

S = ['s0', 's1', 's2']
A1 = ['a1', 'a2']
A2 = ['b1', 'b2']
O1 = ['x', 'y']
O2 = ['u', 'v']
gamma = 0.95

T = {
 ('s0', ('a1', 'b1')): {'s1': 0.7, 's2': 0.3},
 ('s0', ('a2', 'b1')): {'s1': 1.0},
 ('s1', ('a1', 'b2')): {'s2': 1.0},
 ('s2', ('a2', 'b2')): {'s0': 1.0},
}
default_T = lambda s, a: {s: 1.0}

R1 = defaultdict(lambda: 0, {
 ('s0', ('a1', 'b1'), 's1'): 1,
 ('s0', ('a2', 'b1'), 's1'): 0.5,
 ('s1', ('a1', 'b2'), 's2'): 2,
})
R2 = defaultdict(lambda: 0, {
 ('s0', ('a1', 'b1'), 's1'): 1,
 ('s0', ('a2', 'b1'), 's1'): 0,
 ('s1', ('a1', 'b2'), 's2'): 3,
})

def obs_fn_i(agent, s, a_prev):
 if agent == 1:
 return np.random.choice(O1, p=[0.8, 0.2]) if s == 's0' else np.random.choice(O1, p=[0.5, 0.5
 else:
 return np.random.choice(O2, p=[0.6, 0.4]) if s == 's1' else np.random.choice(O2, p=[0.3, 0.7

def policy1(history):
 return 'a1' if history[-1] == 'x' else 'a2'

def policy2(history):
 return 'b1' if history[-1] == 'u' else 'b2'

def sample_initial_state():
 return 's0'

def run_episode(max_steps=10):
 s = sample_initial_state()
 h1, h2 = [], []
 total_r1, total_r2 = 0, 0
 gamma_t = 1.0
 a_prev = None

 for t in range(max_steps):
 o1 = obs_fn_i(1, s, a_prev)
 o2 = obs_fn_i(2, s, a_prev)
 h1.append(o1)
 h2.append(o2)

 a1 = policy1(h1)
 a2 = policy2(h2)
 joint_a = (a1, a2)

 trans_probs = T.get((s, joint_a), default_T(s, joint_a))
 s_next = random.choices(list(trans_probs.keys()), list(trans_probs.values()))[0]

 r1 = R1[(s, joint_a, s_next)]
 r2 = R2[(s, joint_a, s_next)]
 total_r1 += gamma_t * r1
 total_r2 += gamma_t * r2

 gamma_t *= gamma
 s = s_next
 a_prev = joint_a

 return total_r1, total_r2

def estimate_expected_returns(n_episodes=1000):
 rewards1, rewards2 = [], []
 for _ in range(n_episodes):
 r1, r2 = run_episode()
 rewards1.append(r1)
 rewards2.append(r2)
 return np.mean(rewards1), np.mean(rewards2)

U1_pi, U2_pi = estimate_expected_returns(1000)
print(f"Estimated U1(π): {U1_pi:.3f}")
print(f"Estimated U2(π): {U2_pi:.3f}")

Estimated U1(π): 1.768
Estimated U2(π): 2.156

In multi-agent games, the best response defines the optimal behavior for a single agent assuming that the strategies

of all other agents are fixed.

Let the joint policy be denoted as:

Then, the set of policies for all agents except agent is:

The best response of agent to is the policy that maximizes the expected return of agent under the joint

policy:

6.3 Best Responsekeyboard_arrow_down

𝜋 = (, … , , … ,)𝜋1 𝜋𝑖 𝜋𝑛

𝑖

= (, … , , , … ,)𝜋−𝑖 𝜋1 𝜋𝑖−1 𝜋𝑖+1 𝜋𝑛

𝑖 𝜋−𝑖 𝜋𝑖 𝑖

() = arg (,)BR𝑖 𝜋−𝑖 max
𝜋𝑖

𝑈𝑖 𝜋𝑖 𝜋−𝑖

In normal-form games, the best response often reduces to picking the highest-reward action based on known or

observed opponent strategies.

For example, in Rock-Paper-Scissors, if agent 2 always plays Rock, then agent 1's best response is to always play

Paper.

6.3.1 Best Response in Matrix (Normal-Form) Games

Best responses are central to many game-theoretic and learning algorithms:

Nash Equilibrium: Every agent plays a best response to the others

Fictitious Play: Agents iteratively respond to the empirical action history

Policy Optimization: Many MARL algorithms aim to approximate a best response under partial information

6.3.2 Applications of Best Response

Note: there may be multiple best-response policies. For instance, if two or more actions yield the same

expected return, then any stochastic mixture over them is also a valid best response.

6.3.3 Multiple Best Responseskeyboard_arrow_down

payoff_matrix = np.array([
 [0, -1, 1], # Rock
 [1, 0, -1], # Paper
 [-1, 1, 0] # Scissors
])

actions = ['Rock', 'Paper', 'Scissors']

pi_2 = np.array([0.5, 0.25, 0.25])

expected_returns = payoff_matrix @ pi_2

for i, action in enumerate(actions):
 print(f"Expected return of playing {action}: {expected_returns[i]:.2f}")

best_indices = np.argwhere(expected_returns == np.max(expected_returns)).flatten()
best_responses = [actions[i] for i in best_indices]
print(f"\nBest response(s): {best_responses}")

Expected return of playing Rock: 0.00
Expected return of playing Paper: 0.25
Expected return of playing Scissors: -0.25

Best response(s): ['Paper']

The minimax solution concept applies to two-agent zero-sum games, where one agent's gain is exactly the other's

loss. A canonical example is the Rock-Paper-Scissors game.

In such games, agents aim to maximize their expected return while assuming that their opponent is acting to

minimize it. The result is a strategy that performs best against the worst-case opponent.

6.4 Minimaxkeyboard_arrow_down

6.4.1 Definition (Minimax Solution)

Let agent and agent be players in a two-agent zero-sum game. A minimax solution is a joint policy

that satisfies:

Where:

 is the expected return for agent under joint policy

 (by zero-sum assumption)

𝑖 𝑗 𝜋 = (,)𝜋𝑖 𝜋𝑗

(𝜋) = (,) = (,)𝑈𝑖 max
𝜋′

𝑖

min
𝜋′

𝑗

𝑈𝑖 𝜋′
𝑖 𝜋

′
𝑗 min

𝜋′

𝑗

max
𝜋′

𝑖

𝑈𝑖 𝜋′
𝑖 𝜋

′
𝑗

(𝜋)𝑈𝑖 𝑖 𝜋

(𝜋) = − (𝜋)𝑈𝑗 𝑈𝑖

Maxmin: Agent chooses a policy that maximizes the minimum expected return they can guarantee, no matter

what the opponent does.

Minmax: Agent chooses a policy that minimizes the maximum payoff agent can achieve.

In a minimax solution, these two values are equal. Neither agent can benefit by unilaterally changing their policy.

6.4.2 Interpretation

𝑖

𝑗 𝑖

A joint policy is a minimax solution if and only if:

That is, both are best responses to each other.

6.4.3 Best Response Interpretation

(,)𝜋𝑖 𝜋𝑗

∈ ()𝜋𝑖 BR𝑖 𝜋𝑗

∈ ()𝜋𝑗 BR𝑗 𝜋𝑖

In Rock-Paper-Scissors, the minimax solution is for both agents to play uniformly at random:

This yields an expected return of 0 for both agents. Any deviation from the uniform strategy can be exploited by the

opponent.

6.4.4 Example: Rock-Paper-Scissorskeyboard_arrow_down

= = [, ,]𝜋𝑖 𝜋𝑗
1
3

1
3

1
3

payoff_matrix = np.array([
 [0, -1, 1], # Rock
 [1, 0, -1], # Paper
 [-1, 1, 0] # Scissors
])

uniform_policy = np.array([1/3, 1/3, 1/3])

expected_return = uniform_policy @ payoff_matrix @ uniform_policy.T

print(f"Expected return for agent 1 (uniform vs uniform): {expected_return:.2f}")

actions = ['Rock', 'Paper', 'Scissors']
for i, action in enumerate(actions):
 opponent_policy = np.zeros(3)
 opponent_policy[i] = 1.0
 reward = uniform_policy @ payoff_matrix @ opponent_policy
 print(f"Agent 1 expected return vs Agent 2 always playing {action}: {reward:.2f}")

Expected return for agent 1 (uniform vs uniform): 0.00
Agent 1 expected return vs Agent 2 always playing Rock: 0.00
Agent 1 expected return vs Agent 2 always playing Paper: 0.00
Agent 1 expected return vs Agent 2 always playing Scissors: 0.00

For non-repeated two-agent zero-sum normal-form games, the minimax solution can be found by solving a linear

program (LP). Each agent solves a linear program that minimizes the opponent's expected reward under the

assumption of worst-case behavior.

6.5 Minimax Solution via Linear Programmingkeyboard_arrow_down

Let agent be the opponent. Agent solves the following LP:

Variables:

: Probability of selecting action

: The expected return of agent , which is minimized

Objective:

Constraints:

1. For each opponent action :

This ensures no pure strategy of the opponent yields more than

2. Valid probability distribution:

This process yields the minimax policy for agent , and a similar LP can be constructed for agent by swapping

indices.

6.5.1 Linear Program for Agent 𝑖

𝑗 𝑖

𝑥𝑎𝑖
∈𝑎𝑖 𝐴𝑖

𝑈 ∗
𝑗 𝑗

 min
𝑥

𝑈 ∗
𝑗

∈𝑎𝑗 𝐴𝑗

(,) ⋅ ≤∑
∈𝑎𝑖 𝐴𝑖

𝑅 𝑗 𝑎𝑖 𝑎𝑗 𝑥𝑎𝑖
𝑈 ∗

𝑗

𝑈 ∗
𝑗

≥ 0 ∀ ∈𝑥𝑎𝑖
𝑎𝑖 𝐴𝑖

= 1∑
∈𝑎𝑖 𝐴𝑖

𝑥𝑎𝑖

𝑖 𝑗

We solve the minimax policy for the row player (agent 1) using the column player's reward matrix .

6.5.2 Example: Rock-Paper-Scissorskeyboard_arrow_down

= −𝑅2 𝑅1

R1 = np.array([
 [0, -1, 1],
 [1, 0, -1],
 [-1, 1, 0]
])

R2 = -R1
n_actions = R1.shape[0]
c = [0] * n_actions + [1]

A_ub = []
b_ub = []

for col in range(n_actions):
 constraint = list(R2[:, col]) + [-1]
 A_ub.append(constraint)
 b_ub.append(0)

A_eq = [[1] * n_actions + [0]]
b_eq = [1]

bounds = [(0, 1)] * n_actions + [(None, None)]
result = linprog(c=c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs')

if result.success:
 policy = result.x[:-1]
 game_value = result.x[-1]
 print("Minimax Policy for Agent 1 (Row Player):", np.round(policy, 4))
 print("Game Value (Expected reward to Agent 2):", round(game_value, 4))
else:
 print("Linear program failed:", result.message)

Minimax Policy for Agent 1 (Row Player): [0.3333 0.3333 0.3333]
Game Value (Expected reward to Agent 2): -0.0

The Nash equilibrium is a foundational solution concept in game theory. It defines a joint policy in which no agent can

unilaterally change their strategy to increase their expected return, assuming the policies of others remain fixed.

6.6 Nash Equilibriumkeyboard_arrow_down

A joint policy is a Nash equilibrium if:

In other words, for every agent , the policy is a best response to the policies of all other agents .

6.6.1 Definition

𝜋 = (, … ,)𝜋1 𝜋𝑛

∀𝑖, (,) ≤ (𝜋)𝜋′
𝑖 𝑈𝑖 𝜋′

𝑖 𝜋−𝑖 𝑈𝑖

𝑖 𝜋𝑖 𝜋−𝑖

Every finite normal-form game has at least one Nash equilibrium (Nash, 1950).

A Nash equilibrium can be deterministic (pure) or probabilistic (mixed).

Generalization: Minimax equilibria in zero-sum games are special cases of Nash equilibria.

Multiple equilibria may exist, each yielding different expected returns.

6.6.2 Properties

Prisoner's Dilemma:

Only equilibrium: Both defect

Coordination Game:

Three equilibria: (A, A), (B, B), or 50-50 mixed

Rock-Paper-Scissors:

Only equilibrium: Each action with probability

6.6.3 Examples

1
3

To verify if a given joint policy is a Nash equilibrium:

1. Fix the policies of all other agents.

2. Compute the best response for agent .

3. Check whether .

If this is true for all agents , then is a Nash equilibrium.

6.6.4 Check for Nash Equilibrium

𝜋

𝜋−𝑖

𝜋′
𝑖 𝑖

(,) ≤ (𝜋)𝑈𝑖 𝜋′
𝑖 𝜋−𝑖 𝑈𝑖

𝑖 𝜋

6.6.5 Computing Equilibriakeyboard_arrow_down

Nash equilibria can be computed using:

Support enumeration (for small matrix games)

Lemke-Howson algorithm (for 2-player games)

Linear programming (in zero-sum cases)

Reinforcement learning (for sequential/stochastic settings)

A = np.array([
 [10, 0],
 [0, 10]
])

B = np.array([
 [10, 0],
 [0, 10]
])

game = nash.Game(A, B)

equilibria = list(game.support_enumeration())

print("Nash Equilibria (mixed strategies):")
for eq in equilibria:
 print(f"Agent 1: {np.round(eq[0], 3)} \t Agent 2: {np.round(eq[1], 3)}")

σ1, σ2 = equilibria[0]
u1 = game[σ1, σ2][0]
u2 = game[σ1, σ2][1]
print(f"\nExpected payoff: Agent 1 = {u1}, Agent 2 = {u2}")

Nash Equilibria (mixed strategies):
Agent 1: [1. 0.] Agent 2: [1. 0.]
Agent 1: [0. 1.] Agent 2: [0. 1.]
Agent 1: [0.5 0.5] Agent 2: [0.5 0.5]

Expected payoff: Agent 1 = 10.0, Agent 2 = 10.0

A strict Nash equilibrium requires that no agent can unilaterally improve their expected return by deviating from their

strategy.

However, in practical settings, this condition may be:

Impossible to represent: Exact equilibria can require irrational numbers

Too costly: Computing strict equilibria is often computationally expensive

To address this, we consider the -Nash equilibrium, which relaxes the definition by tolerating small deviations.

6.7 -Nash Equilibriumkeyboard_arrow_down 𝜖

𝜖

A joint policy is an -Nash equilibrium if for all agents and all alternative strategies :

This means no agent can gain more than in expected return by deviating.

When , we recover the classic Nash equilibrium.

For , the agents are almost optimal, but minor improvements are possible.

6.7.1 Definition

𝜋 = (, . . . ,)𝜋1 𝜋𝑛 𝜖 𝑖 𝜋′
𝑖

(,) − 𝜖 ≤ (𝜋)𝑈𝑖 𝜋′
𝑖 𝜋−𝑖 𝑈𝑖

𝜖

𝜖 = 0
𝜖 > 0

6.7.2 Important Notes

An -Nash equilibrium is not necessarily close to a real Nash equilibrium in terms of expected return.

There may be no nearby exact Nash equilibrium, even when is small.

These equilibria are useful for approximations, especially in large or continuous games.

𝜖

𝜖

Consider this matrix game:

C D

A 100,100 0,0

B 1,2 1,1

The only Nash equilibrium is (A, C), with high rewards.

But (B, D) is a 1-Nash equilibrium: agent 2 could deviate to C and gain at most 1.

Thus, (B, D) satisfies the relaxed condition but is not close to the actual equilibrium in payoff terms.

6.7.3 Example: Coordination Game

To check whether a joint policy is an -Nash equilibrium:

1. Fix all other agents’ policies:

2. Compute agent ’s best response

3. Check if:

If true for all agents , then is an -Nash equilibrium.

6.7.4 Checking -Nash Equilibriakeyboard_arrow_down 𝜖

𝜋 𝜖

𝜋−𝑖

𝑖 𝜋′
𝑖

(,) − 𝜖 ≤ (𝜋)𝑈𝑖 𝜋′
𝑖 𝜋−𝑖 𝑈𝑖

𝑖 𝜋 𝜖

A = np.array([
 [100, 0], # A
 [1, 1] # B
])

B = np.array([
 [100, 0], # A
 [2, 1] # B
])

epsilon = 1.0

row_strategy = np.array([0.0, 1.0])
col_strategy = np.array([0.0, 1.0])

u1 = row_strategy @ A @ col_strategy.T
u2 = row_strategy @ B @ col_strategy.T

best_response_row = np.argmax(A @ col_strategy.T)
best_response_col = np.argmax(B.T @ row_strategy.T)

br1_util = A[best_response_row] @ col_strategy.T
br2_util = row_strategy @ B[:, best_response_col]

print(f"Agent 1: u1 = {u1}, BR = {br1_util}")
print(f"Agent 2: u2 = {u2}, BR = {br2_util}")

is_epsilon_nash = (br1_util - u1 <= epsilon) and (br2_util - u2 <= epsilon)

print(f"\nIs (B, D) a {epsilon}-Nash equilibrium? {'Yes' if is_epsilon_nash else 'No'}")

Agent 1: u1 = 1.0, BR = 1.0
Agent 2: u2 = 1.0, BR = 2.0

Is (B, D) a 1.0-Nash equilibrium? Yes

A Nash equilibrium requires that agents act independently. However, agents may achieve better coordination and

higher rewards by correlating their actions.

Correlated equilibrium (Aumann, 1974) extends Nash equilibrium by allowing action recommendations drawn from a

joint distribution. Agents are then expected to follow their recommended action, assuming others will do the same.

6.8 Correlated and Coarse Correlated Equilibriumkeyboard_arrow_down

Let be a joint policy over actions . Then, is a correlated equilibrium if for every agent and every

action modification function :

Interpretation:

Each agent knows its own recommendation from .

It assumes others follow their recommendations .

Agent checks if it could improve by deviating to another action .

If no beneficial deviation exists, it's a CE.

6.8.1 Correlated Equilibrium (CE)

(𝑎)𝜋𝑐 𝑎 ∈ 𝐴 𝜋𝑐 𝑖 ∈ 𝐼

: →𝜉𝑖 𝐴𝑖 𝐴𝑖

(𝑎) ((),) ≤ (𝑎) (𝑎)∑
𝑎∈𝐴

𝜋𝑐 𝑅 𝑖 𝜉𝑖 𝑎𝑖 𝑎−𝑖 ∑
𝑎∈𝐴

𝜋𝑐 𝑅 𝑖

𝑎𝑖 𝜋𝑐

𝑎−𝑖

𝑖 ()𝜉𝑖 𝑎𝑖

S L

S 0,0 7,2

L 2,7 6,6

Joint policy:

Expected return for both agents:

Neither agent benefits from deviating, so this is a correlated equilibrium.

6.8.2 Example: Chicken Game

(𝑆, 𝐿) = (𝐿, 𝑆) = (𝐿, 𝐿) =𝜋𝑐 𝜋𝑐 𝜋𝑐
1
3

(𝑆, 𝑆) = 0𝜋𝑐

7 ⋅ + 2 ⋅ + 6 ⋅ = 5
1
3

1
3

1
3

CCE is a weaker version of CE. The difference:

In CE: agent sees its recommended action and considers deviations.

In CCE: agent decides whether to follow or use a fixed action, before seeing its recommendation.

Formally, is a CCE if for all and constant actions :

6.8.3 Coarse Correlated Equilibrium (CCE)

𝜋𝑐

𝜋𝑐 𝑖 𝑎′
𝑖

(𝑎) (𝑎) ≥ (𝑎) (,)∑
𝑎∈𝐴

𝜋𝑐 𝑅 𝑖 ∑
𝑎∈𝐴

𝜋𝑐 𝑅 𝑖 𝑎′
𝑖 𝑎−𝑖

Nash equilibrium ⊆ Correlated equilibrium ⊆ Coarse correlated equilibrium

6.8.4 Hierarchy

Correlated equilibrium allows shared signals (e.g., traffic light coordination). Coarse correlated equilibrium only

requires agents to commit ahead of time.

In sequential settings, CE definitions can:

Reveal entire policies or partial instructions

Depend on state, observations, or history

Include commitment mechanisms

Handle deviations with penalties or policy revocation

These more advanced CE forms appear in Dec-POMDPs and advanced multi-agent planning.

6.8.5 Extension to Sequential Gameskeyboard_arrow_down

R1 = np.array([
 [0, 7], # Agent 1: S, L
 [2, 6]
])

R2 = np.array([
 [0, 2], # Agent 2: S, L
 [7, 6]
])

pi_c = np.array([
 [0.0, 1/3], # (S, S), (S, L)
 [1/3, 1/3] # (L, S), (L, L)
])

U1 = np.sum(pi_c * R1)
U2 = np.sum(pi_c * R2)

p_S = pi_c[1, 0] / (pi_c[1, 0] + pi_c[1, 1])
p_L = pi_c[1, 1] / (pi_c[1, 0] + pi_c[1, 1])

L_payoff = 2 * p_S + 6 * p_L
S_payoff = 0 * p_S + 7 * p_L

print(f"Expected payoff for agent 1 if following L: {L_payoff}")
print(f"Expected payoff if deviating to S instead: {S_payoff}")
print(f"Correlated equilibrium condition satisfied? {L_payoff >= S_payoff}")

Expected payoff for agent 1 if following L: 4.0
Expected payoff if deviating to S instead: 3.5
Correlated equilibrium condition satisfied? True

While equilibrium-based approaches—particularly Nash equilibrium—are widely used in multi-agent reinforcement

learning (MARL), they come with important conceptual limitations that affect both their applicability and performance

in practical settings.

6.9 Conceptual Limitations of Equilibrium Solutionskeyboard_arrow_down

An equilibrium solution only ensures that each agent is playing a best response to the others' strategies. It does not

guarantee that the joint outcome is optimal in terms of expected return.

Example: Prisoner's Dilemma

The Nash equilibrium is (D, D) with returns -3 for both agents.

6.9.1 Sub-optimality

The joint action (C, C) gives -1 each, which is strictly better.

However, (C, C) is not a Nash equilibrium because each agent has an incentive to deviate.

Example: Chicken Game

The correlated equilibrium yields a return of 5 to each agent.

The joint action (L, L) gives 6 to both agents.

However, (L, L) is not a correlated or Nash equilibrium.

Equilibrium solutions are often not unique—multiple equilibria can exist with varying implications for agents' payoffs.

In the Chicken game, there are:

Two deterministic Nash equilibria (asymmetric payoffs: (7, 2) and (2, 7))

One probabilistic equilibrium with equal payoffs (≈ 4.66, 4.66)

A correlated equilibrium with payoffs (5, 5)

This raises the question:

Which equilibrium should agents adopt?

This is known as the equilibrium selection problem.

In self-play MARL, agents learn simultaneously and often converge to different equilibria depending on

initialization, learning rates, or update rules.

Equilibrium selection is a major topic in game theory, and in MARL it often requires:

Coordination strategies

Communication protocols

Social welfare metrics (see Sections 4.8 & 4.9)

6.9.2 Non-uniqueness

In sequential games, a joint policy π does not define behavior on paths that are off-equilibrium, i.e., paths that occur

with zero probability under π.

Such paths may still arise due to noise, exploration, or unexpected deviations.

Equilibrium solutions provide no guidance for returning to the equilibrium trajectory.

This problem is especially acute in long-horizon or continuous control tasks.

To resolve this, game theory offers refinements:

Subgame Perfect Equilibrium: Ensures optimal behavior in

6.9.3 Incompleteness

In multi-agent settings, equilibrium solutions may not be socially desirable. For instance, agents may settle in a stable

joint policy (equilibrium) that yields poor returns for all involved. Pareto optimality is a powerful concept used to refine

such equilibria by eliminating joint policies that could be improved for at least one agent without harming others.

6.10 Pareto Optimalitykeyboard_arrow_down

A joint policy is Pareto-dominated by another joint policy if:

:

:

6.10.1 Definition

𝜋 𝜋′

∀𝑖 () ≥ (𝜋)𝑈𝑖 𝜋
′ 𝑈𝑖

∃𝑖 () > (𝜋)𝑈𝑖 𝜋
′ 𝑈𝑖

A joint policy is Pareto-optimal if it is not Pareto-dominated by any other policy.

Pareto-optimal policies maximize returns for some agents without reducing the returns of others.

Every game has at least one Pareto-optimal policy.

In common-reward games, all Pareto-optimal policies yield the same maximum return.

In zero-sum games, all joint policies are Pareto-optimal by construction (since improving one agent necessarily

worsens the other).

6.10.2 Intuition

S (Stay) L (Leave)

S (0, 0) (7, 2)

L (2, 7) (6, 6)

6.10.3 Example: Chicken Game (Matrix Form)

We now visualize the space of feasible expected joint rewards and the Pareto frontier.

6.10.4 Pareto Frontier Visualizationkeyboard_arrow_down

payoffs = {
 ("S", "S"): (0, 0),
 ("S", "L"): (7, 2),
 ("L", "S"): (2, 7),
 ("L", "L"): (6, 6),
}
actions = ["S", "L"]

steps = 30
policy_range = np.linspace(0, 1, steps)
joint_rewards = []

for p1 in policy_range:
 for p2 in policy_range:
 pi1 = {"S": p1, "L": 1 - p1}
 pi2 = {"S": p2, "L": 1 - p2}
 expected_r1 = 0
 expected_r2 = 0
 for a1 in actions:
 for a2 in actions:
 prob = pi1[a1] * pi2[a2]
 r1, r2 = payoffs[(a1, a2)]
 expected_r1 += prob * r1
 expected_r2 += prob * r2
 joint_rewards.append((expected_r1, expected_r2))

def is_pareto_efficient(points):
 points = np.array(points)
 is_efficient = np.ones(points.shape[0], dtype=bool)
 for i, c in enumerate(points):
 if is_efficient[i]:
 is_efficient[is_efficient] = np.any(points[is_efficient] > c, axis=1)
 is_efficient[i] = True
 return is_efficient

joint_rewards = np.array(joint_rewards)
pareto_mask = is_pareto_efficient(joint_rewards)

plt.figure(figsize=(8, 6))
plt.scatter(joint_rewards[:, 0], joint_rewards[:, 1], s=10, alpha=0.4, label="All Joint Returns")
plt.scatter(joint_rewards[pareto_mask][:, 0], joint_rewards[pareto_mask][:, 1], color="red", label="

plt.xlabel("Agent 1 Expected Reward")
plt.ylabel("Agent 2 Expected Reward")
plt.title("Pareto Frontier in Chicken Game")
plt.legend()
plt.grid(True)
plt.show()

Pareto optimality ensures no agent can be made better off without making another worse off. However, it does not

account for how well off the agents are together, or how evenly their rewards are distributed. This motivates social

welfare and fairness as additional solution criteria in general-sum games.

6.11 Social Welfare and Fairnesskeyboard_arrow_down

The social welfare of a joint policy is the sum of all agents' expected returns:

A policy is welfare-optimal if:

6.11.1 Social Welfare

𝜋

𝑊 (𝜋) = (𝜋)∑
𝑖∈𝐼

𝑈𝑖

𝜋

𝜋 ∈ arg 𝑊 ()max
𝜋′

𝜋′

The fairness of a joint policy is the product of all agents' expected returns:

A policy is fairness-optimal if:

6.11.2 Social Fairness (Nash Social Welfare)

𝜋

𝐹 (𝜋) = (𝜋)∏
𝑖∈𝐼

𝑈𝑖

𝜋

This formulation promotes equity: maximizing fairness encourages agents to have similar expected returns,

especially when total reward (welfare) is held constant.

𝜋 ∈ arg 𝐹 ()max
𝜋′

𝜋′

A B

A (10, 7) (2, 2)

B (0, 0) (7, 10)

This game represents coordination with asymmetric preferences: both agents want to meet, but have different

favorite locations.

6.11.3 Example: Battle of the Sexes

The following visualization shows:

Feasible joint rewards as dots.

Pareto-optimal policies as red squares.

Fairness-optimal policies as purple diamonds.

Nash equilibria as blue triangles.

6.11.4 Visualization: Welfare and Fairnesskeyboard_arrow_down

payoffs = {
 ("A", "A"): (10, 7),
 ("A", "B"): (2, 2),
 ("B", "A"): (0, 0),
 ("B", "B"): (7, 10),
}
actions = ["A", "B"]

steps = 50
policy_range = np.linspace(0, 1, steps)
joint_rewards = []

for p1 in policy_range:
 for p2 in policy_range:
 pi1 = {"A": p1, "B": 1 - p1}
 pi2 = {"A": p2, "B": 1 - p2}
 r1, r2 = 0, 0
 for a1 in actions:
 for a2 in actions:
 prob = pi1[a1] * pi2[a2]
 u1, u2 = payoffs[(a1, a2)]
 r1 += prob * u1
 r2 += prob * u2
 welfare = r1 + r2
 fairness = r1 * r2
 joint_rewards.append((r1, r2, welfare, fairness))

joint_rewards = np.array(joint_rewards)
welfare_vals = joint_rewards[:, 2]
fairness_vals = joint_rewards[:, 3]

def is_pareto(points):
 points = np.array(points)
 is_efficient = np.ones(points.shape[0], dtype=bool)
 for i, c in enumerate(points):
 if is_efficient[i]:
 is_efficient[is_efficient] = np.any(points[is_efficient] > c, axis=1)
 is_efficient[i] = True

 return is_efficient

pareto_mask = is_pareto(joint_rewards[:, :2])
fairness_best = np.argmax(fairness_vals)
nash_points = [(10, 7), (7, 10), (4.66, 4.66)] # Theoretical Nash outcomes

plt.figure(figsize=(8, 6))
plt.scatter(joint_rewards[:, 0], joint_rewards[:, 1], alpha=0.2, s=10, label="All Joint Returns")
plt.scatter(joint_rewards[pareto_mask, 0], joint_rewards[pareto_mask, 1], color="red", label="Pareto
plt.scatter(joint_rewards[fairness_best, 0], joint_rewards[fairness_best, 1], color="purple", marker
for x, y in nash_points:
 plt.scatter(x, y, color="blue", marker="^", s=60, label="Nash Equilibrium")
plt.xlabel("Agent 1 Expected Reward")
plt.ylabel("Agent 2 Expected Reward")
plt.title("Welfare and Fairness in Battle of the Sexes")
plt.legend()
plt.grid(True)
plt.show()

All previous solution concepts in this chapter — Nash, minimax, correlated equilibrium, etc. — are static, in the sense

that they characterize a fixed joint policy. In contrast, the no-regret solution concept is dynamic: it evaluates how well

agents perform over time during learning.

6.12 No-Regretkeyboard_arrow_down

Let be the joint action in episode for . The regret of agent over episodes is:

6.12.1 Definition: Regret

𝑎𝑒 𝑒 𝑒 = 1,… , 𝑧 𝑖 𝑧

= [(⟨ , ⟩) − ()]Regret𝑧𝑖 max
∈𝑎𝑖 𝐴𝑖

∑
𝑒=1

𝑧

𝑅 𝑖 𝑎𝑖 𝑎𝑒
−𝑖 𝑅 𝑖 𝑎𝑒

Agent compares its actual rewards to the rewards it could have gotten by consistently playing the best fixed action in

hindsight.

𝑖

Agent has no regret if the average regret tends to zero:

This definition can be relaxed to -no-regret by replacing with a small .

6.12.2 No-Regret Condition

𝑖

≤ 0lim
𝑧→∞

1
𝑧
Regret𝑧𝑖

𝜖 0 𝜖 > 0

Episode

1 C C -1 -1 0

2 C D -5 -5 -3

3 D C 0 -1 0

4 C D -5 -5 -3

5 D D -3 -5 -3

6 D D -3 -5 -3

7 C C -1 -1 0

8 D C 0 -1 0

9 D D -3 -5 -3

10 D C 0 -1 0

Agent 1's actual reward sum: -21

Best fixed action in hindsight: Always D, which yields: -15

So, ⇒ average regret = 0.6

6.12.3 Example: Prisoner's Dilemma (Empirical Regret)

𝑒 𝑎𝑒1 𝑎𝑒2

𝑅 1
(𝑎𝑒

)

𝑅 1
(𝐶,
𝑎𝑒2
)

𝑅 1
(𝐷,
𝑎𝑒2
)

= −15 − (−21) = 6Regret101

For sequential games, the regret is computed over policies rather than actions:

Let be the set of policies for agent , and let be the joint policy in episode . Then,

6.12.4 No-Regret in General Game Models

Π𝑖 𝑖 𝜋𝑒 𝑒

= [(⟨ , ⟩) − ()]Regret𝑧𝑖 max
∈𝜋𝑖 Π𝑖

∑
𝑒=1

𝑧

𝑈𝑖 𝜋𝑖 𝜋
𝑒
−𝑖 𝑈𝑖 𝜋

𝑒

Assumes fixed opponents: Regret compares against counterfactuals assuming others do not change their

behavior — which may not be valid in practice.

Minimizing regret is not equivalent to maximizing returns.

In Prisoner's Dilemma, always defecting (D) has no regret — but both players end up with low returns.

Different types of regret exist:

External Regret: Replace all past actions with one best alternative.

Internal (Conditional) Regret: Swap individual action occurrences (more fine-grained).

6.12.5 Limitations

No external regret ⇒ joint action distributions converge to coarse correlated equilibria.

No internal regret ⇒ convergence to correlated equilibria (Hart & Mas-Colell, 2000).

6.12.6 Relation to Equilibria

Concept Definition Target Behavior

External Regret Best constant action in hindsight Coarse Correlated Equilibrium

Internal Regret Conditional swap of individual actions Correlated Equilibrium

No-Regret Regret over time Decentralized Learning Stability

-No-Regret Regret Approximate Learning Convergence

No-regret learning captures the long-term rationality of agents across repeated interactions - a

cornerstone of adaptive MARL algorithms.

6.12.7 Summary Tablekeyboard_arrow_down

→ 0

𝜖 ≤ 𝜖

payoff_matrix = np.array([
 [-1, -5], # Agent 1 plays C
 [0, -3] # Agent 1 plays D
])

agent1_actions = [0, 0, 1, 0, 1, 1, 0, 1, 1, 1] # C=0, D=1
agent2_actions = [0, 1, 0, 1, 1, 1, 0, 0, 1, 0]

actual_rewards = [payoff_matrix[a1, a2] for a1, a2 in zip(agent1_actions, agent2_actions)]
cumulative_actual_reward = np.cumsum(actual_rewards)

counterfactual_C = [payoff_matrix[0, a2] for a2 in agent2_actions]
counterfactual_D = [payoff_matrix[1, a2] for a2 in agent2_actions]

regret_C = np.cumsum(counterfactual_C) - cumulative_actual_reward
regret_D = np.cumsum(counterfactual_D) - cumulative_actual_reward

external_regret = np.maximum(regret_C, regret_D)

Plotting
plt.plot(external_regret, label="External Regret")
plt.xlabel("Episode")
plt.ylabel("Cumulative Regret")
plt.title("Agent 1's External Regret Over Episodes")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice notebook provides a comprehensive introduction to single-agent reinforcement learning (RL),

focusing on the fundamental algorithms and principles that underpin modern RL research and applications.

Students will begin by exploring the basic components of RL, including agents, environments, and the

mathematical framework of Markov Decision Processes. Through hands-on implementation, the notebook guides

students from classic Q-learning to advanced deep RL techniques, such as Deep Q-Networks (DQN) and Proximal

Policy Optimization (PPO). Practical coding exercises and simulation environments reinforce theoretical concepts

and demonstrate how RL agents learn to solve sequential decision problems autonomously. By the end of this

practice, students will have acquired both the intuition and technical skills necessary to design, implement, and

evaluate single-agent reinforcement learning solutions.

7. Practice - Introduction to Single-Agent Reinforcement Learningkeyboard_arrow_down

7.1 Overview of Reinforcement Learning

7.1.1 Exploration vs. Exploitation in Reinforcement Learning

7.2 Q-Learning

7.2.1 How It Works

7.2.2 Algorithm Steps

7.3 Deep Q-Learning

7.3.1 How It Works

7.3.2 Algorithm Steps

7.3.3 Implementation Tips

7.4 Proximal Policy Optimization (PPO)

7.4.1 How It Works

7.4.2 Algorithm Steps

Table of Contents

7.4.3 Implementation Tips

References

A Markov Decision Process (MDP) is a mathematical framework used to model decision-making in situations

where outcomes are partly random and partly under the control of an agent. An MDP is defined by the tuple ((S, A,

P, R, \gamma)):

: A set of states representing all possible configurations of the environment.

: A set of actions available to the agent.

: The state transition probability, defining the probability of moving to state after taking action

 in state .

: A reward function, which assigns a scalar value for taking action in state .

: A discount factor that determines the importance of future rewards.

In an MDP, the Markov property assumes that the next state depends only on the current state and action, not on

the sequence of past states. MDPs are widely used in reinforcement learning to model environments and solve

sequential decision-making problems.

7.1 Overview of Reinforcement Learningkeyboard_arrow_down

𝑆

𝐴

𝑃 (|𝑠, 𝑎)𝑠 ′ 𝑠 ′

𝑎 𝑠

𝑅(𝑠, 𝑎) 𝑎 𝑠

𝛾 (0 ≤ 𝛾 ≤ 1)

Exploration and exploitation are two fundamental concepts in reinforcement learning that define how an agent

interacts with its environment to maximize rewards.

Exploration: Refers to the process of trying out new actions to gather more information about the

environment. This helps the agent discover better strategies and avoid local optima. For example, taking a

random action can help the agent learn about areas of the state space it hasn’t visited yet.

Exploitation: Involves selecting the best-known action based on the agent’s current knowledge to maximize

immediate rewards. This focuses on leveraging what the agent has already learned to achieve higher

performance.

A balance between exploration and exploitation is crucial for effective learning. Too much exploration can lead to

inefficiency, as the agent spends excessive time on suboptimal actions. On the other hand, over-exploitation might

cause the agent to miss out on discovering better strategies. Techniques like -greedy policies, upper confidence

bound (UCB), and Thompson sampling are commonly used to manage the exploration-exploitation tradeoff.

7.1.1 Exploration vs. Exploitation in Reinforcement Learning

𝜖

Q-Learning is a model-free reinforcement learning algorithm that learns the optimal action-value function

by iteratively updating estimates based on observed rewards and transitions. Unlike policy-based methods, Q-

learning focuses on learning the value of actions and deriving a policy indirectly through action selection.

7.2 Q-Learningkeyboard_arrow_down

𝑄(𝑠, 𝑎)

1. Q-Table Initialization:

The agent maintains a table that stores the estimated value of taking action in state .

Initially, all Q-values are set arbitrarily (e.g., to 0).

2. Action Selection (ε-greedy):

At each time step, the agent selects an action using an ε-greedy strategy:

With probability , a random action is chosen (exploration).

Otherwise, it selects the action with the highest Q-value in the current state:

 (exploitation).

3. Transition and Update:

After taking action in state , the agent observes the reward and the next state .

The Q-value is updated using the Bellman equation:

4. Policy Derivation:

Once the Q-table has been sufficiently updated, the optimal policy is derived by selecting the action

with the highest Q-value in each state.

7.2.1 How It Works

𝑄(𝑠, 𝑎) 𝑎 𝑠

𝜀

arg 𝑄(𝑠, 𝑎)max𝑎

𝑎𝑡 𝑠 𝑡 𝑟𝑡 𝑠 𝑡+1

𝑄(,) ← 𝑄(,) + 𝛼 [+ 𝛾 𝑄(,) − 𝑄(,)]𝑠 𝑡 𝑎𝑡 𝑠 𝑡 𝑎𝑡 𝑟𝑡 max
𝑎′

𝑠 𝑡+1 𝑎′ 𝑠 𝑡 𝑎𝑡

1. Initialize:

Q-table with arbitrary values.

Set hyperparameters: learning rate , discount factor , and exploration rate .

2. For each episode:

Initialize the starting state .

3. For each step in the episode:

Choose action using ε-greedy strategy.

Execute action, observe reward and next state .

Update Q-value

4. Repeat:

Continue until the episode ends or convergence is reached.

7.2.2 Algorithm Stepskeyboard_arrow_down

𝑄(𝑠, 𝑎)
𝛼 𝛾 𝜀

𝑠0

𝑎𝑡

𝑟𝑡 𝑠 𝑡+1

import gymnasium
import numpy as np
env = gymnasium.make("FrozenLake-v1", is_slippery=False)

Create environment

Initialize Q-table
q_table = np.zeros((env.observation_space.n, env.action_space.n))

Hyperparameters
learning_rate = 0.01
discount_factor = 0.99
epsilon = 1.0

epsilon_decay = 0.99
num_episodes = 100000

Training loop
for episode in range(num_episodes):
 state ,info= env.reset()
 done = False
 while not done:
 # Epsilon-greedy action selection
 if np.random.random() < epsilon:
 action = env.action_space.sample()
 else:
 action = np.argmax(q_table[state])
 # Step through the environment
 next_state, reward, terminated, truncated, info = env.step(action)

 # Check if the episode is done
 done = terminated or truncated

 # Q-learning update
 q_table[state, action] = q_table[state, action] + learning_rate * (
 reward + discount_factor * np.max(q_table[next_state]) - q_table[state, action]
)

 state = next_state

 epsilon *= epsilon_decay

print("Training completed.")
print("Final Q-Table:")
print(q_table)

Training completed.
Final Q-Table:
[[5.16911799e-04 9.50990050e-01 7.21691201e-08 4.83236228e-03]
 [1.45125457e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.59405358e-06 9.60596010e-01 0.00000000e+00 1.47077574e-05]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [1.02579243e-05 0.00000000e+00 9.70299000e-01 9.29295941e-06]
 [9.59501299e-03 0.00000000e+00 9.80100000e-01 0.00000000e+00]
 [4.02572628e-03 9.90000000e-01 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 1.91958854e-02 1.00000000e+00 2.49938696e-03]
 [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]]

Evaluation loop
import time
env = gymnasium.make("FrozenLake-v1", is_slippery=False,render_mode="human")

state, info = env.reset()
done = False
total_reward = 0

print("Starting evaluation episode...")

while not done:
 # Choose the best action from Q-table
 action = np.argmax(q_table[state])

 # Display the action and the state
 print(f"State: {state}, Action: {action}")

 # Step through the environment
 next_state, reward, terminated, truncated, info = env.step(action)

 # Accumulate reward
 total_reward += reward

 # Render the environment for visualization (optional)
 env.render()
 time.sleep(0.1)
 # Check if the episode is done
 done = terminated or truncated
 state = next_state

print("Evaluation episode completed.")
print(f"Total Reward: {total_reward}")

Starting evaluation episode...
State: 0, Action: 1
State: 4, Action: 1
State: 8, Action: 2
State: 9, Action: 2
State: 10, Action: 1
State: 14, Action: 2
Evaluation episode completed.
Total Reward: 1.0

Deep Q-Learning (DQN) is a powerful reinforcement learning algorithm that extends Q-learning by using deep

neural networks to approximate the action-value function . It enables agents to learn effective policies in

high-dimensional or continuous state spaces, such as images or sensor inputs.

7.3 Deep Q-Learningkeyboard_arrow_down

𝑄(𝑠, 𝑎)

1. Q-Function Approximation:

A neural network approximates the Q-function, which estimates the expected return of taking

action in state and following the current policy thereafter.

2. Experience Replay:

The agent stores transitions in a replay buffer.

During training, it samples random minibatches to break correlation between sequential data and

stabilize learning.

3. Target Network:

A separate target network is used to generate stable targets for training.

7.3.1 How It Works

(𝑠, 𝑎)𝑄𝜃

𝑎 𝑠

(𝑠, 𝑎, 𝑟,)𝑠 ′

𝑄𝜃−

It is periodically updated to match the current Q-network:

4. Bellman Update:

The target for each transition is computed using the Bellman equation:

The network minimizes the loss:

5. Action Selection (ε-greedy):

The agent selects actions using an ε-greedy strategy:

With probability , choose a random action (exploration).

Otherwise, choose (exploitation).

← 𝜃𝜃−

𝑦 = 𝑟 + 𝛾 (,)max
𝑎′

𝑄𝜃− 𝑠
′ 𝑎′

𝐿(𝜃) = (𝑦 − (𝑠, 𝑎))𝑄𝜃
2

𝜀

arg (𝑠, 𝑎)max𝑎 𝑄𝜃

1. Initialize:

Q-network , target network

Replay buffer, ε-greedy parameters, learning rate, discount factor

2. For each episode:

Initialize environment and get initial state

3. For each step in the episode:

Select action using ε-greedy strategy.

Execute action, observe reward and next state

Store transition in replay buffer.

Sample minibatch of transitions from the buffer.

Compute targets

Update Q-network by minimizing the loss

4. Update Target Network:

Periodically set

5. Repeat:

Continue until convergence or maximum number of episodes is reached.

7.3.2 Algorithm Steps

𝑄𝜃 𝑄𝜃−

𝛾

𝑠0

𝑎𝑡

𝑟𝑡 𝑠 𝑡+1

(, , ,)𝑠 𝑡 𝑎𝑡 𝑟𝑡 𝑠 𝑡+1

← 𝜃𝜃−

Replay Buffer Size:

Use a large buffer to capture diverse experiences.

Target Network Update Frequency:

Update less frequently (e.g., every few hundred steps) to improve stability.

Reward Clipping:

Clip rewards (e.g., to) to stabilize training in environments with large reward magnitudes.

Frame Stacking:

For visual input (like in Atari), stack several recent frames as input to capture motion.

7.3.3 Implementation Tipskeyboard_arrow_down

[−1, 1]

import gymnasium as gym
import math
import random
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple, deque
from itertools import count

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

env = gym.make("CartPole-v1")

set up matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
 from IPython import display

plt.ion()

if GPU is to be used
device = torch.device(
 "cuda" if torch.cuda.is_available() else
 "mps" if torch.backends.mps.is_available() else
 "cpu"
)
print(device)

mps

Transition = namedtuple('Transition',
 ('state', 'action', 'next_state', 'reward'))

class ReplayMemory(object):
 def __init__(self, capacity):
 self.memory = deque([], maxlen=capacity)

 def push(self, *args):
 """Save a transition"""
 self.memory.append(Transition(*args))

 def sample(self, batch_size):
 return random.sample(self.memory, batch_size)

 def __len__(self):
 return len(self.memory)

class DQN(nn.Module):
 def __init__(self, n_observations, n_actions):
 super(DQN, self).__init__()
 self.layer1 = nn.Linear(n_observations, 128)
 self.layer2 = nn.Linear(128, 128)
 self.layer3 = nn.Linear(128, n_actions)

 def forward(self, x):
 x = F.relu(self.layer1(x))
 x = F.relu(self.layer2(x))
 return self.layer3(x)

BATCH_SIZE : The number of transitions sampled from the replay buffer at each learning step, determining

how many experiences are used to compute the loss.

GAMMA : The discount factor that weighs future rewards; a value closer to 1 emphasizes long-term rewards.

EPS_START : The initial value of epsilon in the ε-greedy policy, representing the probability of choosing a

random action at the beginning of training.

EPS_END : The minimum value epsilon can decay to, ensuring continued (but limited) exploration throughout

training.

EPS_DECAY : The rate at which epsilon decays exponentially; higher values result in slower decay, preserving

exploration for a longer time.

TAU : The soft update factor used to slowly blend parameters from the main network into the target network,

ensuring stable learning.

LR : The learning rate used by the AdamW optimizer to update the network parameters during training.

BATCH_SIZE = 128
GAMMA = 0.99
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 1000
TAU = 0.005
LR = 1e-4

Get number of actions from gym action space
n_actions = env.action_space.n
Get the number of state observations
state, info = env.reset()
n_observations = len(state)

policy_net = DQN(n_observations, n_actions).to(device)
target_net = DQN(n_observations, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())

optimizer = optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
memory = ReplayMemory(10000)

steps_done = 0

def select_action(state):
 global steps_done
 sample = random.random()
 eps_threshold = EPS_END + (EPS_START - EPS_END) * \
 math.exp(-1. * steps_done / EPS_DECAY)
 steps_done += 1
 if sample > eps_threshold:
 with torch.no_grad():
 # t.max(1) will return the largest column value of each row.
 # second column on max result is index of where max element was
 # found, so we pick action with the larger expected reward.
 return policy_net(state).max(1).indices.view(1, 1)
 else:
 return torch.tensor([[env.action_space.sample()]], device=device, dtype=torch.long)

episode_durations = []

def plot_durations(show_result=False):
 plt.figure(1)
 durations_t = torch.tensor(episode_durations, dtype=torch.float)
 if show_result:
 plt.title('Result')
 else:

 plt.clf()
 plt.title('Training...')
 plt.xlabel('Episode')
 plt.ylabel('Duration')
 plt.plot(durations_t.numpy())
 # Take 100 episode averages and plot them too
 if len(durations_t) >= 100:
 means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
 means = torch.cat((torch.zeros(99), means))
 plt.plot(means.numpy())

 plt.pause(0.001) # pause a bit so that plots are updated
 if is_ipython:
 if not show_result:
 display.display(plt.gcf())
 display.clear_output(wait=True)
 else:
 display.display(plt.gcf())

def optimize_model():
 if len(memory) < BATCH_SIZE:
 return
 transitions = memory.sample(BATCH_SIZE)
 batch = Transition(*zip(*transitions))

 non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
 batch.next_state)), device=device, dtype=torch.bool)
 non_final_next_states = torch.cat([s for s in batch.next_state
 if s is not None])
 state_batch = torch.cat(batch.state)
 action_batch = torch.cat(batch.action)
 reward_batch = torch.cat(batch.reward)

 state_action_values = policy_net(state_batch).gather(1, action_batch)

 next_state_values = torch.zeros(BATCH_SIZE, device=device)
 with torch.no_grad():
 next_state_values[non_final_mask] = target_net(non_final_next_states).max(1).values

 expected_state_action_values = (next_state_values * GAMMA) + reward_batch

 criterion = nn.SmoothL1Loss()
 loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))

 optimizer.zero_grad()
 loss.backward()

 torch.nn.utils.clip_grad_value_(policy_net.parameters(), 100)
 optimizer.step()

if torch.cuda.is_available() or torch.backends.mps.is_available():
 num_episodes = 600
else:
 num_episodes = 50

for i_episode in range(num_episodes):
 # Initialize the environment and get its state
 state, info = env.reset()
 state = torch.tensor(state, dtype=torch.float32, device=device).unsqueeze(0)
 for t in count():
 action = select_action(state)
 observation, reward, terminated, truncated, _ = env.step(action.item())

Complete

<Figure size 640x480 with 0 Axes>
<Figure size 640x480 with 0 Axes>

 reward = torch.tensor([reward], device=device)
 done = terminated or truncated

 if terminated:
 next_state = None
 else:
 next_state = torch.tensor(observation, dtype=torch.float32, device=device).unsqueeze

 # Store the transition in memory
 memory.push(state, action, next_state, reward)

 # Move to the next state
 state = next_state

 # Perform one step of the optimization (on the policy network)
 optimize_model()

 # Soft update of the target network's weights
 # θ′ ← τ θ + (1 −τ)θ′
 target_net_state_dict = target_net.state_dict()
 policy_net_state_dict = policy_net.state_dict()
 for key in policy_net_state_dict:
 target_net_state_dict[key] = policy_net_state_dict[key]*TAU + target_net_state_dict[
 target_net.load_state_dict(target_net_state_dict)

 if done:
 episode_durations.append(t + 1)
 plot_durations()
 break

print('Complete')
plot_durations(show_result=True)
plt.ioff()
plt.show()

Source for the DQN implementation Torch documentation

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Ftutorials%2Fintermediate%2Freinforcement_q_learning.html

Proximal Policy Optimization (PPO) is a state-of-the-art policy gradient method in reinforcement learning that

strikes a balance between performance and implementation simplicity. It improves stability during training by

constraining policy updates, making it more robust than standard policy gradient or REINFORCE methods.

7.4 Proximal Policy Optimization (PPO)keyboard_arrow_down

1. Policy Network:

The agent uses a neural network to parameterize the policy, which outputs a probability

distribution over actions given the current state.

2. Trajectory Collection:

The agent interacts with the environment using the current policy to collect trajectories consisting of

states, actions, rewards, and log probabilities of actions.

3. Advantage Estimation:

The agent estimates the advantage of taking an action using methods like Generalized Advantage

Estimation (GAE) to reduce variance and improve learning efficiency.

4. Clipped Objective:

PPO introduces a clipped surrogate objective to limit the size of policy updates and avoid large

destructive changes: where

 is the probability ratio.

5. Optimization:

The policy parameters are updated by maximizing the clipped objective, typically using stochastic

gradient ascent.

The value function is trained alongside the policy using mean squared error loss.

7.4.1 How It Works

(𝑎|𝑠)𝜋𝜃

𝐴𝑡

(𝜃) = [min ((𝜃) , clip((𝜃), 1 − 𝜖, 1 + 𝜖))]𝐿 𝐶𝐿𝐼𝑃 𝔼𝑡 𝑟𝑡 𝐴𝑡 𝑟𝑡 𝐴𝑡

(𝜃) =𝑟𝑡
(|)𝜋𝜃 𝑎𝑡 𝑠𝑡

(|)𝜋𝜃old 𝑎𝑡 𝑠𝑡

1. Initialize:

Policy network and value network

Set hyperparameters: learning rate, discount factor , clipping parameter , number of epochs, batch

size

2. For each iteration:

Collect trajectories by running the current policy in the environment

Compute rewards-to-go and advantage estimates

Compute the ratio between new and old policies

Optimize the clipped objective over multiple epochs

3. Update Value Function:

Minimize the value loss

4. Repeat:

Continue the process for a predefined number of iterations or until performance converges.

7.4.2 Algorithm Steps

𝜋𝜃 𝑉𝜙
𝛾 𝜖

𝐴𝑡

(𝜃)𝑟𝑡

Normalize Advantages:

Normalize to have mean 0 and standard deviation 1 to stabilize updates.

Entropy Bonus:

Add an entropy term to the loss to encourage exploration:

Mini-batch Updates:

Perform multiple epochs of mini-batch updates over the collected data to improve sample efficiency.

Value Function Clipping:

Optionally clip value estimates similarly to policy updates to further stabilize learning.

7.4.3 Implementation Tipskeyboard_arrow_down

𝐴𝑡

= 𝛽 ⋅ [�[(⋅|)]]𝐿 𝐸𝑁𝑇𝑅𝑂𝑃𝑌 𝔼𝑡 𝜋𝜃 𝑠 𝑡

from collections import defaultdict

import matplotlib.pyplot as plt
import torch
from tensordict.nn import TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import nn

from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import ReplayBuffer
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
from torchrl.data.replay_buffers.storages import LazyTensorStorage
from torchrl.envs import (
 Compose,
 DoubleToFloat,
 ObservationNorm,
 StepCounter,
 TransformedEnv,
)
from torchrl.envs.libs.gym import GymEnv, GymLikeEnv
from torchrl.envs import PendulumEnv
from torchrl.envs.utils import check_env_specs, ExplorationType, set_exploration_type
from torchrl.modules import ProbabilisticActor, TanhNormal, ValueOperator
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE
from tqdm import tqdm
device = torch.device(
 "cuda" if torch.cuda.is_available() else
 #"mps" if torch.backends.mps.is_available() else
 "cpu"
)
print(device)

cpu

num_cells = 256 # number of cells in each layer i.e. output dim.
lr = 3e-4
max_grad_norm = 1.0

frames_per_batch = 1000
total_frames = 100_000

sub_batch_size = 64
num_epochs = 10
clip_epsilon = (
 0.2
)
gamma = 0.99
lmbda = 0.95
entropy_eps = 1e-4

from torchrl.envs import GymEnv
from torchrl.envs import set_gym_backend
import torch
import torch
import torch
torch.manual_seed(0)
class AutoResettingGymEnv(GymEnv):
 def _step(self, tensordict):
 tensordict = super()._step(tensordict)
 if tensordict["done"].any():
 td_reset = super().reset()
 tensordict.update(td_reset.exclude(*self.done_keys))
 return tensordict
 def _reset(self, tensordict=None):
 if tensordict is not None and "_reset" in tensordict:
 return tensordict.copy()
 return super()._reset(tensordict)
with set_gym_backend("gym"):
 env = AutoResettingGymEnv("Pendulum-v1", auto_reset=True, auto_reset_replace=True,device="mp

base_env = GymEnv("MountainCarContinuous-v0", device=device)

env = TransformedEnv(
 base_env,
 Compose(
 # normalize observations
 ObservationNorm(in_keys=["observation"]),
 DoubleToFloat(),
 StepCounter(),
),
)

Implementation Note: We usually want normalized values for observations, but we have no prior

info about the distribution of the state space, that's why we run the env with a num of random steps,

and create a gaussian distro and compute the summary of statistics on these observations.

env.transform[0].init_stats(num_iter=1000, reduce_dim=0, cat_dim=0)

print("normalization constant shape:", env.transform[0].loc.shape)

normalization constant shape: torch.Size([2])

print("observation_spec:", env.observation_spec)
print("reward_spec:", env.reward_spec)
print("input_spec:", env.input_spec)
print("action_spec (as defined by input_spec):", env.action_spec)

observation_spec: Composite(
 observation: BoundedContinuous(
 shape=torch.Size([2]),

 space=ContinuousBox(
 low=Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, contiguous
 high=Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, contiguou
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 step_count: BoundedDiscrete(
 shape=torch.Size([1]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.int64, contiguous=T
 high=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.int64, contiguous=
 device=cpu,
 dtype=torch.int64,
 domain=discrete),
 device=cpu,
 shape=torch.Size([]))
reward_spec: UnboundedContinuous(
 shape=torch.Size([1]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, contiguous=Tru
 high=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, contiguous=Tr
 device=cpu,
 dtype=torch.float32,
 domain=continuous)
input_spec: Composite(
 full_state_spec: Composite(
 step_count: BoundedDiscrete(
 shape=torch.Size([1]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.int64, contiguo
 high=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.int64, contigu
 device=cpu,
 dtype=torch.int64,
 domain=discrete),
 device=cpu,
 shape=torch.Size([])),
 full_action_spec: Composite(
 action: BoundedContinuous(
 shape=torch.Size([1]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, contig
 high=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, conti
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 device=cpu,
 shape=torch.Size([])),
 device=cpu,
 shape=torch.Size([]))
action_spec (as defined by input_spec): BoundedContinuous(
 shape=torch.Size([1]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, contiguous=Tru

high Tensor(shape torch Size([1]) device cpu dtype torch float32 contiguous Tr

check_env_specs(env)

2025-05-12 11:01:21,468 [torchrl][INFO] check_env_specs succeeded!

rollout = env.rollout(3)
print("rollout of three steps:", rollout)
print("Shape of the rollout TensorDict:", rollout.batch_size)

rollout of three steps: TensorDict(
 fields={
 action: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=F
 done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False)
 next: TensorDict(

 fields={
 done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_share
 observation: Tensor(shape=torch.Size([3, 2]), device=cpu, dtype=torch.float32
 reward: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_
 step_count: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.int64, i
 terminated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is
 truncated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_
 batch_size=torch.Size([3]),
 device=cpu,
 is_shared=False),
 observation: Tensor(shape=torch.Size([3, 2]), device=cpu, dtype=torch.float32, is_sha
 step_count: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.int64, is_shared
 terminated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=
 truncated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=F
 batch_size=torch.Size([3]),
 device=cpu,
 is_shared=False)
Shape of the rollout TensorDict: torch.Size([3])

actor_net = nn.Sequential(
 nn.LazyLinear(num_cells, device=device),
 nn.Tanh(),
 nn.LazyLinear(num_cells, device=device),
 nn.Tanh(),
 nn.LazyLinear(num_cells, device=device),
 nn.Tanh(),
 nn.LazyLinear(2 * env.action_spec.shape[-1], device=device),
 NormalParamExtractor(),
)

policy_module = TensorDictModule(
 actor_net, in_keys=["observation"], out_keys=["loc", "scale"]
)

policy_module = ProbabilisticActor(
 module=policy_module,
 spec=env.action_spec,
 in_keys=["loc", "scale"],
 distribution_class=TanhNormal,
 distribution_kwargs={
 "low": env.action_spec.space.low,
 "high": env.action_spec.space.high,
 },
 return_log_prob=True,
)

value_net = nn.Sequential(
 nn.LazyLinear(num_cells, device=device),
 nn.Tanh(),
 nn.LazyLinear(num_cells, device=device),
 nn.Tanh(),
 nn.LazyLinear(num_cells, device=device),
 nn.Tanh(),
 nn.LazyLinear(1, device=device),
)

value_module = ValueOperator(
 module=value_net,
 in_keys=["observation"],
)

print("Running policy:", policy_module(env.reset()))
print("Running value:", value_module(env.reset()))

Running policy: TensorDict(
 fields={
 action: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=Fals
 done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
 loc: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
 observation: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared
 sample_log_prob: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_sha
 scale: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False
 step_count: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.int64, is_shared=Fa
 terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=Fal
 truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=Fals
 batch_size=torch.Size([]),
 device=cpu,
 is_shared=False)
Running value: TensorDict(
 fields={
 done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
 observation: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared
 state_value: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared
 step_count: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.int64, is_shared=Fa
 terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=Fal
 truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=Fals
 batch_size=torch.Size([]),
 device=cpu,
 is_shared=False)

collector = SyncDataCollector(
 env,
 policy_module,
 frames_per_batch=frames_per_batch,
 total_frames=total_frames,
 split_trajs=False,
 device=device,
)

replay_buffer = ReplayBuffer(
 storage=LazyTensorStorage(max_size=frames_per_batch),
 sampler=SamplerWithoutReplacement(),
)

advantage_module = GAE(
 gamma=gamma, lmbda=lmbda, value_network=value_module, average_gae=True
)

loss_module = ClipPPOLoss(
 actor_network=policy_module,
 critic_network=value_module,
 clip_epsilon=clip_epsilon,
 entropy_bonus=bool(entropy_eps),
 entropy_coef=entropy_eps,
 # these keys match by default but we set this for completeness
 critic_coef=1.0,
 loss_critic_type="smooth_l1",
)

optim = torch.optim.Adam(loss_module.parameters(), lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
 optim, total_frames // frames_per_batch, 0.0
)

logs = defaultdict(list)
pbar = tqdm(total=total_frames)
eval_str = ""

for i, tensordict_data in enumerate(collector):

 for _ in range(num_epochs):

 advantage_module(tensordict_data)
 data_view = tensordict_data.reshape(-1)
 replay_buffer.extend(data_view.cpu())
 for _ in range(frames_per_batch // sub_batch_size):
 subdata = replay_buffer.sample(sub_batch_size)
 loss_vals = loss_module(subdata.to(device))
 loss_value = (
 loss_vals["loss_objective"]
 + loss_vals["loss_critic"]
 + loss_vals["loss_entropy"]
)

 loss_value.backward()

 torch.nn.utils.clip_grad_norm_(loss_module.parameters(), max_grad_norm)
 optim.step()
 optim.zero_grad()

 logs["reward"].append(tensordict_data["next", "reward"].mean().item())
 pbar.update(tensordict_data.numel())
 cum_reward_str = (
 f"average reward={logs['reward'][-1]: 4.4f} (init={logs['reward'][0]: 4.4f})"
)
 logs["step_count"].append(tensordict_data["step_count"].max().item())
 stepcount_str = f"step count (max): {logs['step_count'][-1]}"
 logs["lr"].append(optim.param_groups[0]["lr"])
 lr_str = f"lr policy: {logs['lr'][-1]: 4.4f}"
 if i % 10 == 0:
 with set_exploration_type(ExplorationType.DETERMINISTIC), torch.no_grad():
 # execute a rollout with the trained policy
 eval_rollout = env.rollout(1000, policy_module)
 logs["eval reward"].append(eval_rollout["next", "reward"].mean().item())
 logs["eval reward (sum)"].append(
 eval_rollout["next", "reward"].sum().item()
)
 logs["eval step_count"].append(eval_rollout["step_count"].max().item())
 eval_str = (
 f"eval cumulative reward: {logs['eval reward (sum)'][-1]: 4.4f} "
 f"(init: {logs['eval reward (sum)'][0]: 4.4f}), "
 f"eval step-count: {logs['eval step_count'][-1]}"
)
 del eval_rollout
 pbar.set_description(", ".join([eval_str, cum_reward_str, stepcount_str, lr_str]))

 scheduler.step()

eval cumulative reward: -1.9249 (init: -1.0513), eval step-count: 998, average reward=-0.0016

plt.figure(figsize=(10, 10))
plt.subplot(2, 2, 1)
plt.plot(logs["reward"])
plt.title("training rewards (average)")
plt.subplot(2, 2, 2)

plt.plot(logs["step_count"])
plt.title("Max step count (training)")
plt.subplot(2, 2, 3)
plt.plot(logs["eval reward (sum)"])
plt.title("Return (test)")
plt.subplot(2, 2, 4)
plt.plot(logs["eval step_count"])
plt.title("Max step count (test)")
plt.show()

base_env = GymEnv("MountainCarContinuous-v0", device=device,render_mode="human")

env = TransformedEnv(
 base_env,
 Compose(
 ObservationNorm(in_keys=["observation"]),
 DoubleToFloat(),
 StepCounter(),

),
)
env.transform[0].init_stats(num_iter=1000, reduce_dim=0, cat_dim=0)

eval cumulative reward: -1.9249 (init: -1.0513), eval step-count: 998, average reward=-0.0016

with torch.no_grad():
 env.rollout(
 max_steps=10000,
 policy=policy_module,
 callback=lambda env, _: env.render(),
 auto_cast_to_device=True,
 break_when_any_done=False,
)

Source for the PPO implementation Vincent Moens

Implementation code of DQN and PPO are from Vincent Moens and Adam Paszke, and are appropriately marked

after the corresponding cells.

Referenceskeyboard_arrow_down

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Fcoding_ppo.html%23training-loop
https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Fcoding_ppo.html
https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Ftutorials%2Fintermediate%2Freinforcement_q_learning.html
https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice notebook provides a structured introduction to multi-agent reinforcement learning (MARL), focusing

on the challenges and design principles that arise when multiple agents interact within a shared environment.

Beginning with the foundational elements of MARL, including agent definitions, state and observation spaces, and

reward structures, the notebook builds conceptual links between classical game theory and contemporary MARL

frameworks.

Students will explore both centralized and independent learning paradigms, implementing and evaluating Q-

learning algorithms in cooperative multi-agent environments. Practical exercises are designed to highlight key

issues such as credit assignment, non-stationarity, coordination, and scalability. By the end of this module,

students will be able to formalize multi-agent problems, select appropriate learning approaches, and critically

analyze the trade-offs involved in designing and training MARL systems.

8. Practice - Introduction to Multi-Agent Reinforcement Learningkeyboard_arrow_down

8.1 Main Elements of MARL

8.1.1 Elements of a POMDP

8.1.2 From Game Theory to MARL

8.1.3 Cooperative

8.1.4 Competitive

8.1.5 Mixed

8.1.6 From Single-Agent RL to MARL

8.2 Centralized Learning

8.3 Implementing a Centralized Q-Learning Training Loop for a Multi-Agent Foraging Environment

8.3.1 Objectives

8.3.2 Assumptions

8.3.3 Challenges of Centralized Learning

Table of Contents

8.4 Independent Learning

8.5 Implementing an Independent Q-Learning Training Loop for a Multi-Agent Foraging Environment

8.5.1 Objectives

8.5.2 Assumptions

8.5.3 Challenges of Independent Learning

References

Reinforcement Learning (RL) as discussed so far operates under the framework of Markov Decision Processes

(MDPs), where a single agent interacts with an environment to maximize its cumulative rewards. In this setting,

the agent has access to a well-defined state and takes actions that directly influence state transitions and

rewards.

In contrast, multi-agent scenarios like Repeated Normal-Form Games (RNFGs) introduce interactions between

multiple agents. These games involve repeated interactions, where agents adapt their strategies based on the

outcomes of previous rounds. A well-known example is Axelrod's Tournament, where strategies like "Tit-for-Tat"

were tested in an iterated Prisoner's Dilemma, highlighting how agents can develop cooperative or competitive

behaviors over time. (What Game Theory Reveals About Life, The Universe, and Everything)

While standard RL focuses on a single agent operating under a Markov Decision Process (MDP), Multi-Agent

Reinforcement Learning (MARL) extends this to environments involving multiple agents, often modeled as

Partially Observable Markov Decision Processes (POMDPs) or Partially Observable Multi-Agent Decision

Processes (POMDPs). Here, agents must make decisions based on limited and possibly noisy observations, as

they typically lack full knowledge of the environment or the states of other agents.

This framework aligns with real-world scenarios like autonomous driving or collaborative robotics, where agents

operate with incomplete information and must learn to coordinate actions or compete effectively. These complex

settings will form the basis for the MARL algorithms and methods we explore.

Normal-form games: Represent single-shot interactions where agents choose actions simultaneously, and

outcomes are determined immediately.

Repeated games: Extend normal-form games across multiple rounds, allowing agents to adjust strategies

over time.

Stochastic games: Model sequential interactions where agents' actions influence the state of the

environment dynamically.

Partially observable stochastic games: Add uncertainty to stochastic games by limiting what agents can

observe about the environment or each other.

8.1 Main elements of MARLkeyboard_arrow_down

https://www.google.com/url?q=http%3A%2F%2Fbert.stuy.edu%2Fpbrooks%2Fspring2015%2Fmaterials%2FHumanReasoning-2%2FAxelrod_Robert_The_Evolution_of_Cooperation.pdf
https://www.youtube.com/watch?v=mScpHTIi-kM&t=12s

1. State Space:

The set of all possible global states of the environment is denoted as:

2. Agent Set:

The set of all agents in the environment, indexed by , is:

3. Action Space:

Each agent has its own action space .

The joint action space is represented as:

4. Observation Space:

Each agent has an observation space .

The probability of an agent receiving a specific observation given the state and joint action is:

where , , and .

5. Transition Function:

The probability of transitioning from one state to another given a joint action is:

where and .

6. Reward Function:

8.1.1 Elements of a POMDP

𝑆

𝑖

𝐼 = {1, 2, … , 𝑛}

𝑖 𝐴𝑖

𝐴 = × ×⋯ ×𝐴1 𝐴2 𝐴|𝐼|

𝑖 𝑂𝑖

𝑂(∣ 𝑠, 𝑎) = 𝑃 (∣ 𝑠, 𝑎)𝑜𝑖 𝑜𝑖

∈𝑜𝑖 𝑂𝑖 𝑠 ∈ 𝑆 𝑎 ∈ 𝐴

𝑇 (∣ 𝑠, 𝑎) = 𝑃 (∣ 𝑠, 𝑎)𝑠 ′ 𝑠 ′

𝑠, ∈ 𝑆𝑠 ′ 𝑎 ∈ 𝐴

The reward for agent based on the state and joint action is defined as:

7. Policy:

The policy of agent maps its observations to a probability distribution over actions:

where .

8. Discount Factor:

The weighting of future rewards is determined by the discount factor:

The cumulative reward for agent is:

where is the reward received by agent at time .

𝑖

(𝑠, 𝑎) : 𝑆 × 𝐴 → ℝ𝑅 𝑖

𝑖

(∣) = 𝑃 (∣)𝜋𝑖 𝑎𝑖 𝑜𝑖 𝑎𝑖 𝑜𝑖

∈𝑎𝑖 𝐴𝑖

𝛾 ∈ [0, 1]

𝑖

=𝑈𝑖 ∑
𝑡=0

∞

𝛾𝑡𝑟𝑡
𝑖

𝑟𝑡
𝑖 𝑖 𝑡

MARL Game Theory Description

environment game Model specifying actions, observations, rewards, and state dynamics.

agent player An entity making decisions; also refers to roles, e.g., “row player” in a matrix game, “white player” in chess.

reward payoff, utility Scalar value received after taking an action.

policy strategy Function assigning probabilities to actions; “(pure) strategy” sometimes refers to specific actions.

deterministic X pure X X assigns probability 1 to one option, e.g., deterministic policy, pure strategy, pure Nash equilibrium.

probabilistic X mixed X X assigns probabilities ≤ 1 to options, e.g., probabilistic policy, mixed strategy, mixed Nash equilibrium.

joint X X profile X is a tuple with one element per agent/player, e.g., joint reward, joint policy, payoff profile, pure strategy profile.

8.1.2 From Game Theory to MARL

A cooperative setting refers to a scenario where all agents share a common goal and work together to optimize a

joint objective. In this context, agents collaborate to maximize a shared reward function, meaning their success is

interconnected and dependent on coordinated efforts. In cooperative MARL, reward design is critical for fostering

effective teamwork among agents. By aligning the agents' rewards with the overall system objectives,

collaborative behavior can be encouraged. A popular method is to use shared rewards, where all agents receive

the same reward signal based on the team's collective performance. This approach simplifies coordination but

introduces challenges such as credit assignment, where identifying which agents contributed to the reward is

difficult. On the other hand, using individual rewards tailored to specific agent roles can help clarify contributions

but risks misaligning incentives, potentially leading to conflicting behaviors. Effective reward design often requires

balancing these approaches, sometimes incorporating mechanisms like difference rewards to isolate individual

contributions while maintaining a shared objective

8.1.3 Cooperative

In competitive settings, reward design in MARL focuses on encouraging agents to maximize their individual

objectives, often in opposition to others. Rewards are typically structured as individual payoffs, reflecting each

8.1.4 Competitive

agent's success relative to its competitors. For example, in zero-sum games, one agent's gain is exactly offset by

the losses of others, directly incentivizing adversarial strategies.

The design of rewards in these settings must ensure that the competition remains meaningful and drives learning

toward optimal strategies. However, challenges arise in balancing exploration and exploitation since agents must

learn to anticipate and counteract the evolving strategies of opponents. In some cases, shaping rewards to

emphasize strategic depth or penalize overly aggressive tactics can lead to more robust and adaptive agent

behaviors. Ultimately, reward design in competitive MARL aims to refine agents' abilities to perform well under

adversarial conditions while maintaining a stable learning process.

In mixed settings, reward design in MARL must address the dual nature of cooperation and competition among

agents. Agents may have partially aligned goals, leading to situations where they must balance collaborative

behaviors with self-interested actions. Rewards in such environments often combine shared components,

encouraging cooperation, with individual incentives that promote competitive behavior when necessary.

A key challenge in mixed settings is avoiding reward structures that overly favor one aspect, such as cooperation,

at the expense of competitive dynamics, or vice versa. For example, in trading markets or resource allocation

tasks, agents might need to collaborate to stabilize the system while competing for individual gains. Designing

rewards that reflect both local contributions and global objectives helps agents navigate this duality. Advanced

techniques, such as shaping rewards to emphasize synergies or penalize excessive self-interest, can ensure that

the system operates effectively without biasing toward purely cooperative or competitive outcomes. Mixed

settings require nuanced reward structures to balance collaboration and competition effectively.

8.1.5 Mixed

8.1.6 From single agent RL to MARLkeyboard_arrow_down

Import some stuffs
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from lbforaging.foraging import ForagingEnv

Q-Learning Class for utility

import numpy as np
import random
from collections.abc import Iterable

class QLearning:
 def __init__(
 self,
 state_shape,
 action_size,
 num_agents,
 alpha=0.1,
 gamma=0.99,
 epsilon=1.0,
 epsilon_decay=0.999,
 epsilon_min=0.1,
):
 """
 Initialize the Central Q-Learning algorithm.
 """
 self.state_shape = state_shape

 self.action_size = action_size
 self.num_agents = num_agents
 self.alpha = alpha
 self.gamma = gamma
 self.epsilon = epsilon
 self.epsilon_decay = epsilon_decay
 self.epsilon_min = epsilon_min

 # Initialize Q-table with zeros
 self.q_table = {}

 def get_state_key(self, state):
 """
 Convert the state into a string to use it as a key in the Q-table.
 """

 return tuple(state)

 def choose_action(self, state):
 """
 Choose a joint action using an epsilon-greedy policy.
 """
 state_key = self.get_state_key(state)

 if random.random() < self.epsilon:
 # Random action for exploration
 actions = [random.randint(0, self.action_size - 1) for _ in range(self.num_agents)]
 else:
 # Choose the best joint action
 if state_key not in self.q_table:
 self.q_table[state_key] = np.zeros(self.action_size**self.num_agents)
 joint_action_index = np.argmax(self.q_table[state_key])
 actions = self.get_actions_from_index(joint_action_index)

 return actions

 def get_actions_from_index(self, joint_action_index):
 """
 Convert a joint action index into individual actions.
 """
 actions = []
 for i in range(self.num_agents):
 actions.append(joint_action_index % self.action_size)
 joint_action_index //= self.action_size
 return actions

 def get_joint_action_index(self, actions):
 """
 Convert a list of individual actions into a single joint action index.
 """
 if not isinstance(actions, Iterable):
 actions = [actions]
 joint_action_index = 0
 for i, action in enumerate(actions):
 joint_action_index += action * (self.action_size**i)
 return joint_action_index

 def update_q_table(self, state, actions, reward, next_state):
 """
 Update the Q-table using the Q-learning update rule.
 """
 state_key = self.get_state_key(state)
 next_state_key = self.get_state_key(next_state)

 if state_key not in self.q_table:
 self.q_table[state_key] = np.zeros(self.action_size**self.num_agents)
 if next_state_key not in self.q_table:
 self.q_table[next_state_key] = np.zeros(self.action_size**self.num_agents)

 joint_action_index = self.get_joint_action_index(actions)
 best_next_action = np.argmax(self.q_table[next_state_key])

 td_target = reward + self.gamma * self.q_table[next_state_key][best_next_action]
 td_error = td_target - self.q_table[state_key][joint_action_index]

 self.q_table[state_key][joint_action_index] += self.alpha * td_error

 def decay_epsilon(self):
 """Decay the exploration rate."""
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

Centralized learning in MARL involves training a single central policy , which considers the observations and

actions of all agents in the system. This approach effectively reduces the multi-agent problem to a single-agent RL

problem by treating the joint action space as the action space of a single central agent.

Reward transformation is essential to simplify the multi-agent reward structure. In common-reward games (fully

cooperative settings), all agents receive the same reward r = r_i for any agent i , making the aggregation

straightforward. However, in general-sum games (mixed-motive settings), where agents may have conflicting or

individual rewards, combining rewards into a single scalar often depends on the desired outcome. For example,

one approach is to maximize social welfare, defined as the sum of all agents’ rewards, encouraging collective

performance while balancing individual goals.

8.2 Centralized Learningkeyboard_arrow_down

𝜋𝑐

𝐴 = × ×⋯ ×𝐴1 𝐴2 𝐴𝑛

Let's implement Central Q-Learning:

n_agents = 2

env = ForagingEnv(
 players=n_agents,
 min_player_level=1,
 max_player_level=1,

 min_food_level=2,
 max_food_level=2,
 field_size=(4,4),
 max_episode_steps=10,
 max_num_food=2,
 sight=1,
 force_coop=True,
)

In this task, your goal is to implement a centralized Q-learning training loop for a multi-agent reinforcement

learning environment called ForagingEnv . The environment consists of multiple agents who need to learn how to

forage cooperatively.

Here a centralized Q-table is used to handle the joint state and joint action space across all agents.

8.3 Implementing a Centralized Q-Learning Training Loop for a Multi-Agent Foraging

Environment

You need to write a function named train_central_q_learning that does the following:

1. Initialize the centralized Q-learning agent using:

The shape of the joint observation space

The number of discrete actions per agent

The total number of agents

2. Train over multiple episodes:

Reset the environment at the start of each episode

Concatenate observations from all agents into a single joint state

Use the centralized Q-agent to choose joint actions

Perform the chosen actions in the environment

Receive joint rewards and the next joint state

Update the centralized Q-table based on the experience

Accumulate the total reward for the episode

Apply epsilon decay to reduce exploration over time

3. Track performance:

Store the total reward per episode

Print logging information every 5000 episodes, including:

The moving average of total rewards over the last 1000 episodes

The current value of epsilon

4. Return the trained Q-agent and the list of episode rewards.

8.3.1 Objectives

The environment follows the gymnasium (or OpenAI Gym) interface.

States and actions for all agents are concatenated into joint representations.

QLearning is a provided class that handles centralized Q-table logic.

8.3.2 Assumptionskeyboard_arrow_down

def train_central_q_learning(env, episodes=500):
 state_shape = env.observation_space[0].shape
 action_size = env.action_space[0].n # Assuming discrete actions for each agent
 num_agents =n_agents

 central_q = QLearning(state_shape, action_size, num_agents)
 rewards = []
 for episode in range(episodes):
 state,inf = env.reset()
 state = np.concatenate(state).tolist()
 total_reward = 0

 for step in range(env._max_episode_steps):
 # Choose a joint action

 actions = central_q.choose_action(state)

 next_state, reward, done, truncated, info = env.step(actions)
 reward = sum(reward) # Sum of rewards for all agents
 total_reward += reward

 # Update the Q-table

 next_state = np.concatenate(next_state).tolist()
 central_q.update_q_table(state, actions, reward, next_state)

 state = next_state

 if done:
 break

 # Decay epsilon
 central_q.decay_epsilon()
 rewards.append(total_reward)
 # Log progress
 if episode % 5000 == 0:
 print(f"Episode {episode + 1}/{episodes}, Moving Average Reward (1000 episodes): {sum

 return central_q,rewards

algo,rewards = train_central_q_learning(env, episodes=20000)

Episode 1/20000, Moving Average Reward (1000 episodes): 0.0, Epsilon: 0.999
Episode 5001/20000, Moving Average Reward (1000 episodes): 1.853, Epsilon: 0.100
Episode 10001/20000, Moving Average Reward (1000 episodes): 5.053, Epsilon: 0.100
Episode 15001/20000, Moving Average Reward (1000 episodes): 8.316, Epsilon: 0.100

import time
import random
def evaluate_central_q_learning(env, central_q, render=True):
 """
 Evaluate the trained Central Q-Learning agent by rendering an episode.
 """
 state,info = env.reset() # Reset the environment to the initial state
 state = np.concatenate(state).tolist()
 total_reward = 0
 done = False

 while not done:
 # Choose the best action based on the Q-table
 state_key = central_q.get_state_key(state)

 # If the state is unknown, take a random action

 if state_key not in central_q.q_table:
 actions = [random.randint(0,len(env.action_set)-1) for _ in range(central_q.num_agen
 else:
 joint_action_index = np.argmax(central_q.q_table[state_key])
 actions = central_q.get_actions_from_index(joint_action_index)

 # Take the action in the environments
 next_state, reward, done, truncated, info = env.step(actions)
 next_state = np.concatenate(next_state).tolist()
 reward = sum(reward)
 total_reward += reward

 # Render the environment after each step
 if render:
 env.render()
 time.sleep(0.5) # Adjust pause duration for visualization

 # Move to the next state
 state = next_state

 print(f"Total Reward in Evaluation Episode: {total_reward}")

evaluate_central_q_learning(env, algo, render=True)

Total Reward in Evaluation Episode: 1.0

import pandas as pd
import matplotlib.pyplot as plt

def plot_moving_average(data, window_size=1000, title="Moving Average of Data", xlabel="Index", y
 """
 Plot the original data and its moving average.

 Parameters:
 data (list or array-like): The input data series (e.g., 0s and 1s).
 window_size (int): The size of the moving average window.
 title (str): The title of the plot.
 xlabel (str): Label for the x-axis.
 ylabel (str): Label for the y-axis.
 """
 # Calculate the moving average
 moving_avg = pd.Series(data).rolling(window=window_size).mean()

 # Plot the original data and the moving average
 plt.figure(figsize=(12, 6))
 plt.plot(data, alpha=0.4, label="Original Data")
 plt.plot(moving_avg, label=f"Moving Average (Window = {window_size})", linewidth=2, color='r
 plt.xlabel(xlabel)
 plt.ylabel(ylabel)
 plt.title(title)
 plt.legend()
 plt.grid()
 plt.show()

plot_moving_average(rewards, window_size=1000, title="Central Q-Learning moving average Rewards"

1. Joint-Action Space:

The size of the joint action space grows exponentially with the number of agents, making centralized

learning computationally expensive.

2. Scalability:

For environments with many agents, learning a centralized policy becomes infeasible due to the scale

and complexity of the action space.

3. Distributed Agents:

In real-world systems, agents are often physically or virtually distributed, limiting the feasibility of

centralized control during execution.

8.3.3 Challenges of Centralized Learning

Independent Learning in MARL simplifies the multi-agent problem by allowing each agent to learn its own policy

independently, treating other agents’ actions as part of the environment dynamics. This decentralized approach

leverages single-agent RL algorithms, enabling each agent to update its policy based solely on its local

observations, actions, and rewards. By avoiding the need for centralized coordination, IL reduces computational

complexity and eliminates the need for managing joint action spaces, making it scalable for large systems.

Additionally, it is particularly suited to distributed environments where agents operate with limited communication

or autonomy. This framework ensures that agents can independently adapt to their surroundings without requiring

global synchronization or shared information.

8.4 Independent Learningkeyboard_arrow_down

The simplicity and flexibility of independent learning make it an attractive approach in MARL. It is easy to

implement using existing single-agent RL frameworks, requiring no complex reward aggregation or global state

observation. IL works well in scenarios where explicit coordination is unnecessary, offering a practical and

scalable solution for multi-agent problems. By allowing agents to focus on local decision-making, it provides a

robust foundation for environments where communication between agents is infeasible or restricted. These

benefits often make IL a strong baseline in MARL research, balancing simplicity and performance effectively.

Let's implement Independent Q-Learning:

n_agents = 2

env = ForagingEnv(
 players=n_agents,
 min_player_level=1,
 max_player_level=1,
 min_food_level=2,
 max_food_level=2,
 field_size=(4,4),
 max_episode_steps=10,
 max_num_food=2,
 sight=1,
 force_coop=True,
)

In this task, your goal is to implement an independent Q-learning training loop for a multi-agent reinforcement

learning environment called ForagingEnv . The environment consists of multiple agents who must learn to forage,

but in this case, each agent learns independently, using its own Q-table and local observations.

This decentralized approach allows each agent to act and learn on its own, without knowledge of the other agents'

internal policies or Q-values.

8.5 Implementing an Independent Q-Learning Training Loop for a Multi-Agent Foraging

Environment

8.5.1 Objectives

You need to write a function named train_independent_q_learning that does the following:

1. Initialize a separate Q-learning agent for each environment agent using:

The shape of the individual observation space

The number of discrete actions per agent

One Q-table per agent (independent learning)

2. Train over multiple episodes:

Reset the environment at the start of each episode

Each agent selects an action based on its own current state

Perform the joint actions in the environment

Each agent receives its own reward and next state

Each agent updates its own Q-table based on its experience

Accumulate the total reward for the episode

Apply epsilon decay individually to each agent to reduce exploration over time

3. Track performance:

Store the total reward per episode

Print logging information every 5000 episodes, including:

The moving average of total rewards over the last 1000 episodes

4. Return the list of trained Q-agents and the list of episode rewards.

The environment follows the gymnasium (or OpenAI Gym) interface.

Each agent uses only its own observation and reward signal.

QLearning is a provided class that handles Q-table logic and epsilon-greedy action selection.

8.5.2 Assumptionskeyboard_arrow_down

Training Loop for ForagingEnv
def train_independent_q_learning(env, episodes=500):
 state_shape = env.observation_space[0].shape
 action_size = env.action_space[0].n # Assuming discrete actions for each agent
 num_agents =n_agents

 agents = [QLearning(state_shape, action_size, 1) for _ in range(num_agents)]
 rewards = []
 for episode in range(episodes):
 state,inf = env.reset()
 total_reward = 0

 for step in range(env._max_episode_steps):
 # Choose a joint action

 actions = []
 for idx,agent in enumerate(agents):
 action = agent.choose_action(state[idx])
 actions.append(action[0])

 next_state, reward, done, truncated, info = env.step(actions)

 # Update the Q-table

 for idx,agent in enumerate(agents):
 agent.update_q_table(state[idx], actions[idx], reward[idx], next_state[idx])

 reward = sum(reward) # Sum of rewards for all agents

 total_reward += reward

 state = next_state

 if done:
 break

 # Decay epsilon
 for agent in agents:
 agent.decay_epsilon()
 rewards.append(total_reward)
 # Log progress
 if episode % 5000 == 0:
 print(f"Episode {episode + 1}/{episodes}, Moving Average Reward (1000 episodes): {sum

 return agents,rewards

agents,rewards = train_independent_q_learning(env, 20000)

Episode 1/20000, Moving Average Reward (1000 episodes): 0.0
Episode 5001/20000, Moving Average Reward (1000 episodes): 1.728
Episode 10001/20000, Moving Average Reward (1000 episodes): 3.989
Episode 15001/20000, Moving Average Reward (1000 episodes): 6.023

import time
import random

def evaluate_independent_q_learning(env, agents, render=True):
 """
 Evaluate the trained Independent Q-Learning agents by rendering an episode.
 """
 state, info = env.reset() # Reset the environment to the initial state
 total_reward = 0
 done = False
 while not done:
 actions = []

 # Each agent selects its action based on its own Q-table
 for idx,agent in enumerate(agents):
 state_key = agent.get_state_key(state[idx])

 # If the state is unknown to the agent, take a random action
 if state_key not in agent.q_table:
 action = random.randint(0, len(env.action_set) - 1)
 else:
 action = np.argmax(agent.q_table[state_key])

 actions.append(action)

 # Take the actions in the environment
 next_state, rewards, done, truncated, info = env.step(actions)
 total_reward += sum(rewards) # Aggregate rewards for all agents

 # Render the environment after each step
 if render:
 env.render()
 time.sleep(0.5) # Adjust pause duration for visualization

 # Move to the next state
 state = next_state

 print(f"Total Reward in Evaluation Episode: {total_reward}")

evaluate_independent_q_learning(env, agents, render=True)

Total Reward in Evaluation Episode: 0.0

plot_moving_average(rewards, window_size=1000, title="Independent Q-Learning moving average Rewa

1. Non-Stationarity:

The environment dynamics appear non-stationary to each agent due to the evolving policies of other

agents.

This can lead to unstable learning or suboptimal convergence.

2. Coordination:

Independent Learning (IL) struggles in cooperative tasks requiring tight agent coordination since it

lacks explicit mechanisms to model or align with others’ actions.

3. Ambiguity in Dynamics:

Agents cannot distinguish between stochastic environment changes and changes caused by other

agents’ policies, adding to uncertainty during learning.

8.5.3 Challenges of Independent Learning

Referenceskeyboard_arrow_down

Multi-Agent Reinforcement Learning: Foundations and Modern Approaches - Stefano V. Albrecht, Filippos

Christianos, Lukas Schäfe - https://www.marl-book.com

Chapter 3 - 4

Chapter 5.3

Chapter 9

Level Based Foraging - Filippos Christianos - https://github.com/semitable/lb-foraging

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

https://www.google.com/url?q=https%3A%2F%2Fwww.marl-book.com
https://github.com/semitable/lb-foraging
https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice notebook provides a hands-on introduction to TorchRL, an advanced reinforcement learning library

built on top of PyTorch. TorchRL streamlines the RL workflow by offering modular, GPU-accelerated components

for environment handling, data management, and model development. In this notebook, students will learn how to

utilize core data structures like `TensorDict`, efficiently manage experience replay buffers, interface with

vectorized and transformed environments, and construct composable neural network modules tailored for RL

tasks.

TorchRL Paper

9. Practice - Introduction to TorchRLkeyboard_arrow_down

9.1 Necessary Imports

9.2 Data Handling

9.2.1 TensorDict

9.2.2 Replay Buffers

9.3 Environments

9.4 Modules

9.4.1 Specialized Classes

9.5 Combining Environments and Modules

9.6 Objectives

References

Table of Contents

https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.48550%2FarXiv.2306.00577

9.1 Necessary Importskeyboard_arrow_down

import torch
from torch import nn
from tensordict import TensorDict
from tensordict.nn import TensorDictSequential, TensorDictModule,ProbabilisticTensorDictModule,
from tensordict import from_module

from torchrl.data import PrioritizedReplayBuffer, ReplayBuffer, TensorDictPrioritizedReplayBuffe
from torchrl.modules import ConvNet, MLP,Actor, SafeModule, NormalParamExtractor, TanhNormal
from torchrl.modules.models.utils import SquashDims
from torchrl.envs.utils import step_mdp, ExplorationType, set_exploration_type

try:
 import gymnasium as gym
except ModuleNotFoundError:
 import gym

from torchrl.envs.libs.gym import GymEnv, GymWrapper, set_gym_backend
from torchrl.envs import (
 Compose,
 ObservationNorm,
 ToTensorImage,
 TransformedEnv,
 ParallelEnv,
 Resize,
 RewardScaling,
 CatFrames,
 VecNorm
)

torch.manual_seed(0)

<torch._C.Generator at 0x111594270>

9.2.1 TensorDict

The TensorDict is a core data structure in TorchRL, designed to store and manage batched data from

environments in a structured and efficient way. It functions like a dictionary where each key maps to a tensor, all

sharing the same leading batch dimensions. TensorDict enables seamless integration with TorchRL

components and facilitates vectorized operations across complex reinforcement learning pipelines.

We can initialize a Tensordict multiple ways:

9.2 Data Handlingkeyboard_arrow_down

batch_size = 10

data_from_dict = TensorDict({
 'key1': torch.rand(batch_size, 3),
 'key2': torch.zeros(batch_size, 4, 5, dtype=torch.bool),
 'key3': torch.zeros(batch_size, 6, 7, dtype=torch.bool),
 },
 batch_size=[batch_size],
)
print('Initilize by using dicts:')
print(data_from_dict)

data = TensorDict(

 key1=torch.rand(batch_size, 3),
 key2=torch.zeros(batch_size, 4, 5, dtype=torch.bool),
 batch_size=[batch_size],
)
print("Initialize by using keyword arguments:")
print(data)

Initilize by using dicts:
TensorDict(
 fields={
 key1: Tensor(shape=torch.Size([10, 3]), device=cpu, dtype=torch.float32, is_shared=Fa
 key2: Tensor(shape=torch.Size([10, 4, 5]), device=cpu, dtype=torch.bool, is_shared=Fa
 key3: Tensor(shape=torch.Size([10, 6, 7]), device=cpu, dtype=torch.bool, is_shared=Fa
 batch_size=torch.Size([10]),
 device=None,
 is_shared=False)
Initialize by using keyword arguments:
TensorDict(
 fields={
 key1: Tensor(shape=torch.Size([10, 3]), device=cpu, dtype=torch.float32, is_shared=Fa
 key2: Tensor(shape=torch.Size([10, 4, 5]), device=cpu, dtype=torch.bool, is_shared=Fa
 batch_size=torch.Size([10]),
 device=None,
 is_shared=False)

Tensordict values are accessible through indicies (of batch_size) and keys as well.

print('Accessing data using keys, returns the tensor:')
print(data['key1'])
print('Accessing data using indices, returns a tensordict')
print(data[2])

Accessing data using keys, returns the tensor:
tensor([[0.3051, 0.9320, 0.1759],
 [0.2698, 0.1507, 0.0317],
 [0.2081, 0.9298, 0.7231],
 [0.7423, 0.5263, 0.2437],
 [0.5846, 0.0332, 0.1387],
 [0.2422, 0.8155, 0.7932],
 [0.2783, 0.4820, 0.8198],
 [0.9971, 0.6984, 0.5675],
 [0.8352, 0.2056, 0.5932],
 [0.1123, 0.1535, 0.2417]])
Accessing data using indices, returns a tensordict
TensorDict(
 fields={
 key1: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)
 key2: Tensor(shape=torch.Size([4, 5]), device=cpu, dtype=torch.bool, is_shared=False)
 batch_size=torch.Size([]),
 device=None,
 is_shared=False)

TensorDict often returns views or copies of the data, depending on the operation.

print(data['key1'][2]) # This accesses the full tensor under 'key1' and then indexes the tensor
print(data[2]['key1']) # This first extracts a row-slice (like a mini tensordict) at index 2, th
print(data[2]['key1'] is data['key1'][2]) #
print(data[2]['key1'] == data['key1'][2])

tensor([0.2081, 0.9298, 0.7231])
tensor([0.2081, 0.9298, 0.7231])
False

tensor([True, True, True])

Assigning new keys is the same as for dictinaries.

data['key3'] = torch.rand(batch_size, 6,7)
print(data)

TensorDict(
 fields={
 key1: Tensor(shape=torch.Size([10, 3]), device=cpu, dtype=torch.float32, is_shared=Fa
 key2: Tensor(shape=torch.Size([10, 4, 5]), device=cpu, dtype=torch.bool, is_shared=Fa
 key3: Tensor(shape=torch.Size([10, 6, 7]), device=cpu, dtype=torch.float32, is_shared
 batch_size=torch.Size([10]),
 device=None,
 is_shared=False)

You can use regular torch operations on tensordicts, as for tensors, if their structure is the same. For example:

stack, permute, view, expand, to, etc...

data = torch.stack([data, data_from_dict], 0)
print(
 "Data stack:",
 data.batch_size,
 data.get("key1").shape,)

print(
 "Data view(-1): ",
 data.view(-1).batch_size,
 data.view(-1).get("key1").shape,
)

print("Data to device: ", data.to("cpu"))

print(
 "Data permute(1, 0): ",
 data.permute(1, 0).batch_size,
 data.permute(1, 0).get("key1").shape,
)

print(
 "Data expand: ",
 data.expand(3, *data.batch_size).batch_size,
 data.expand(3, *data.batch_size).get("key1").shape,
)

Data stack: torch.Size([2, 10]) torch.Size([2, 10, 3])
Data view(-1): torch.Size([20]) torch.Size([20, 3])
Data to device: TensorDict(
 fields={
 key1: Tensor(shape=torch.Size([2, 10, 3]), device=cpu, dtype=torch.float32, is_shared
 key2: Tensor(shape=torch.Size([2, 10, 4, 5]), device=cpu, dtype=torch.bool, is_shared
 key3: Tensor(shape=torch.Size([2, 10, 6, 7]), device=cpu, dtype=torch.float32, is_sha
 batch_size=torch.Size([2, 10]),
 device=cpu,
 is_shared=False)
Data permute(1, 0): torch.Size([10, 2]) torch.Size([10, 2, 3])
Data expand: torch.Size([3, 2, 10]) torch.Size([3, 2, 10, 3])

Source: TorchRL documentation

The replay buffer is a memory module used to store past transitions collected by the agent during

interaction with the environment. It enables efficient and stable learning by allowing the agent to sample random

minibatches of past experiences, breaking temporal correlations and improving sample efficiency. TorchRL

provides a built-in, flexible ReplayBuffer module that supports batched sampling, storage limits, and seamless

integration with other TorchRL components. The collate_fn parameter used to define how individual data

samples are combined into batches when sampling.

9.2.2 Replay Bufferskeyboard_arrow_down

(𝑠, 𝑎, 𝑟,)𝑠 ′

rb = ReplayBuffer(collate_fn=lambda x: x)

rb.add(1)
print('Sampling 1 element from the buffer:',rb.sample(1))
rb.extend([2, 3])
print('Sampling 3 elements from the buffer:',rb.sample(3))

Sampling 1 element from the buffer: [1]
Sampling 3 elements from the buffer: [3, 2, 2]

print('Showing the buffer storage:')
for i in rb.storage:
 print(i)

Showing the buffer storage:
1
2
3

Prioritized Replay Buffers can also be used. Instead of sampling transitions uniformly from the replay buffer, PER

samples more important transitions more often — those with higher temporal-difference (TD) error, for instance.

This can help your agent learn faster by focusing more on transitions that are surprising or useful.

alpha – Controls prioritization strength

Determines how much prioritization is used when sampling transitions.

alpha = 0 means uniform sampling (no prioritization).

alpha = 1 means full prioritization based entirely on priority values.

Typical values are between 0.4 and 0.7 .

beta – Controls importance-sampling correction

Adjusts for the bias introduced by prioritized sampling.

beta = 0 applies no correction.

beta = 1 applies full correction to make training unbiased.

Often annealed from 0.4 to 1.0 over training.

These parameters help balance learning speed and stability when using a prioritized replay buffer.

rb = PrioritizedReplayBuffer(alpha=0.7, beta=1.0, collate_fn=lambda x: x)
rb.add(1)
rb.sample(1)
rb.update_priority(1, 0.7)

Source: TorchRL documentation

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23%3A%7E%3Atext%3DThe%2520following%2520shows%2520how%2520to%2520stack%2520multiple%2520TensorDicts.%2520This%2520is%2520particularly%2520useful%2520when%2520writing%2520rollout%2520loops%21
https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23%3A%7E%3Atext%3DPrioritized%2520Replay%2520Buffers%2520can%2520also%2520be%2520used%3A

This example demonstrates how to use TorchRL's TensorDictPrioritizedReplayBuffer to store samples,

update priorities using a TD-error, and inspect the internal sum-tree structure used for prioritized sampling.

rb = TensorDictPrioritizedReplayBuffer(alpha=0.7, beta=1.1, priority_key="td_error")
rb.extend(TensorDict({"a": torch.randn(2, 3)}, batch_size=[2]))
data_sample = rb.sample(2).contiguous()
print(data_sample)

print(data_sample["index"])

data_sample["td_error"] = torch.rand(2)
rb.update_tensordict_priority(data_sample)

for i, val in enumerate(rb._sampler._sum_tree):
 print(i, val)
 if i == len(rb):
 break

TensorDict(
 fields={
 _weight: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.float32, is_shared=Fal
 a: Tensor(shape=torch.Size([2, 3]), device=cpu, dtype=torch.float32, is_shared=False)
 index: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.int64, is_shared=False)}
 batch_size=torch.Size([2]),
 device=None,
 is_shared=False)
tensor([0, 0])
0 0.356869637966156
1 1.0
2 0.0

Source: TorchRL documentation

TorchRL environments provide a unified and modular interface for interacting with both classic control tasks and

complex simulators, fully compatible with PyTorch tensors and RL pipelines. You can find several EnvWrappers

that you can apply to make your custom env compatible with torchRL. Environments return data in the form of a

TensorDict , where each key corresponds to a named tensor (e.g., "obs" , "action" , "reward" , "done"). This

structure ensures that all data related to a single environment step is stored in a consistent and batch-friendly

format. For example, after one step, you might get a TensorDict with keys like {"observation": tensor,

"action": tensor, "reward": tensor, "done": tensor} — making it easy to index and transform.

9.3 Environmentskeyboard_arrow_down

Initialize an environment by the origianl gym module and wrap it with the GymWrapper.
gym_env = gym.make("Pendulum-v1")
env = GymWrapper(gym_env)

Initialize an environment by the GymEnv module.
env = GymEnv("Pendulum-v1")
data = env.reset()
data = env.rand_step(data)

print('An example of data returned by the environment:',data)

An example of data returned by the environment: TensorDict(
 fields={

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23%3A%7E%3Atext%3DHere%2520are%2520examples%2520of%2520using%2520a%2520replaybuffer%2520with%2520data_stack.Using%2520them%2520makes%2520it%2520easy%2520to%2520abstract%2520away%2520the%2520behaviour%2520of%2520the%2520replay%2520buffer%2520for%2520multiple%2520use%2520cases.

 action: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=Fals
 done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
 next: TensorDict(
 fields={
 done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=F
 observation: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, i
 reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_sha
 terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_sh
 truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_sha
 batch_size=torch.Size([]),
 device=None,
 is_shared=False),
 observation: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared
 terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=Fal
 truncated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=Fals
 batch_size=torch.Size([]),
 device=None,
 is_shared=False)

Source: TorchRL documentation

Transforms are modular preprocessing components that can be composed to modify observations, rewards,

actions, or states before they are passed to the agent. These are especially useful for building data pipelines in a

clean and reusable way, and they integrate seamlessly with TorchRL environments via TransformedEnv .

Some commonly used transforms include:

CatFrames : stacks multiple consecutive frames to give the agent temporal context (useful in Atari

environments).

Resize : resizes image observations to a fixed shape.

NormalizeObservation : normalizes input observations across episodes.

RewardScaling : scales rewards to stabilize learning.

ObservationNorm : tracks mean and std to normalize observations online.

ToTensorImage : converts image observations to PyTorch tensors and permutes channels to match

PyTorch’s format.

Transforms can be composed in a list and applied as a pipeline, making environment design highly customizable.

base_env = GymEnv("CartPole-v1", from_pixels=True, frame_skip=2, pixels_only=False)

Apply a sequence of transforms
env = TransformedEnv(
 base_env,
 Compose(
 Resize(84, 84), # resize pixel input
 ToTensorImage(), # convert image to tensor format
 ObservationNorm(in_keys=["pixels"]), # normalize pixel values
 RewardScaling(0.1, 0.0), # scale rewards
 CatFrames(N=4, in_keys=["pixels"],dim=-1) # stack 4 consecutive frames
)
)

Vectorized environments enable multiple simulations to run in parallel, significantly improving data throughput

and making training more efficient and stable. In TorchRL, vectorized environments can be created using

ParallelEnv or SyncVectorEnv , wrapping multiple environment instances into a single batched interface.

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23envs

def make_env():
 return GymEnv("Pendulum-v1", frame_skip=3, from_pixels=True, pixels_only=False)
env = make_env()

print('Before stacking:',env.observation_spec)

env = ParallelEnv(
 4,
 make_env,
)
print('After stacking:',env.observation_spec)
print('Noitce that the whole tensordict gained a new dimension of size 4, which is the number of

Before stacking: Composite(
 observation: BoundedContinuous(
 shape=torch.Size([3]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, contiguous=Tru
 high=Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, contiguous=Tr
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 pixels: UnboundedDiscrete(
 shape=torch.Size([500, 500, 3]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([500, 500, 3]), device=cpu, dtype=torch.uint8, contig
 high=Tensor(shape=torch.Size([500, 500, 3]), device=cpu, dtype=torch.uint8, conti
 device=cpu,
 dtype=torch.uint8,
 domain=discrete),
 device=None,
 shape=torch.Size([]))
After stacking: Composite(
 observation: BoundedContinuous(
 shape=torch.Size([4, 3]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([4, 3]), device=cpu, dtype=torch.float32, contiguous=
 high=Tensor(shape=torch.Size([4, 3]), device=cpu, dtype=torch.float32, contiguous
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 pixels: UnboundedDiscrete(
 shape=torch.Size([4, 500, 500, 3]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([4, 500, 500, 3]), device=cpu, dtype=torch.uint8, con
 high=Tensor(shape=torch.Size([4, 500, 500, 3]), device=cpu, dtype=torch.uint8, co
 device=cpu,
 dtype=torch.uint8,
 domain=discrete),
 device=cpu,
 shape=torch.Size([4]))
Noitce that the whole tensordict gained a new dimension of size 4, which is the number of par

Source: TorchRL documentation

Normalization helps stabilize training by ensuring that input features (like observations or rewards) have

consistent statistical properties. While fixed normalization using precomputed statistics (e.g., from a random

policy rollout) can be effective, in reinforcement learning, the environment is often unknown or only partially

observable, making it difficult to precompute reliable normalization statistics. As a result, we may not know in

advance the range or distribution of observations and rewards. This is where adaptive, on-the-fly normalization—

such as with VecNorm—becomes especially useful, as it updates the normalization parameters based on the data

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23envs

collected during training. This allows the model to remain robust even as the environment dynamics or agent

performance evolve.

env = TransformedEnv(GymEnv("Pendulum-v1"), VecNorm())
data = env.rollout(max_steps=100)

print("mean: :", data.get("observation").mean(0)) # Approx 0
print("std: :", data.get("observation").std(0)) # Approx 1

mean: : tensor([-0.1146, -0.3184, -0.1428])
std: : tensor([1.0420, 1.0927, 1.1277])

Source: TorchRL documentation

TorchRL provides a wide range of modular components designed to work seamlessly with TensorDict objects.

These modules are built to accept a TensorDict as input, modify it (e.g., by adding value estimates, computing

actions, or logging information), and return the updated TensorDict , enabling clean and composable workflows.

Beyond environment interaction and data processing, TorchRL also includes neural network modules tailored for

RL, such as multilayer perceptrons (MLPs) and Convolutional Neural Networks (CNNs), offering flexible tools for

policy and value function approximation.

An example of initializing said modules:

9.4 Moduleskeyboard_arrow_down

net = MLP(num_cells=[32, 64], out_features=4, activation_class=nn.ELU)
print(net)

cnn = ConvNet(
 num_cells=[32, 64],
 kernel_sizes=[8, 4],
 strides=[2, 1],
 aggregator_class=SquashDims,
)
print(cnn)

MLP(
 (0): LazyLinear(in_features=0, out_features=32, bias=True)
 (1): ELU(alpha=1.0)
 (2): Linear(in_features=32, out_features=64, bias=True)
 (3): ELU(alpha=1.0)
 (4): Linear(in_features=64, out_features=4, bias=True)
)
ConvNet(
 (0): LazyConv2d(0, 32, kernel_size=(8, 8), stride=(2, 2))
 (1): ELU(alpha=1.0)
 (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(1, 1))
 (3): ELU(alpha=1.0)
 (4): SquashDims()
)

Source TorchRL documentaion

The tensordictmodule provides a powerful and flexible data container that enables structured, batched storage

and manipulation of tensors, serving as the backbone for data flow across components. It operates on

TensorDicts by reading specific entries using in_keys , passing them as inputs to an internal computation

(often a neural network), and writing the outputs back under keys specified in out_keys . This design allows

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_envs.html%23vecnorm
https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23modules

seamless composition: for example, a module with in_keys=["obs"] and out_keys=["action"] will take the

"obs" tensor, compute the action, and insert it into "action" . For models with multiple outputs (e.g., value and

policy), out_keys can contain multiple entries like ["action", "log_prob"] , enabling the module to return and

store multiple computed results in a single pass.

data = TensorDict({"key1": torch.randn(10, 4)}, batch_size=[10])
module = nn.Linear(4, 5)
td_module = TensorDictModule(module, in_keys=["key1"], out_keys=["key2"])
td_module(data)
print('The input key is "key1" and the output key is "key2". The input tensor is passed to the m
print(data)

The input key is "key1" and the output key is "key2". The input tensor is passed to the modul
TensorDict(
 fields={
 key1: Tensor(shape=torch.Size([10, 4]), device=cpu, dtype=torch.float32, is_shared=Fa
 key2: Tensor(shape=torch.Size([10, 5]), device=cpu, dtype=torch.float32, is_shared=Fa
 batch_size=torch.Size([10]),
 device=None,
 is_shared=False)

TensorDictSequential is a high-level container that chains multiple TensorDictModule s into a single, end-to-

end pipeline. Each module in the sequence receives a TensorDict , reads its required inputs (in_keys),

computes outputs, and writes the results back using out_keys , making it easy to build structured, modular

policies or architectures. The modules are executed in order, and later modules can consume the outputs of

earlier ones — for example, a backbone network producing "hidden" features that are then used by both an actor

and a value head.

backbone_module = nn.Linear(5, 3)
backbone = TensorDictModule(
 backbone_module, in_keys=["observation"], out_keys=["hidden"]
)
actor_module = nn.Linear(3, 4)
actor = TensorDictModule(actor_module, in_keys=["hidden"], out_keys=["action"])
value_module = MLP(out_features=1, num_cells=[4, 5])
value = TensorDictModule(value_module, in_keys=["hidden", "action"], out_keys=["value"])

sequence = TensorDictSequential(backbone, actor, value)
print(sequence)

print(sequence.in_keys, sequence.out_keys)

data = TensorDict(
 {"observation": torch.randn(3, 5)},
 [3],
)
backbone(data)
actor(data)
value(data)

data = TensorDict(
 {"observation": torch.randn(3, 5)},
 [3],
)
sequence(data)
print(data)

TensorDictSequential(
 module=ModuleList(

 (0): TensorDictModule(
 module=Linear(in_features=5, out_features=3, bias=True),
 device=cpu,
 in_keys=['observation'],
 out_keys=['hidden'])
 (1): TensorDictModule(
 module=Linear(in_features=3, out_features=4, bias=True),
 device=cpu,
 in_keys=['hidden'],
 out_keys=['action'])
 (2): TensorDictModule(
 module=MLP(
 (0): LazyLinear(in_features=0, out_features=4, bias=True)
 (1): Tanh()
 (2): Linear(in_features=4, out_features=5, bias=True)
 (3): Tanh()
 (4): Linear(in_features=5, out_features=1, bias=True)
),
 device=cpu,
 in_keys=['hidden', 'action'],
 out_keys=['value'])
),
 device=cpu,
 in_keys=['observation'],
 out_keys=['hidden', 'action', 'value'])
['observation'] ['hidden', 'action', 'value']
TensorDict(
 fields={
 action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=F
 hidden: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=F
 observation: Tensor(shape=torch.Size([3, 5]), device=cpu, dtype=torch.float32, is_sha
 value: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=Fa
 batch_size=torch.Size([3]),
 device=None,
 is_shared=False)

Source: TorchRL documentation

Since TensorDictModule s typically wrap neural networks, their parameters need to be optimized during training.

TorchRL provides a convenient utility called from_module , which allows you to extract all learnable parameters

from nested or composed modules. This means you can easily pass the entire model—including all submodules—

to an optimizer (e.g., Adam or SGD) without manually collecting parameters, ensuring that every learnable part of

the pipeline is updated during training.

params = from_module(sequence)
print("extracted params", params)

extracted params TensorDict(
 fields={
 module: TensorDict(
 fields={
 0: TensorDict(
 fields={
 module: TensorDict(
 fields={
 bias: Parameter(shape=torch.Size([3]), device=cpu, dtype=
 weight: Parameter(shape=torch.Size([3, 5]), device=cpu, d
 batch_size=torch.Size([]),
 device=None,
 is_shared=False)},
 batch_size=torch.Size([]),
 device=None,
 is_shared=False),
 1: TensorDict(

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23modules

 fields={
 module: TensorDict(
 fields={
 bias: Parameter(shape=torch.Size([4]), device=cpu, dtype=
 weight: Parameter(shape=torch.Size([4, 3]), device=cpu, d
 batch_size=torch.Size([]),
 device=None,
 is_shared=False)},
 batch_size=torch.Size([]),
 device=None,
 is_shared=False),
 2: TensorDict(
 fields={
 module: TensorDict(
 fields={
 0: TensorDict(
 fields={
 bias: Parameter(shape=torch.Size([4]), device=cpu
 weight: Parameter(shape=torch.Size([4, 7]), devic
 batch_size=torch.Size([]),
 device=None,
 is_shared=False),
 2: TensorDict(
 fields={
 bias: Parameter(shape=torch.Size([5]), device=cpu
 weight: Parameter(shape=torch.Size([5, 4]), devic
 batch_size=torch.Size([]),
 device=None,
 is_shared=False),
 4: TensorDict(
 fields={
 bias: Parameter(shape=torch.Size([1]), device=cpu
 weight: Parameter(shape=torch.Size([1, 5]), devic
 batch_size=torch.Size([]),
 device=None,
 is_shared=False)},
 batch_size=torch.Size([]),
 device=None,
 is_shared=False)},

b t h i t h Si ([])

TorchRL provides a collection of specialized module wrappers designed to streamline the use of neural networks

in reinforcement learning by automating common behaviors related to input/output handling, safety constraints,

and probabilistic action sampling.

These wrappers are typically built on top of TensorDictModule and come with predefined conventions for input

and output keys, along with built-in validation logic that ensures their expected behavior during execution. Some

examples:

The Actor module wraps a base neural network and automatically outputs an "action" key, unless

explicitly overridden. This simplifies policy definition, as it enforces a standard interface across RL

components.

The SafeModule ensures that the output of a network stays within a specified range, defined by a

TensorSpec (e.g., Bounded). When safe=True , it projects the network output to be valid according to this

spec, which is especially useful in environments with bounded action spaces.

The ProbabilisticTensorDictModule enables distribution-based modeling by generating actions via

sampling. It works in tandem with a preceding module that outputs distribution parameters like "loc" and

"scale" , and then uses a specified distribution class (e.g., TanhNormal) to sample from it. The sampled

result is placed in the designated out_keys , such as "action" .

9.4.1 Specialized Classeskeyboard_arrow_down

When combined in a ProbabilisticTensorDictSequential , these modules form an end-to-end pipeline

where a neural network computes distribution parameters, and actions are sampled in a differentiable way,

allowing seamless policy learning with stochasticity.

These specialized modules greatly reduce boilerplate code and ensure consistent behavior across agents, while

maintaining full compatibility with TorchRL's TensorDict -based API.

actor_net = nn.Linear(5, 3)
actor = Actor(actor_net, in_keys=["obs"])
data = TensorDict({"obs": torch.randn(5)}, batch_size=[])
actor(data)
print("Actor output:", data)

spec = Bounded(low=-1.0, high=1.0, shape=(3,))
safe_net = nn.Linear(5, 3)
safe_module = SafeModule(safe_net, spec=spec, in_keys=["obs"], out_keys=["action"], safe=True)

data = TensorDict({"obs": torch.randn(5) * 100}, batch_size=[])
safe_action = safe_module(data)["action"]
print("SafeModule output (clipped):", safe_action)

param_net = nn.Sequential(nn.Linear(5, 4), NormalParamExtractor())
param_module = TensorDictModule(param_net, in_keys=["input"], out_keys=["loc", "scale"])

prob_module = ProbabilisticTensorDictModule(
 in_keys=["loc", "scale"],
 out_keys=["action"],
 distribution_class=TanhNormal,
 return_log_prob=False
)

prob_model = ProbabilisticTensorDictSequential(param_module, prob_module)

td = TensorDict({"input": torch.randn(3, 5)}, batch_size=[3])
prob_model(td)
print("Probabilistic output:", td["action"])

Actor output: TensorDict(
 fields={
 action: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=Fals
 obs: Tensor(shape=torch.Size([5]), device=cpu, dtype=torch.float32, is_shared=False)}
 batch_size=torch.Size([]),
 device=None,
 is_shared=False)
SafeModule output (clipped): tensor([1., -1., 1.], grad_fn=<ClampBackward0>)
Probabilistic output: tensor([[0.2397, -0.4166],
 [0.2882, 0.4207],
 [0.0491, -0.8551]], grad_fn=<_SafeTanhNoEpsBackward>)

Randomness and sampling behavior can be controlled using the set_exploration_type context manager, which

allows you to specify how actions are sampled (e.g., stochastic vs. deterministic) during interaction with

environments or policies.

td = TensorDict({"input": torch.randn(3, 5)}, [3])

with set_exploration_type(ExplorationType.RANDOM):
 prob_model(td)
 print("random:", td["action"])

with set_exploration_type(ExplorationType.DETERMINISTIC):

 prob_model(td)
 print("mode:", td["action"])

random: tensor([[-0.2115, 0.8018],
 [-0.4305, -0.9352],
 [-0.4585, 0.6259]], grad_fn=<_SafeTanhNoEpsBackward>)
mode: tensor([[-0.5756, -0.7819],
 [-0.5916, -0.7996],
 [0.0282, -0.4533]], grad_fn=<_SafeTanhNoEpsBackward>)

Source: TorchRL documentation

This example shows how to interact with an environment step-by-step using a custom actor and preallocate

storage for the collected data with a TensorDict . The step_mdp utility is used to transition the "next" fields

(e.g., "next_observation") into the standard "observation" keys for the next timestep, streamlining multi-step

rollouts.

9.5 Combining Environments and Moduleskeyboard_arrow_down

env = GymEnv("Pendulum-v1")

action_spec = env.action_spec
actor_module = nn.Linear(3, 1)
actor = SafeModule(
 actor_module, spec=action_spec, in_keys=["observation"], out_keys=["action"]
)
env.set_seed(0)

max_steps = 100
data = env.reset()
data_stack = TensorDict(batch_size=[max_steps])
for i in range(max_steps):
 actor(data)
 data_stack[i] = env.step(data)
 if data["done"].any():
 break
 data = step_mdp(data) # roughly equivalent to obs = next_obs

tensordicts_prealloc = data_stack.clone()
print("total steps:", i)
print(data_stack)

total steps: 99
TensorDict(
 fields={
 action: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared
 done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=Fals
 next: TensorDict(
 fields={
 done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_sha
 observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float
 reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, i
 terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool,
 truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, i
 batch_size=torch.Size([100]),
 device=None,
 is_shared=False),
 observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float32, is_s
 terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_share
 truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared
 batch_size=torch.Size([100]),
 device=None,

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23specialized-classes

 is_shared=False)

Source: TorchRL documentation

equivalent
env.set_seed(0)

max_steps = 100
data = env.reset()
data_stack = []
for _ in range(max_steps):
 actor(data)
 data_stack.append(env.step(data))
 if data["done"].any():
 break
 data = step_mdp(data) # roughly equivalent to obs = next_obs
tensordicts_stack = torch.stack(data_stack, 0)
print("total steps:", i)
print(tensordicts_stack)

total steps: 99
TensorDict(
 fields={
 action: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared
 done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=Fals
 next: TensorDict(
 fields={
 done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_sha
 observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float
 reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, i
 terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool,
 truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, i
 batch_size=torch.Size([100]),
 device=None,
 is_shared=False),
 observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float32, is_s
 terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_share
 truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared
 batch_size=torch.Size([100]),
 device=None,
 is_shared=False)

Source: TorchRL documentation

A rollout is a procedure that collects a sequence of interactions between a policy and an environment, and in

TorchRL this can be automated using the rollout function, which handles resetting, stepping, and stacking

transitions into a single TensorDict . This method essentially does the same thing as the two cells above, but in a

single call.

tensordict_rollout = env.rollout(policy=actor, max_steps=max_steps)
print("Tensordict rollout:", tensordict_rollout)

Tensordict rollout: TensorDict(
 fields={
 action: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, is_shared
 done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared=Fals
 next: TensorDict(
 fields={

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23using-environments-and-modules
https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23using-environments-and-modules

 done: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_sha
 observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float
 reward: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.float32, i
 terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool,
 truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, i
 batch_size=torch.Size([100]),
 device=None,
 is_shared=False),
 observation: Tensor(shape=torch.Size([100, 3]), device=cpu, dtype=torch.float32, is_s
 terminated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_share
 truncated: Tensor(shape=torch.Size([100, 1]), device=cpu, dtype=torch.bool, is_shared
 batch_size=torch.Size([100]),
 device=None,
 is_shared=False)

One of the core components of any reinforcement learning algorithm is the objective function, or loss, which

guides the optimization of the model's parameters. Many commonly used losses are already implemented and

readily available as modular components, so there's no need to reimplement them from scratch. These loss

modules can be directly integrated into training pipelines like any other PyTorch module. Examples include

DDPGLoss , PPOLoss , SACLoss , and others, each encapsulating the full logic of their respective algorithms—

handling value estimation, policy updates, entropy regularization, and more. In the following sections, we will look

at a practical example using DDPGLoss .

9.6 Objectiveskeyboard_arrow_down

from torchrl.objectives import DDPGLoss

actor_module = nn.Linear(3, 1)
actor = TensorDictModule(actor_module, in_keys=["observation"], out_keys=["action"])

class ConcatModule(nn.Linear):
 def forward(self, obs, action):
 return super().forward(torch.cat([obs, action], -1))

value_module = ConcatModule(4, 1)
value = TensorDictModule(
 value_module, in_keys=["observation", "action"], out_keys=["state_action_value"]
)

loss_fn = DDPGLoss(actor, value)
loss_fn.make_value_estimator(loss_fn.default_value_estimator, gamma=0.99)

data = TensorDict(
 {
 "observation": torch.randn(10, 3),
 "next": {
 "observation": torch.randn(10, 3),
 "reward": torch.randn(10, 1),
 "done": torch.zeros(10, 1, dtype=torch.bool),
 },
 "action": torch.randn(10, 1),
 },
 batch_size=[10],
 device="cpu",
)
loss_td = loss_fn(data)

print(loss_td)
print(data)

Source: TorchRL documentation

Some code snippets are from Vincent Moens - TorchRL and are appropriately marked after the corresponding

cells.

Referenceskeyboard_arrow_down

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Ftorchrl_demo.html%23objectives
https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Fmultiagent_ppo.html
https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice notebook introduces the Centralized Training with Decentralized Execution (CTDE) paradigm, a

foundational framework in multi-agent reinforcement learning. CTDE utilizes global information and collaborative

learning during training, while enforcing independent, locally observable decision-making at deployment. This

approach bridges the gap between theoretical advancements in MARL and practical real-world constraints, where

agents often lack access to centralized information at execution time.

The notebook covers both core concepts and hands-on algorithms such as MAPPO, illustrating the architecture,

workflow, and training procedures underlying CTDE. By completing this module, students will be equipped to

understand, implement, and evaluate multi-agent learning solutions using the CTDE framework.

CTDE Paper

10. Practice - Centralized Training with Decentralized Executionkeyboard_arrow_down

10.1 Overview of CTDE

10.1.1 Centralized Training

10.1.2 Decentralized Execution

10.1.3 Advantages of CTDE

10.1.4 Common CTDE Algorithms

10.1.5 Architecture

10.2 Necessary Imports

10.2.1 Hyperparameters

10.2.2 Environment

10.3 Multi-Agent Proximal Policy Optimization (MAPPO)

10.3.1 How It Works

10.3.2 Algorithm Steps

10.3.3 Implementation Tips

10.3.4 Actor (policy) Network

10.3.5 Critic Network

10.3.6 Data Collector

10.3.7 Loss Function

10.4 Training Loop

10.4.1 Results

Table of Contents

https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.48550%2FarXiv.2409.03052

References

In many multi-agent systems, agents have limited perception and cannot access the full global state or the

actions of other agents during execution. However, during training, such information is often available.

CTDE allows the use of:

Centralized information (e.g., full observations, joint actions, global rewards) to stabilize and accelerate

training

Decentralized policies that depend only on local observations for execution, allowing real-world applicability

This paradigm is particularly useful in environments where:

Communication is restricted or costly

Agents must act independently

The environment is partially observable

10.1 Overview of CTDEkeyboard_arrow_down

During training:

A centralized critic (or multiple critics) can access the observations and actions of all agents.

Training algorithms can leverage full state information to estimate joint value functions or shared objectives.

Agents may communicate or use additional sensors to improve learning.

10.1.1 Centralized Training

During execution:

Each agent acts based solely on its own local observation.

No access to other agents' observations, actions, or a centralized critic is allowed.

Policies must be reactive and efficient under partial observability.

This separation ensures that agents are practical to deploy in distributed systems or real-world environments.

10.1.2 Decentralized Execution

Improved sample efficiency through centralized critics

Better coordination among agents during training

Scalability in deployment due to decentralized policies

Compatible with both cooperative and competitive multi-agent settings

10.1.3 Advantages of CTDE

Several popular multi-agent algorithms are built around the CTDE principle:

MADDPG (Multi-Agent DDPG)

Uses a centralized critic with decentralized actors. The critic takes all agents' actions and observations as

input.

10.1.4 Common CTDE Algorithms

COMA (Counterfactual Multi-Agent Policy Gradients)

Employs a centralized critic to compute counterfactual advantages for each agent in cooperative tasks.

QMIX

Trains agents with individual Q-functions combined into a global Q-value via a mixing network, conditioned

on the global state.

A typical CTDE architecture includes:

Local policy networks for each agent

A shared or centralized critic used only during training

Optional shared replay buffers for storing transitions

Each training step may include:

1. Agents take actions based on local observations.

2. The environment returns new states and rewards.

3. Centralized critic(s) use global data to compute value estimates or gradients.

4. Policy networks are updated to maximize performance using local inputs only.

10.1.5 Architecture

10.2 Necessary Importskeyboard_arrow_down

Torch
import torch

Tensordict modules
from tensordict.nn import set_composite_lp_aggregate, TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import multiprocessing

Data collection
from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import ReplayBuffer
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
from torchrl.data.replay_buffers.storages import LazyTensorStorage

Env
from torchrl.envs import RewardSum, TransformedEnv
from torchrl.envs.libs.vmas import VmasEnv
from torchrl.envs.utils import check_env_specs
from torchrl.modules import MultiAgentMLP, ProbabilisticActor, TanhNormal
Loss
from torchrl.objectives import ClipPPOLoss, ValueEstimators

Utils
torch.manual_seed(0)
from matplotlib import pyplot as plt
from tqdm import tqdm

frames_per_batch : Defines how many environment steps are collected before each training phase.

n_iters : Indicates how many full cycles of data collection and training will be performed.

total_frames : The cumulative number of environment interactions across all iterations.

num_epochs : Number of times the collected data is reused for learning in a single iteration.

minibatch_size : Specifies how many samples are processed at once during each gradient update.

lr : Learning rate controlling how much model parameters are adjusted per update step.

max_grad_norm : Sets a threshold to clip gradients and stabilize learning by preventing excessively large

updates.

clip_epsilon : Bounds policy updates to prevent overly aggressive shifts, maintaining stable learning.

gamma : Controls the trade-off between short-term and long-term rewards via discounting.

lmbda : Regulates the balance between bias and variance in advantage estimation using GAE.

entropy_eps : Adds randomness to the policy by rewarding higher entropy, promoting better exploration.

10.2.1 Hyperparameterskeyboard_arrow_down

device = (
 torch.device(0)
 if torch.cuda.is_available()
 else torch.device("cpu")
)

Sampling
frames_per_batch = 6_000
n_iters = 20
total_frames = frames_per_batch * n_iters

Training
num_epochs = 30
minibatch_size = 400
lr = 3e-4
max_grad_norm = 1.0

PPO
clip_epsilon = 0.2
gamma = 0.99
lmbda = 0.9
entropy_eps = 1e-4

disable log-prob aggregation
set_composite_lp_aggregate(False).set()

10.2.2 Environmentkeyboard_arrow_down

In this tutorial, we use the VMAS simulator, a lightweight multi-agent physics engine where each agent operates

with its own set of observations, rewards, actions, and auxiliary information. Although agents act independently,

they share a common "done" signal, which indicates episode termination. VMAS is built for vectorized

simulation, meaning that it processes multiple environments in parallel using PyTorch tensors, where the leading

dimension corresponds to the number of parallel simulations.

The environment we focus on is the Navigation task. In this scenario, several agents are randomly placed in a 2D

space and must navigate toward their respective goals, which are also randomly positioned. To avoid collisions,

agents rely on LIDAR-based perception (represented by radial sensor readings). Each agent produces 2D

continuous actions that correspond to force vectors controlling their movement. The reward function combines

three components: a penalty for collisions, a shaping reward based on progress toward the goal, and a shared

reward when all agents successfully reach their targets. Observations include each agent's position, velocity, goal

direction, and LIDAR readings.

max_steps = 300 # Episode steps before done
num_vmas_envs = (
 frames_per_batch // max_steps
) # Number of vectorized envs. frames_per_batch should be divisible by this number
print(num_vmas_envs)
scenario_name = "navigation"

n_agents = 3

env = VmasEnv(
 scenario=scenario_name,
 num_envs=num_vmas_envs,
 continuous_actions=True, # VMAS supports both continuous and discrete actions
 max_steps=max_steps,
 device=device,
 # Scenario kwargs
 n_agents=n_agents, # These are custom kwargs that change for each VMAS scenario, see the VMA
)
env = VmasEnv("navigation",num_envs=1,continuous_actions=True,n_agents = 10, agent_radius= 0.05,

20

In TorchRL, you can easily inspect the environment's various specifications—such as actions, rewards,

terminations, and observations—which is extremely helpful for debugging and understanding the data structure

your model will interact with.

print("action_spec:", env.full_action_spec)
print("reward_spec:", env.full_reward_spec)
print("done_spec:", env.full_done_spec)
print("observation_spec:", env.observation_spec)

action_spec: Composite(
 agents: Composite(
 action: BoundedContinuous(
 shape=torch.Size([1, 10, 2]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([1, 10, 2]), device=cpu, dtype=torch.float32,
 high=Tensor(shape=torch.Size([1, 10, 2]), device=cpu, dtype=torch.float32
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 device=None,
 shape=torch.Size([1, 10])),
 device=None,
 shape=torch.Size([1]))
reward_spec: Composite(

 agents: Composite(
 reward: UnboundedContinuous(
 shape=torch.Size([1, 10, 1]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=torch.float32,
 high=Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=torch.float32
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 device=None,
 shape=torch.Size([1, 10])),
 device=None,
 shape=torch.Size([1]))
done_spec: Composite(
 done: Categorical(
 shape=torch.Size([1, 1]),
 space=CategoricalBox(n=2),
 device=cpu,
 dtype=torch.bool,
 domain=discrete),
 terminated: Categorical(
 shape=torch.Size([1, 1]),
 space=CategoricalBox(n=2),
 device=cpu,
 dtype=torch.bool,
 domain=discrete),
 device=None,
 shape=torch.Size([1]))
observation_spec: Composite(
 agents: Composite(
 observation: UnboundedContinuous(
 shape=torch.Size([1, 10, 18]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([1, 10, 18]), device=cpu, dtype=torch.float32
 high=Tensor(shape=torch.Size([1, 10, 18]), device=cpu, dtype=torch.float3
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 info: Composite(
 pos_rew: UnboundedContinuous(
 shape=torch.Size([1, 10, 1]),

Using the commands shown above, we can inspect the specifications of an environment—such as the action,

reward, done, and observation specs—which reveal the expected structure and shape of the data returned during

interactions. A key detail in multi-agent settings is that most specs (like observations, rewards, and actions) have

a leading shape of (num_vmas_envs, n_agents) , indicating that each agent in each parallel environment has its

own individual values. The "done" spec, however, typically has a shape of (num_vmas_envs,) , showing that

episode termination is shared across all agents within a single environment instance.

TorchRL distinguishes between shared and per-agent specs by organizing them accordingly. Specs that are

agent-specific—those with the extra agent dimension—are grouped under an "agents" key. For example, if the

action or reward spec is agent-dependent, any related data in the TensorDict will be nested under "agents" ,

enabling a clean and structured representation.

Moreover, TorchRL provides utility properties like env.input_spec.keys() or env.output_spec.keys() to

quickly retrieve the relevant keys associated with each type of value. This allows us to understand not just the

shapes, but also the location of the data in the TensorDict hierarchy—greatly simplifying integration with other

TorchRL components during training and evaluation.

print("action_keys:", env.action_keys)
print("reward_keys:", env.reward_keys)
print("done_keys:", env.done_keys)

action_keys: [('agents', 'action')]
reward_keys: [('agents', 'reward')]
done_keys: ['done', 'terminated']

To facilitate goal visualization during evaluation or debugging, we apply a RewardSum transform to the

environment. This transform adds goal-related reward shaping or tracking features, which can be useful for

plotting or monitoring purposes. However, it's important to note that the agents themselves do not use this

transform—it's purely for external observation and does not influence the policy learning process.

env = TransformedEnv(
 env,
 RewardSum(in_keys=[env.reward_key], out_keys=[("agents", "episode_reward")]),
)

We can check if every module is compatible with the transforms.

check_env_specs(env)

2025-05-16 07:38:24,048 [torchrl][INFO] check_env_specs succeeded!

n_rollout_steps = 5
rollout = env.rollout(n_rollout_steps)
print("Rollout of three steps:", rollout)
print("Shape of the rollout TensorDict:", rollout.batch_size)

Rollout of three steps: TensorDict(
 fields={
 agents: TensorDict(
 fields={
 action: Tensor(shape=torch.Size([1, 2, 10, 2]), device=cpu, dtype=torch.float
 episode_reward: Tensor(shape=torch.Size([1, 2, 10, 1]), device=cpu, dtype=tor
 info: TensorDict(
 fields={
 agent_collisions: Tensor(shape=torch.Size([1, 2, 10, 1]), device=cpu,
 final_rew: Tensor(shape=torch.Size([1, 2, 10, 1]), device=cpu, dtype=
 pos_rew: Tensor(shape=torch.Size([1, 2, 10, 1]), device=cpu, dtype=to
 batch_size=torch.Size([1, 2, 10]),
 device=None,
 is_shared=False),
 observation: Tensor(shape=torch.Size([1, 2, 10, 18]), device=cpu, dtype=torch
 batch_size=torch.Size([1, 2, 10]),
 device=None,
 is_shared=False),
 done: Tensor(shape=torch.Size([1, 2, 1]), device=cpu, dtype=torch.bool, is_shared=Fal
 next: TensorDict(
 fields={
 agents: TensorDict(
 fields={
 episode_reward: Tensor(shape=torch.Size([1, 2, 10, 1]), device=cpu, d
 info: TensorDict(
 fields={
 agent_collisions: Tensor(shape=torch.Size([1, 2, 10, 1]), dev
 final_rew: Tensor(shape=torch.Size([1, 2, 10, 1]), device=cpu
 pos_rew: Tensor(shape=torch.Size([1, 2, 10, 1]), device=cpu,
 batch_size=torch.Size([1, 2, 10]),
 device=None,
 is_shared=False),
 observation: Tensor(shape=torch.Size([1, 2, 10, 18]), device=cpu, dty
 reward: Tensor(shape=torch.Size([1, 2, 10, 1]), device=cpu, dtype=tor
 batch_size=torch.Size([1, 2, 10]),
 device=None,
 is_shared=False),
 done: Tensor(shape=torch.Size([1, 2, 1]), device=cpu, dtype=torch.bool, is_sh

 terminated: Tensor(shape=torch.Size([1, 2, 1]), device=cpu, dtype=torch.bool,
 batch_size=torch.Size([1, 2]),
 device=None,
 is_shared=False),
 terminated: Tensor(shape=torch.Size([1, 2, 1]), device=cpu, dtype=torch.bool, is_shar
 batch_size=torch.Size([1, 2]),
 device=None,
 is_shared=False)
Shape of the rollout TensorDict: torch.Size([1, 2])

A rollout generates a sequence of interactions between agents and the environment, returning a TensorDict

where all relevant data (e.g., observations, actions, rewards) are stored in a batched, time-ordered structure.

A key part of this structure is the "next" key, which holds the results of the next timestep for each transition. For

example, during a 3-step rollout, at each step t , the "next" entry contains what the state will be at t+1 . When

the rollout proceeds to the next step, the "next" block is flattened back into the main structure: its values (like

"observation" or "reward") overwrite or extend the top-level entries, allowing the environment state to

progress naturally from one step to the next.

This mechanism makes it easy to chain transitions together while keeping each timestep’s inputs and outputs

clearly separated. In multi-agent settings, nested structures like "agents" and subfields such as "info" or

"episode_reward" are preserved, ensuring that per-agent data is maintained consistently across the entire

rollout.

(rollout[:,1]['next']['agents']['observation'] == rollout[:,2]['agents']['observation']).all()

Multi-Agent Proximal Policy Optimization (MAPPO) (Paper) extends the PPO algorithm to multi-agent

environments by supporting multiple agents that may share or maintain separate policies. It maintains the core

benefits of PPO—stability, sample efficiency, and simplicity—while handling the additional complexity of multi-

agent interactions. MAPPO is particularly effective when agents are trained with parameter sharing, but it also

supports decentralized execution and centralized training.

10.3 Multi-Agent Proximal Policy Optimization (MAPPO)keyboard_arrow_down

1. Policy Network:

Each agent, or all agents collectively (if using parameter sharing), is equipped with a neural network

 that maps local observations to a distribution over actions .

2. Trajectory Collection:

The environment is rolled out in parallel across multiple agents and multiple environments, collecting

observations, actions, rewards, and log-probabilities for each agent over time.

3. Advantage Estimation:

Advantages are computed individually for each agent using Generalized Advantage Estimation

(GAE), balancing bias and variance while respecting the temporal nature of the data.

4. Clipped Objective:

10.3.1 How It Works

(|)𝜋𝜃 𝑎𝑖 𝑜𝑖 𝑜𝑖 𝑎𝑖

𝐴𝑖
𝑡

https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.48550%2FarXiv.2103.01955

The same clipped surrogate loss from PPO is applied per agent to restrict large updates and stabilize

learning: where is

the ratio of current to old policy probabilities for agent .

5. Optimization:

The loss is aggregated across agents (if sharing parameters), and the policy is optimized using

gradient ascent. The value function is trained per agent or shared, typically with mean squared error

loss on the predicted returns.

(𝜃) = [min ((𝜃) , clip((𝜃), 1 − 𝜖, 1 + 𝜖))]𝐿 𝐶𝐿𝐼𝑃
𝑖 𝔼𝑡 𝑟𝑖𝑡 𝐴𝑖

𝑡 𝑟𝑖𝑡 𝐴𝑖
𝑡 (𝜃) =𝑟𝑖𝑡

(|)𝜋𝜃 𝑎𝑖
𝑡 𝑜𝑖

𝑡

(|)𝜋𝜃old 𝑎𝑖
𝑡 𝑜𝑖

𝑡

𝑖

1. Initialize:

Policy network(s) and value network(s)

Set hyperparameters: learning rate, discount factor , clipping parameter , number of epochs, batch

size, and agent count

2. For each iteration:

Run multi-agent rollouts to collect trajectories across environments

Compute agent-wise rewards-to-go and advantage estimates

Compute probability ratios for each agent and optimize the clipped loss over several epochs

3. Update Value Function(s):

Train value network(s) using regression on returns, optionally with clipping for stability

4. Repeat:

Continue until convergence or the desired number of training iterations is reached

10.3.2 Algorithm Steps

𝜋𝜃 𝑉𝜙
𝛾 𝜖

𝐴𝑖
𝑡

Parameter Sharing:

Use shared policy networks across agents when behaviors can be similar—this accelerates learning

and reduces memory usage.

Advantage Normalization:

Normalize each agent’s advantages independently to improve training stability.

Centralized Critic:

Optionally use centralized value functions that receive the observations or actions of all agents to

provide better value estimates.

Agent-Aware Sampling:

Ensure batch sampling respects agent dimensions (e.g., using "agents" key in TensorDict) for

correct policy updates.

10.3.3 Implementation Tips

Here, we define a shared policy network for all agents using MultiAgentMLP , a TorchRL module tailored for multi-

agent settings. The network maps each agent’s local observation to the parameters (mean and standard

deviation) of a Tanh-Normal distribution over actions, with NormalParamExtractor handling the split. By setting

10.3.4 Actor (policy) Networkkeyboard_arrow_down

share_params=True , all agents will use the same policy, enabling parameter sharing and more sample-efficient

training in cooperative settings.

share_parameters_policy = True

policy_net = torch.nn.Sequential(
 MultiAgentMLP(
 n_agent_inputs=env.observation_spec["agents", "observation"].shape[
 -1
], # n_obs_per_agent
 n_agent_outputs=env.action_spec.shape[-1] * 2, # 2 * n_actions_per_agents
 n_agents=env.n_agents,
 centralised=False,
 share_params=share_parameters_policy,
 device=device,
 depth=2,
 num_cells=64,
 activation_class=torch.nn.Tanh,
),
 NormalParamExtractor(),
)

Next, we encapsulate the policy network in a TensorDictModule , which takes care of reading agent-specific

observations from the input, passing them through the network, and writing the resulting distribution parameters

(loc , scale) back into the correct locations—preserving the "agents" structure that holds per-agent data.

policy_module = TensorDictModule(
 policy_net,
 in_keys=[("agents", "observation")],
 out_keys=[("agents", "loc"), ("agents", "scale")],
)

In the next step, we build the final policy by using a ProbabilisticActor , which transforms the distribution

parameters into actual actions sampled from a TanhNormal distribution. This module handles action clipping

based on the environment's bounds and also computes the log-probabilities of the sampled actions, which are

essential for training with PPO. It seamlessly integrates with the rest of the pipeline by reading from the "agents"

keys and writing the sampled actions to the correct location in the TensorDict .

policy = ProbabilisticActor(
 module=policy_module,
 spec=env.action_spec_unbatched,
 in_keys=[("agents", "loc"), ("agents", "scale")],
 out_keys=[env.action_key],
 distribution_class=TanhNormal,
 distribution_kwargs={
 "low": env.full_action_spec_unbatched[env.action_key].space.low,
 "high": env.full_action_spec_unbatched[env.action_key].space.high,
 },
 return_log_prob=True,
)

To estimate state values for each agent, we define a critic network that reads observations and returns value

predictions. The structure of this network depends on whether we're using MAPPO or IPPO, and whether we

choose to share parameters across agents.

10.3.5 Critic Networkkeyboard_arrow_down

In this setup, we configure the critic with centralized input (centralised=True), meaning it can access all agent

observations simultaneously. This is appropriate for MAPPO, where centralized training is allowed. The network

outputs one value per agent, resulting in a tensor of shape (..., n_agents, 1) .

By setting share_params=True , the same critic is used for all agents—beneficial in cooperative tasks like this,

where agents share the same reward function. The critic is wrapped in a TensorDictModule to connect it to the

RL pipeline: it takes agent observations as input and writes value predictions into the "state_value" key under

"agents" .

share_parameters_critic = True
mappo = True # IPPO if False

critic_net = MultiAgentMLP(
 n_agent_inputs=env.observation_spec["agents", "observation"].shape[-1],
 n_agent_outputs=1, # 1 value per agent
 n_agents=env.n_agents,
 centralised=True,
 share_params=share_parameters_critic,
 device=device,
 depth=2,
 num_cells=256,
 activation_class=torch.nn.Tanh,
)

critic = TensorDictModule(
 module=critic_net,
 in_keys=[("agents", "observation")],
 out_keys=[("agents", "state_value")],
)

Let's see how each module modifies the environemnt:

print("Running policy:", policy(env.reset()))
print("Running value:", critic(env.reset()))

Running policy: TensorDict(
 fields={
 agents: TensorDict(
 fields={
 action: Tensor(shape=torch.Size([1, 10, 2]), device=cpu, dtype=torch.float32,
 action_log_prob: Tensor(shape=torch.Size([1, 10]), device=cpu, dtype=torch.fl
 episode_reward: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=torch
 info: TensorDict(
 fields={
 agent_collisions: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dt
 final_rew: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=tor
 pos_rew: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=torch
 batch_size=torch.Size([1, 10]),
 device=None,
 is_shared=False),
 loc: Tensor(shape=torch.Size([1, 10, 2]), device=cpu, dtype=torch.float32, is
 observation: Tensor(shape=torch.Size([1, 10, 18]), device=cpu, dtype=torch.fl
 scale: Tensor(shape=torch.Size([1, 10, 2]), device=cpu, dtype=torch.float32,
 batch_size=torch.Size([1, 10]),
 device=None,
 is_shared=False),
 done: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=False)
 terminated: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=
 batch_size=torch.Size([1]),
 device=None,
 is_shared=False)
Running value: TensorDict(
 fields={

 agents: TensorDict(
 fields={
 episode_reward: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=torch
 info: TensorDict(
 fields={
 agent_collisions: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dt
 final_rew: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=tor
 pos_rew: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=torch
 batch_size=torch.Size([1, 10]),
 device=None,
 is_shared=False),
 observation: Tensor(shape=torch.Size([1, 10, 18]), device=cpu, dtype=torch.fl
 state_value: Tensor(shape=torch.Size([1, 10, 1]), device=cpu, dtype=torch.flo
 batch_size=torch.Size([1, 10]),
 device=None,
 is_shared=False),
 done: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=False)
 terminated: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=
 batch_size=torch.Size([1]),
 device=None,
 is_shared=False)

A data collector automates the process of gathering experience by repeatedly interacting with the environment

using a policy. It handles resetting environments, computing actions from observations, performing environment

steps, and managing episode boundaries (like done signals). In this example, we use SyncDataCollector , a

synchronous collector that ensures a fixed number of environment steps are gathered per batch. It runs in a loop,

automatically resetting completed episodes and continuing collection until the specified number of

frames_per_batch or total_frames is reached, delivering data in a format compatible with training pipelines.

10.3.6 Data Collectorkeyboard_arrow_down

collector = SyncDataCollector(
 env,
 policy,
 device=device,
 storing_device=device,
 frames_per_batch=frames_per_batch,
 total_frames=total_frames,
)

replay_buffer = ReplayBuffer(
 storage=LazyTensorStorage(
 frames_per_batch, device=device
),
 sampler=SamplerWithoutReplacement(),
 batch_size=minibatch_size,
)

The ClipPPOLoss module encapsulates the full PPO loss computation, including policy loss, value loss, and

entropy regularization, hiding the complex control flow and mathematical details behind a clean interface. To use

it, we pass in the policy (actor_network) and value (critic_network) modules, as well as key hyperparameters

like the clipping factor (clip_epsilon) and the entropy coefficient (entropy_eps). It's important to configure

normalize_advantage=False when working with per-agent data, to avoid mixing statistics across agents.

10.3.7 Loss Functionkeyboard_arrow_down

The set_keys method specifies where in the TensorDict the loss function should find the required entries such

as rewards, actions, values, and termination flags. These keys follow the multi-agent "agents" structure to align

with the environment's output.

Next, we attach a value estimator using make_value_estimator , which configures the module to compute

Generalized Advantage Estimation (GAE). GAE balances bias and variance in advantage computation and

populates the TensorDict with "advantage" and "value_target" entries, which are then used by

ClipPPOLoss to compute gradients during training.

Finally, we initialize an optimizer (here, Adam) with the parameters of the loss module, so both actor and critic

networks are trained together.

loss_module = ClipPPOLoss(
 actor_network=policy,
 critic_network=critic,
 clip_epsilon=clip_epsilon,
 entropy_coef=entropy_eps,
 normalize_advantage=False,
)
loss_module.set_keys(
 reward=env.reward_key,
 action=env.action_key,
 value=("agents", "state_value"),

 done=("agents", "done"),
 terminated=("agents", "terminated"),
)

loss_module.make_value_estimator(
 ValueEstimators.GAE, gamma=gamma, lmbda=lmbda
)
GAE = loss_module.value_estimator

optim = torch.optim.Adam(loss_module.parameters(), lr)

This training loop orchestrates the full PPO optimization process across multiple iterations. Here's a breakdown of

its structure and purpose:

1. Data Collection:

The collector yields batches of experience (tensordict_data) from the environment using the

current policy.

"done" and "terminated" signals are expanded to match the reward tensor's shape. This step is

necessary for the value estimator (GAE) to align termination information with per-agent reward entries.

2. Advantage Computation (GAE):

With gradients turned off (torch.no_grad()), Generalized Advantage Estimation (GAE) is computed

and injected into the data. This augments the TensorDict with "advantage" and "value_target"

entries needed for loss calculation.

3. Storing Experience:

The batch is flattened and added to the replay_buffer , allowing it to be sampled for mini-batch

training.

10.4 Training Loopkeyboard_arrow_down

4. Policy and Value Network Update:

For a fixed number of epochs (num_epochs), several mini-batches are drawn from the replay buffer.

For each mini-batch:

The PPO loss (loss_module) is computed, aggregating policy, value, and entropy losses.

Backpropagation is performed, and optionally, gradients are clipped to stabilize learning.

The optimizer updates model parameters and resets gradients for the next step.

5. Syncing Policy Weights:

After optimization, the collector's internal policy is updated with the newly trained weights to ensure

the next rollout uses the latest model.

6. Logging:

The mean episode reward is calculated using the rewards of completed episodes.

This metric is added to a list for later visualization and displayed in the progress bar to provide live

feedback on performance.

def collect_data_and_compute_gae(collector, env, loss_module, replay_buffer):
 tensordict_data = collector.next()

 # Expand done and terminated to match reward shape
 tensordict_data.set(
 ("next", "agents", "done"),
 tensordict_data.get(("next", "done"))
 .unsqueeze(-1)
 .expand(tensordict_data.get_item_shape(("next", env.reward_key))),
)
 tensordict_data.set(
 ("next", "agents", "terminated"),
 tensordict_data.get(("next", "terminated"))
 .unsqueeze(-1)
 .expand(tensordict_data.get_item_shape(("next", env.reward_key))),
)

 # Compute GAE and add it to the data
 with torch.no_grad():
 GAE(
 tensordict_data,
 params=loss_module.critic_network_params,
 target_params=loss_module.target_critic_network_params,
)

 # Flatten and store in replay buffer
 data_view = tensordict_data.reshape(-1)
 replay_buffer.extend(data_view)

 return tensordict_data

def optimize_model(replay_buffer, loss_module, optim, num_epochs, frames_per_batch, minibatch_si
 for _ in range(num_epochs):
 for _ in range(frames_per_batch // minibatch_size):
 subdata = replay_buffer.sample()
 loss_vals = loss_module(subdata)

 loss_value = (
 loss_vals["loss_objective"]
 + loss_vals["loss_critic"]
 + loss_vals["loss_entropy"]
)

 loss_value.backward()
 torch.nn.utils.clip_grad_norm_(loss_module.parameters(), max_grad_norm)
 optim.step()
 optim.zero_grad()

pbar = tqdm(total=n_iters, desc="episode_reward_mean = 0")
episode_reward_mean_list = []

for _ in range(n_iters):
 tensordict_data = collect_data_and_compute_gae(collector, env, loss_module, replay_buffer)

 optimize_model(replay_buffer, loss_module, optim, num_epochs, frames_per_batch, minibatch_si

 collector.update_policy_weights_()

 # Logging
 done = tensordict_data.get(("next", "agents", "done"))
 episode_reward_mean = (
 tensordict_data.get(("next", "agents", "episode_reward"))[done].mean().item()
)
 episode_reward_mean_list.append(episode_reward_mean)
 pbar.set_description(f"episode_reward_mean = {episode_reward_mean}", refresh=False)
 pbar.update()

10.4.1 Resultskeyboard_arrow_down

plt.plot(episode_reward_mean_list)
plt.xlabel("Training iterations")
plt.ylabel("Reward")
plt.title("Episode reward mean")
plt.show()

Let's see how the agents solve the task:

env = VmasEnv("navigation",num_envs=1,continuous_actions=True,n_agents = 10, agent_radius= 0.05,
with torch.no_grad():
 env.rollout(
 max_steps=1000,
 policy=policy,
 callback=lambda env, _: env.render(),
 auto_cast_to_device=True,
 break_when_any_done=False,
)

The implementation codes are from Matteo Bettini - TorchRL

Referenceskeyboard_arrow_down

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Fmultiagent_ppo.html
https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice notebook explores methods for training heterogeneous teams in multi-agent reinforcement learning,

where agents may have different roles, objectives, or capabilities. Using the MADDPG algorithm, students will

learn how to group agents, implement specialized learning strategies for each team, and manage cooperation and

competition in complex environments. By the end of this module, students will be able to design and evaluate

MARL systems for heterogeneous agent populations.

11. Practice - Handling Heterogeneous Teams in MARL Using

MADDPG
keyboard_arrow_down

11.1 Working with Heterogeneous Agent Teams in MARL

11.1.1 How do teams relate to each other?

11.2 Necessary Imports

11.2.1 Hyperparameters

11.2.2 Environment

11.2.3 Setting up Multi-Agent Environments with Team Separation

11.3 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

11.3.1 How It Works

11.3.2 Algorithm Steps

11.3.3 Implementation Tips

11.3.4 Actor

11.3.5 Wrapping Team Policies with TanhDelta Distributions

Table of Contents

11.3.6 Adding Exploration to Deterministic Policies

11.3.7 Our Strategy: Additive Gaussian Noise

11.3.8 Why Additive Noise Leads to Intelligent Exploration

11.3.9 Learning the Environment Before the Noise

11.3.10 Learning to Handle Noise Later

11.3.11 Stable vs. Unstable Regions

11.3.12 Critic Construction for MADDPG

11.4 Training Loop

11.4.1 Stopping One Team Mid-Training

11.4.2 Why do this?

11.4.3 Results

References

Diversity poses a fundamental challenge: we can no longer assume a shared optimization target or a common

policy architecture for the entire agent population. A single, shared algorithm would fail to capture the nuances of

each agent's role, and forcing parameter sharing across incompatible objectives may lead to unstable or

suboptimal learning dynamics.

To address this, a common and effective approach is to group agents into teams based on their similarity (e.g.,

agents with the same reward function or role in the system). Each team can then be assigned a separate learning

algorithm, possibly even a different type of algorithm entirely (e.g., PPO for one team, Q-learning for another), that

is better suited to their specific objective and constraints.

Within each team, however, agents are often homogeneous. In such cases, we can still apply parameter sharing

by training a single model instance for all agents in that team. This preserves computational efficiency and

enables the agents to learn from one another's experiences, without compromising the ability to specialize across

teams.

This modular, team-based approach to MARL promotes scalability and flexibility, and aligns well with the structure

of complex, multi-agent systems found in real-world applications, from autonomous vehicles and robot swarms to

multi-player games and economic simulations.

11.1 Working with Heterogeneous Agent Teams in MARLkeyboard_arrow_down

Teams can relate to each other in different ways:

Cooperative (e.g., all agents work toward a shared goal),

Competitive (e.g., zero-sum games between opposing teams),

Or mixed, where partial cooperation and competition exist.

11.1.1 How do teams relate to each other?

11.2 Necessary Importskeyboard_arrow_down

import copy
import tempfile

import torch

from matplotlib import pyplot as plt

from tensordict import TensorDictBase

from tensordict.nn import TensorDictModule, TensorDictSequential
from torch import multiprocessing

from torchrl.collectors import SyncDataCollector
from torchrl.data import LazyMemmapStorage, RandomSampler, ReplayBuffer

from torchrl.envs import (
 check_env_specs,
 ExplorationType,
 PettingZooEnv,
 RewardSum,
 set_exploration_type,
 TransformedEnv,
 VmasEnv,
)

from torchrl.modules import (
 AdditiveGaussianModule,
 MultiAgentMLP,
 ProbabilisticActor,
 TanhDelta,
)

from torchrl.objectives import DDPGLoss, SoftUpdate, ValueEstimators

from tqdm import tqdm

n_optimiser_steps : Number of gradient descent steps taken after each rollout. Typical range: 1–500 .

Higher values extract more signal from each batch but risk overfitting and slower training.

train_batch_size : Number of transitions passed to the optimizer per step (across all agents). Typical

range: 64–2048 . Larger batches improve gradient stability and GPU efficiency, while smaller ones reduce

memory use and introduce regularizing noise.

lr : Learning rate for the Adam optimizer (applied to both actor and critic networks). Typical range: 1e-5–

1e-3 . Start with 3e-4 and adjust based on learning stability and convergence speed.

max_grad_norm : Maximum ℓ2 norm for gradient clipping. Typical range: 0.5–10.0 . Helps stabilize training,

especially in sparse-reward settings.

gamma : Discount factor determining how much future rewards influence current updates. Typical range:

0.9–0.995 . Higher values favor long-term planning but increase variance.

polyak_tau : Coefficient for soft-updating target networks using Polyak averaging. Typical range: 0.001–

0.02 . Lower values lead to more stable target updates, but may lag during rapid policy changes.

11.2.1 Hyperparameterskeyboard_arrow_down

Seed
seed = 0
torch.manual_seed(seed)

Devices
is_fork = multiprocessing.get_start_method() == "fork"
device = (
 torch.device(0)
 if torch.cuda.is_available() and not is_fork
 else torch.device("cpu")

)

Sampling
frames_per_batch = 1_000
n_iters = 10
total_frames = frames_per_batch * n_iters

iteration_when_stop_training_evaders = n_iters // 2

Replay buffer
memory_size = 1_000_000

Training
n_optimiser_steps = 100
train_batch_size = 128
lr = 3e-4
max_grad_norm = 1.0

DDPG
gamma = 0.99
polyak_tau = 0.005

In this tutorial, we work with a multi-agent tagging scenario where two opposing teams - chasers and evaders -

interact in a shared 2D continuous world. The environment supports multiple agent groups running in parallel,

where all agents receive observations and produce actions synchronously at each timestep. This setup is

compatible with the TorchRL MARL API, which allows agents to be grouped, for example, by team, enabling clean

separation and structured access to their data within a TensorDict .

We use the simple_tag environment, where red-circle chasers aim to catch green-circle evaders. Chasers receive a

team reward (+10) when any of them touches an evader, while the evader receives a penalty (-10). Evaders are

faster and more agile, adding asymmetry to the gameplay. The environment also includes randomly placed static

obstacles (black circles) and features drag and elastic collisions to simulate realistic physics. Agent actions are

2D continuous force vectors that control their acceleration. Observations include the agent's position, velocity,

distances to other entities (agents and obstacles), and evader velocities.

The environment can be instantiated using either VMAS or PettingZoo, with slight differences: PettingZoo

penalizes evaders for leaving bounds, while VMAS prevents it physically. In VMAS, the reward signals for both

teams are symmetric (equal and opposite), while in PettingZoo evader rewards tend to be lower due to boundary

penalties.

To manage episode lengths, we cap each episode with a max_steps limit. This functionality is built into the

simulators, but can also be added manually using TorchRL's StepCounter transform.

11.2.2 Environmentkeyboard_arrow_down

max_steps = 100 # Environment steps before done
n_chasers = 2
n_evaders = 1
n_obstacles = 2

num_vmas_envs = (
 frames_per_batch // max_steps
)
base_env = VmasEnv(
 scenario="navigation",
 num_envs=num_vmas_envs,
 continuous_actions=True,
 max_steps=max_steps,

 device=device,
 seed=seed,
 # Scenario specific
 # num_good_agents=n_evaders,
 # num_adversaries=n_chasers,
 # num_landmarks=n_obstacles,
)

After successfully setting up the environment, an important next step is handling scenarios where multiple

distinct teams are present. In this notebook, we manage teams using a simple Python dictionary, where:

The key is the team identifier (group , e.g. "pursuers" or "evaders"),

The value is the component assigned to that team — such as a policy module, replay buffer, or learning

algorithm.

To get this structure you can retrieve the agent grouping information of a multi-agent environment using

env.group_map , which returns a dictionary mapping each group name to the list of agents it contains.

11.2.3 Setting up multi-agent environments with team separationkeyboard_arrow_down

print(f"group_map: {base_env.group_map}")

group_map: {'agents': ['agent_0', 'agent_1', 'agent_2', 'agent_3']}

print("action_spec:", base_env.full_action_spec)
print("reward_spec:", base_env.full_reward_spec)
print("done_spec:", base_env.full_done_spec)
print("observation_spec:", base_env.observation_spec)

action_spec: Composite(
 agents: Composite(
 action: BoundedContinuous(
 shape=torch.Size([10, 4, 2]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([10, 4, 2]), device=cpu, dtype=torch.float32,
 high=Tensor(shape=torch.Size([10, 4, 2]), device=cpu, dtype=torch.float32
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 device=cpu,
 shape=torch.Size([10, 4])),
 device=cpu,
 shape=torch.Size([10]))
reward_spec: Composite(
 agents: Composite(
 reward: UnboundedContinuous(
 shape=torch.Size([10, 4, 1]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([10, 4, 1]), device=cpu, dtype=torch.float32,
 high=Tensor(shape=torch.Size([10, 4, 1]), device=cpu, dtype=torch.float32
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 device=cpu,
 shape=torch.Size([10, 4])),
 device=cpu,
 shape=torch.Size([10]))
done_spec: Composite(
 done: Categorical(
 shape=torch.Size([10, 1]),
 space=CategoricalBox(n=2),
 device=cpu,
 dtype=torch.bool,
 domain=discrete),

 terminated: Categorical(
 shape=torch.Size([10, 1]),
 space=CategoricalBox(n=2),
 device=cpu,
 dtype=torch.bool,
 domain=discrete),
 device=cpu,
 shape=torch.Size([10]))
observation_spec: Composite(
 agents: Composite(
 observation: UnboundedContinuous(
 shape=torch.Size([10, 4, 18]),
 space=ContinuousBox(
 low=Tensor(shape=torch.Size([10, 4, 18]), device=cpu, dtype=torch.float32
 high=Tensor(shape=torch.Size([10, 4, 18]), device=cpu, dtype=torch.float3
 device=cpu,
 dtype=torch.float32,
 domain=continuous),
 info: Composite(
 pos_rew: UnboundedContinuous(
 shape=torch.Size([10, 4, 1]),

C i B (

env = TransformedEnv(
 base_env,
 RewardSum(
 in_keys=base_env.reward_keys,
 reset_keys=["_reset"] * len(base_env.group_map.keys()),
),
)

check_env_specs(env)

2025-05-16 19:54:29,834 [torchrl][INFO] check_env_specs succeeded!

Multi-Agent Deep Deterministic Policy Gradient (MADDPG)(Paper) extends the DDPG algorithm to multi-agent

environments by enabling each agent to learn a decentralized policy while being trained with centralized

information. It is particularly suited for environments involving both cooperative and competitive agents, where

each agent operates from its own local observation but benefits from global information during training.

11.3 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)keyboard_arrow_down

1. Actor Network:

Each agent is equipped with a deterministic actor network that maps local observations to

continuous actions .

During environment interaction (execution), only this local policy is used—supporting decentralized

decision-making.

2. Centralized Critic:

During training, each agent also has a critic network that takes as input the global state or all

agent observations and joint actions.

This critic estimates the expected return for a given multi-agent configuration and is used solely for

learning.

3. Actor Objective:

11.3.1 How It Works

()𝜇𝜃 𝑜𝑖 𝑜𝑖
𝑎𝑖

𝑄(𝑠, 𝑎)

https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.48550%2FarXiv.1706.02275

The actor is trained to maximize the critic's estimate of the expected return, using the agent's own

observations:

Gradients are computed through the centralized critic, but only the agent's own actor is updated.

4. Critic Update:

The critic is trained with the TD error using target networks:

The target and actions are computed using slowly updated target networks.

5. Target Networks and Stability:

Both actor and critic networks have corresponding target networks, which are updated using Polyak

averaging:

This reduces instability by smoothing target estimates over time.

= − [𝑄(, . . . , , (), . . . , (), . . . , ())]𝐿 actor 𝔼𝑜𝑖 𝑜1 𝑜𝑛 𝜇1 𝑜1 𝜇𝑖 𝑜𝑖 𝜇𝑛 𝑜𝑛

= [] , 𝑦 = 𝑟 + 𝛾 (,)𝐿 critic 𝔼(𝑠,𝑎,𝑟,)𝑠′ (𝑄(𝑠, 𝑎) − 𝑦) 2 𝑄 target 𝑠
′ 𝑎′

𝑄 𝑎′

← 𝜏𝜃 + (1 − 𝜏)𝜃target 𝜃target

1. Initialize:

For each agent: initialize actor , critic , and their target networks.

Set hyperparameters: learning rate, discount factor , soft update rate , and replay buffer.

2. For each training step:

Collect environment interactions using current policies.

Store transitions in a shared replay buffer.

Sample mini-batches of transitions and:

Update the critic using TD loss and target networks.

Update the actor using the critic’s gradient signal.

Soft-update target networks.

3. Repeat:

Continue training until convergence or maximum number of iterations is reached.

11.3.2 Algorithm Steps

𝜇𝜃 𝑄𝜙

𝛾 𝜏

(𝑜, 𝑎, 𝑟,)𝑜′

Centralized Training:

Ensure that the critic has access to full global information (joint observations and actions) during

training.

Decentralized Execution:

Actors should rely only on local observations, allowing them to operate independently at inference

time.

Parameter Sharing (Optional):

In cooperative teams, parameter sharing across agents with identical roles can speed up training and

reduce resource usage.

Replay Buffer:

Use a shared replay buffer to store full joint experiences, enabling proper credit assignment during

critic updates.

Target Networks:

11.3.3 Implementation Tips

Keep small (e.g., 0.005) to stabilize target updates and reduce training oscillations.𝜏

For each agent group, we define a decentralized actor as a TensorDictModule that maps local observations to

action parameters using a MultiAgentMLP , optionally sharing weights among agents within the group.

11.3.4 Actorkeyboard_arrow_down

policy_modules = {}
for group, agents in env.group_map.items():
 share_parameters_policy = True # Can change this based on the group

 policy_net = MultiAgentMLP(
 n_agent_inputs=env.observation_spec[group, "observation"].shape[
 -1
], # n_obs_per_agent
 n_agent_outputs=env.full_action_spec[group, "action"].shape[
 -1
], # n_actions_per_agents
 n_agents=len(agents), # Number of agents in the group
 centralised=False, # the policies are decentralised (i.e., each agent will act from its
 share_params=share_parameters_policy,
 device=device,
 depth=2,
 num_cells=256,
 activation_class=torch.nn.Tanh,
)

 policy_module = TensorDictModule(
 policy_net,
 in_keys=[(group, "observation")],
 out_keys=[(group, "param")],
) # We just name the input and output that the network will read and write to the input ten
 policy_modules[group] = policy_module

Once we have our policy networks defined for each team, we need to convert their raw outputs (typically

unbounded action parameters) into valid actions that match the environment's action space. This is done using a

ProbabilisticActor wrapper with a TanhDelta distribution.

Why TanhDelta ?

Bounded continuous actions: Many environments define actions within a fixed range (e.g. [-1, 1]). The

TanhDelta distribution applies a tanh function to the output of the network to ensure actions stay within

these bounds.

Deterministic policy: Unlike Normal or other stochastic distributions, TanhDelta represents a deterministic

policy (like in standard DDPG), which is typically preferred in MADDPG to reduce variance during training.

11.3.5 Wrapping Team Policies with TanhDelta Distributionskeyboard_arrow_down

policies = {}
for group, _agents in env.group_map.items():
 policy = ProbabilisticActor(
 module=policy_modules[group],
 spec=env.full_action_spec[group, "action"],
 in_keys=[(group, "param")],
 out_keys=[(group, "action")],
 distribution_class=TanhDelta,
 distribution_kwargs={

 "low": env.full_action_spec_unbatched[group, "action"].space.low,
 "high": env.full_action_spec_unbatched[group, "action"].space.high,
 },
 return_log_prob=False,
)
 policies[group] = policy

Since MADDPG uses deterministic actors (via the TanhDelta distribution), exploration during training cannot rely

on sampling from a stochastic policy like in standard policy gradient methods. Instead, we inject external noise

into the actions to encourage exploration.

Why not ε-greedy?

ε-greedy strategies are common in discrete action spaces, where the agent can randomly pick an

alternative action with some probability ε.

In continuous action spaces, however, ε-greedy is not well-defined or effective.

Instead, we use additive noise — a smoother and more natural way to perturb continuous actions during

exploration.

11.3.6 Adding Exploration to Deterministic Policies

We wrap each policy in a TensorDictSequential module that appends an AdditiveGaussianModule on top of

the original deterministic actor. This:

Adds Gaussian noise to the actions sampled from the actor.

Uses annealing to reduce the noise over time:

Starts with a high standard deviation (sigma_init = 0.9) to promote exploration.

Gradually reduces it to a low value (sigma_end = 0.1) over the first half of training (total_frames //

2).

11.3.7 Our Strategy: Additive Gaussian Noise

Using additive Gaussian noise in a deterministic policy does more than just inject randomness — it creates a

natural learning signal for how the agent should behave in familiar vs. unfamiliar situations.

11.3.8 Why Additive Noise Leads to Intelligent Exploration

Early in training, the agent is still learning the structure of the environment — how states, actions, and

rewards relate.

At this stage, the high noise level encourages broad exploration and prevents premature convergence to

suboptimal behaviors.

11.3.9 Learning the Environment Before the Noise

As training progresses, the policy begins to adapt not just to the environment, but also to the effect of noise

itself.

Because the actor is deterministic, it "sees" the added noise as part of the environment — and it can learn to

compensate for or leverage it strategically.

11.3.10 Learning to Handle Noise Later

Over time, this leads to a useful behavioral pattern:

In well-known, stable parts of the environment, the policy acts more deterministically — it has learned

what to do there.

In uncertain or novel regions, the residual noise still present causes more exploratory behavior.

This approach gives us a form of adaptive exploration — without needing to learn a separate stochastic policy or

use tricks like ε-greedy. It fits naturally into the deterministic framework of MADDPG, while still allowing for deep,

state-sensitive exploration dynamics.

11.3.11 Stable vs. unstable regionskeyboard_arrow_down

exploration_policies = {}
for group, _agents in env.group_map.items():
 exploration_policy = TensorDictSequential(
 policies[group],
 AdditiveGaussianModule(
 spec=policies[group].spec,
 annealing_num_steps=total_frames
 // 2, # Number of frames after which sigma is sigma_end
 action_key=(group, "action"),
 sigma_init=0.9, # Initial value of the sigma
 sigma_end=0.1, # Final value of the sigma
),
)
 exploration_policies[group] = exploration_policy

A separate critic is built for each agent group defined in the environment's group_map . Each critic follows the

centralized training paradigm of MADDPG, where both the agent's observations and actions are used as inputs. To

facilitate this, a TensorDictModule first concatenates each agent's observation and action into a new entry (e.g.,

("group", "obs_action")). This is then passed to a MultiAgentMLP that predicts a value estimate

("state_action_value") for each agent in the group.

Critics can optionally share parameters across agents within a group (share_params=True), which is suitable

when agents have identical roles. By organizing critics in a TensorDictSequential , the modules operate in

sequence, cleanly encapsulating both the preprocessing and value computation steps.

11.3.12 Critic Construction for MADDPGkeyboard_arrow_down

critics = {}
for group, agents in env.group_map.items():
 share_parameters_critic = True # Can change for each group
 MADDPG = True # IDDPG if False, can change for each group

 # This module applies the lambda function: reading the action and observation entries for the
 # and concatenating them in a new ``(group, "obs_action")`` entry
 cat_module = TensorDictModule(
 lambda obs, action: torch.cat([obs, action], dim=-1),
 in_keys=[(group, "observation"), (group, "action")],
 out_keys=[(group, "obs_action")],
)

 critic_module = TensorDictModule(
 module=MultiAgentMLP(
 n_agent_inputs=env.observation_spec[group, "observation"].shape[-1]
 + env.full_action_spec[group, "action"].shape[-1],
 n_agent_outputs=1, # 1 value per agent

 n_agents=len(agents),
 centralised=MADDPG,
 share_params=share_parameters_critic,
 device=device,
 depth=2,
 num_cells=256,
 activation_class=torch.nn.Tanh,
),
 in_keys=[(group, "obs_action")],
 out_keys=[
 (group, "state_action_value")
],
)

 critics[group] = TensorDictSequential(
 cat_module, critic_module
)

Put all of the actor policies into a single module, because it will apply all contained submod
agents_exploration_policy = TensorDictSequential(*exploration_policies.values())

collector = SyncDataCollector(
 env,
 agents_exploration_policy,
 device=device,
 frames_per_batch=frames_per_batch,
 total_frames=total_frames,
)

We define different replay buffers and optimizers for all of the teams

replay_buffers = {}
for group, _agents in env.group_map.items():
 replay_buffer = ReplayBuffer(
 storage=LazyMemmapStorage(
 memory_size,
), # We will store up to memory_size multi-agent transitions
 sampler=RandomSampler(),
 batch_size=train_batch_size, # We will sample batches of this size
)
 if device.type != "cpu":
 replay_buffer.append_transform(lambda x: x.to(device))
 replay_buffers[group] = replay_buffer

TorchRL provides the DDPGLoss class to simplify training with DDPG, encapsulating the algorithm's core logic

while allowing assigning different policies and critics to each agent group. Also we define seperate optimizers for

each group as well.

losses = {}
for group, _agents in env.group_map.items():
 loss_module = DDPGLoss(
 actor_network=policies[group], # Use the non-explorative policies
 value_network=critics[group],
 delay_value=True, # Whether to use a target network for the value
 loss_function="l2",
)
 loss_module.set_keys(
 state_action_value=(group, "state_action_value"),
 reward=(group, "reward"),

 done=(group, "done"),
 terminated=(group, "terminated"),
)
 loss_module.make_value_estimator(ValueEstimators.TD0, gamma=gamma)

 losses[group] = loss_module

target_updaters = {
 group: SoftUpdate(loss, tau=polyak_tau) for group, loss in losses.items()
}

optimisers = {
 group: {
 "loss_actor": torch.optim.Adam(
 loss.actor_network_params.flatten_keys().values(), lr=lr
),
 "loss_value": torch.optim.Adam(
 loss.value_network_params.flatten_keys().values(), lr=lr
),
 }
 for group, loss in losses.items()

}

1. Data Collection:

Batches of experiences are gathered from the environment using the current policy.

These batches contain observations, actions, rewards, and termination signals for all agent groups.

2. Group-wise Data Processing:

The collected data is separated by agent group (e.g., evaders vs. chasers).

Each group's batch is processed and stored in its dedicated replay buffer, ensuring group-specific

training.

3. Optimization:

Each group is trained independently using its own loss function, optimizer, and replay buffer.

For a fixed number of gradient steps, mini-batches are sampled and passed through the loss module,

followed by backpropagation and optional gradient clipping.

Policy and target networks are updated as needed.

4. Selective Training:

Training can be selectively disabled for specific agent groups after a certain number of iterations (e.g.,

freezing evaders).

5. Logging and Monitoring:

After each iteration, the mean episode reward is computed for each group and logged.

These metrics are used to update the progress bar and monitor learning dynamics in real time.

11.4 Training Loopkeyboard_arrow_down

A utility function that will shape the data samples.

def process_batch(batch: TensorDictBase) -> TensorDictBase:
 """
 If the `(group, "terminated")` and `(group, "done")` keys are not present, create them by ex
 `"terminated"` and `"done"`.

 This is needed to present them with the same shape as the reward to the loss.
 """
 for group in env.group_map.keys():
 keys = list(batch.keys(True, True))
 group_shape = batch.get_item_shape(group)
 nested_done_key = ("next", group, "done")
 nested_terminated_key = ("next", group, "terminated")
 if nested_done_key not in keys:
 batch.set(
 nested_done_key,
 batch.get(("next", "done")).unsqueeze(-1).expand((*group_shape, 1)),
)
 if nested_terminated_key not in keys:
 batch.set(
 nested_terminated_key,
 batch.get(("next", "terminated"))
 .unsqueeze(-1)
 .expand((*group_shape, 1)),
)
 return batch

def collect_and_store_group_batches(
 batch, env, train_group_map, replay_buffers
):
 current_frames = batch.numel()
 batch = process_batch(batch) # Expands "done"/"terminated" if needed

 for group in train_group_map.keys():
 group_batch = batch.exclude(
 *[
 key
 for _group in env.group_map.keys()
 if _group != group
 for key in [_group, ("next", _group)]
]
)
 group_batch = group_batch.reshape(-1)
 replay_buffers[group].extend(group_batch)

 return batch, current_frames

def optimize_groups(
 train_group_map,
 replay_buffers,
 losses,
 optimisers,
 target_updaters,
 exploration_policies,
 current_frames,
 n_optimiser_steps,
 max_grad_norm,
):
 for group in train_group_map.keys():
 for _ in range(n_optimiser_steps):
 subdata = replay_buffers[group].sample()
 loss_vals = losses[group](subdata)

 for loss_name in ["loss_actor", "loss_value"]:
 loss = loss_vals[loss_name]
 optimiser = optimisers[group][loss_name]

 loss.backward()
 params = optimiser.param_groups[0]["params"]

 torch.nn.utils.clip_grad_norm_(params, max_grad_norm)
 optimiser.step()
 optimiser.zero_grad()

 target_updaters[group].step()

 exploration_policies[group][-1].step(current_frames)

def log_episode_rewards(batch, env, episode_reward_mean_map):
 for group in env.group_map.keys():
 episode_reward_mean = (
 batch.get(("next", group, "episode_reward"))[
 batch.get(("next", group, "done"))
]
 .mean()
 .item()
)
 episode_reward_mean_map[group].append(episode_reward_mean)

 return episode_reward_mean_map

At a predefined training iteration (e.g. halfway through), we stop updating one of the teams, usually the evaders or

defenders, while the other continues to learn. This creates a dynamic where:

One team becomes a static opponent,

The other team continues adapting, trying to exploit the frozen team's strategy.

11.4.1 Stopping One Team Mid-Training

The goal is not to find a perfect equilibrium, but to demonstrate how separate training control per team can

lead to interesting multi-agent behaviors.

It mimics real-world scenarios where one side of the environment is fixed (e.g. a known strategy, a rule-

based opponent, or a pre-trained policy).

It encourages the learning team to continuously adapt, resulting in a kind of non-stationary game dynamic.

11.4.2 Why do this?keyboard_arrow_down

pbar = tqdm(
 total=n_iters,
 desc=", ".join(
 [f"episode_reward_mean_{group} = 0" for group in env.group_map.keys()]
),
)

episode_reward_mean_map = {group: [] for group in env.group_map.keys()}
train_group_map = copy.deepcopy(env.group_map)

for iteration, batch in enumerate(collector):
 batch, current_frames = collect_and_store_group_batches(batch, env, train_group_map, replay_

 optimize_groups(
 train_group_map,
 replay_buffers,
 losses,
 optimisers,
 target_updaters,
 exploration_policies,
 current_frames,

 n_optimiser_steps,
 max_grad_norm,
)

 episode_reward_mean_map = log_episode_rewards(batch, env, episode_reward_mean_map)

 pbar.set_description(
 ", ".join(
 [
 f"episode_reward_mean_{group} = {episode_reward_mean_map[group][-1]}"
 for group in env.group_map.keys()
]
),
 refresh=False,
)
 pbar.update()

episode_reward_mean_agents = -6.946998596191406: 100%|██████████| 10/10 [00:05<00:00, 1.73it

11.4.3 Resultskeyboard_arrow_down

fig, axs = plt.subplots(2, 1)
for i, group in enumerate(env.group_map.keys()):
 axs[i].plot(episode_reward_mean_map[group], label=f"Episode reward mean {group}")
 axs[i].set_ylabel("Reward")
 axs[i].axvline(
 x=iteration_when_stop_training_evaders,
 label="Agent (evader) stop training",
 color="orange",
)
 axs[i].legend()
axs[-1].set_xlabel("Training iterations")
plt.show()

Let's see how the agents solve the task:

with torch.no_grad():
 env.rollout(
 max_steps=1000,
 policy=policies['agents'],s
 callback=lambda env, _: env.render(),
 auto_cast_to_device=True,
 break_when_any_done=False,
)

The implementation codes are from Matteo Bettini - TorchRL

Referenceskeyboard_arrow_down

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Fmultiagent_competitive_ddpg.html%23critic-network
https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

This practice notebook introduces the role of communication in multi-agent reinforcement learning (MARL).

Students will examine how agents can share information to coordinate actions and overcome partial observability,

using both explicit and implicit communication strategies. Through hands-on exercises with MAPPO in

environments requiring communication, students will gain practical experience in designing, training, and

evaluating MARL systems with communication protocols.

A Survey of Multi-Agent Deep Reinforcement Learning with Communication

12. Practice - Communication in MARLkeyboard_arrow_down

12.1 Communication Overview

12.1.1 How Can We Model Communication?

12.1.2 Key Challenges

12.1.3 Performance Metrics

12.1.4 Environment: simple_speaker_listener

12.2 Training MAPPO

12.2.1 Results

References

Table of Contents

12.1 Communication Overviewkeyboard_arrow_down

https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.48550%2FarXiv.2203.08975

In fully observable environments, agents might act independently by reacting only to the environment state. But in

partially observable or cooperative settings, agents often need to:

Share intentions,

Signal observations others can't access,

Or coordinate actions to avoid conflict or redundancy.

Communication allows agents to synchronize behavior and make decisions based on shared context, not just

local inputs.

In multi-agent reinforcement learning (MARL), communication allows agents to share information and coordinate

their actions to solve complex tasks. Conceptually, communication can be thought of as a special kind of action

that does not directly affect the environment, but instead influences other agents' behavior by providing them

with additional information.

There are two primary approaches to modeling communication in MARL:

1. Explicit Communication

Agents output messages—such as learned vectors, symbolic tokens, or predefined signals—which are

passed through structured communication channels to other agents.

This method gives direct control over the message content and structure, making it useful in scenarios

where the communication protocol itself is a key research focus (e.g., emergent language, cooperation

protocols).

These messages are typically included as additional inputs in the recipient agents' policies.

The challenge is that the agents must jointly learn how to construct useful messages, how to interpret

received ones, and how to integrate communication into decision-making.

2. Implicit Communication

Here, communication is not explicitly defined. Instead, agents learn to embed information in their

observable behavior, network activations, or actions, which indirectly influence their peers.

For example, one agent may move in a certain pattern to signal intent or share state, and another agent

learns to pick up on this.

This form of communication often emerges as a byproduct of optimizing shared objectives, especially

in partially observable or decentralized settings.

Although less interpretable, it requires no explicit communication infrastructure and is more

biologically and physically plausible in some domains.

12.1.1 How Can We Model Communication?

Incorporating communication into MARL introduces several unique challenges:

Non-Stationarity: As each agent's policy—including its messaging strategy—evolves during training, the

learning environment becomes highly unstable.

Credit Assignment: It becomes difficult to trace back which messages led to which outcomes, especially

over long time horizons and noisy channels.

Message Interpretation: Beyond generating messages, agents must also learn to interpret the messages

they receive—meaning that learning effective communication becomes a two-sided problem.

Objective Alignment: Agents must balance between learning to solve the task and learning how and what to

communicate, often under separate gradients or reward signals.

12.1.2 Key Challenges

Bandwidth and Latency Constraints: In real-world scenarios, communication may be limited by cost, time, or

energy—forcing agents to compress or prioritize the information they transmit.

Protocol Emergence: Designing or inducing emergent, interpretable, and task-relevant communication

protocols is still an open problem, particularly in adversarial or mixed-motive settings.

To properly evaluate communication in MARL, we must measure both task performance and communication

efficiency. Common metrics include:

Task Reward: The overall success in completing the shared objective.

Message Entropy / Bits per Message: Quantifies how much information is being transmitted.

Mutual Information: Measures how informative messages are about observations or actions.

Communication Efficiency: Reward improvement per bit transmitted—higher means better use of

bandwidth.

Message Sparsity: Fraction of timesteps where agents actually send non-trivial messages.

Robustness to Channel Noise: Tests how fragile or resilient the learned communication is under

perturbation or partial failure.

By combining these metrics, we can assess not just whether agents communicate, but how well and how

meaningfully they do so.

12.1.3 Performance Metricskeyboard_arrow_down

Torch
import torch
import torch.nn as nn
Tensordict modules
from tensordict.nn import set_composite_lp_aggregate, TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor

Data collection
from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import ReplayBuffer
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
from torchrl.data.replay_buffers.storages import LazyTensorStorage

Env
from torchrl.envs import RewardSum, TransformedEnv
from torchrl.envs.libs.vmas import VmasEnv
from torchrl.envs.utils import check_env_specs

Multi-agent network
from torchrl.modules import MultiAgentMLP, ProbabilisticActor, TanhNormal

Loss
from torchrl.objectives import ClipPPOLoss, ValueEstimators
Utils
torch.manual_seed(0)
from matplotlib import pyplot as plt
from tqdm import tqdm

device = (
 torch.device(0)
 if torch.cuda.is_available()
 else torch.device("cpu")
)

Sampling
frames_per_batch = 10_000 # Number of team frames collected per training iteration

n_iters = 30 # Number of sampling and training iterations
total_frames = frames_per_batch * n_iters

Training
num_epochs = 30 # Number of optimization steps per training iteration
minibatch_size = 400 # Size of the mini-batches in each optimization step
lr = 3e-4 # Learning rate
max_grad_norm = 1.0 # Maximum norm for the gradients

PPO
clip_epsilon = 0.2 # clip value for PPO loss
gamma = 0.99 # discount factor
lmbda = 0.9 # lambda for generalised advantage estimation
entropy_eps = 1e-4 # coefficient of the entropy term in the PPO loss

disable log-prob aggregation
set_composite_lp_aggregate(False).set()

The simple_speaker_listener scenario in VMAS/MPE is a minimal yet powerful setup for testing explicit

communication in multi-agent systems. In this environment, one agent is designated as the speaker, while the

others act as listeners. The goal of the environment is for the listeners to reach a target location — but only the

speaker knows where this goal is. Importantly, the speaker itself cannot move. Its only role is to communicate

useful information to the listeners through an explicit message channel, enabling them to navigate toward the

goal based on this shared information. Observations are agent-specific. The speaker's observation includes the

true goal location (typically given in coordinates), while the listeners receive their own state information (such as

position and velocity), along with the messages sent by the speaker. In this scenario, all agents receive a shared

reward based on how close the listeners are to the goal, encouraging cooperation. Since only the speaker knows

the goal, it must learn to communicate effectively to help the listeners navigate. This allows the environment to

simulate a realistic setting of asymmetric information and communication. The key challenge in this task is

learning an effective communication protocol: the speaker must learn to encode helpful signals into the message,

and the listeners must learn how to interpret those signals and act accordingly. Coordination must emerge from

this shared information, despite the partial observability and role asymmetry.

12.1.4 Environment: simple_speaker_listenerkeyboard_arrow_down

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

env = VmasEnv(
 scenario="simple_speaker_listener",
 num_envs=1,
 continuous_actions=True, # VMAS supports both continuous and discrete actions
 max_steps=500,
 device=device,
 # Scenario kwarg
)

env = TransformedEnv(
 env,
 RewardSum(in_keys=env.reward_keys, out_keys=[("listener","episode_reward"),("speaker","episo
)
check_env_specs(env)

2025-05-12 10:43:09,801 [torchrl][INFO] check_env_specs succeeded!

The setup of the two teams is similar to the previous practice, but in this case we are using MAPPO instead of

MADDPG.

policy_modules = {}
for group, agents in env.group_map.items():
 policy_net = torch.nn.Sequential(
 MultiAgentMLP(
 n_agent_inputs=env.observation_spec[(group, "observation")].shape[
 -1
], # n_obs_per_agent
 n_agent_outputs=env.action_spec[group]['action'].shape[-1] * 2, # 2 * n_actions_per_age
 n_agents=len(agents), # n_agents
 centralised=False, # the policies are decentralised (ie each agent will act from its ob
 share_params=True,
 device=device,
 depth=2,
 num_cells=64,
 activation_class=torch.nn.Tanh,
),# this will just separate the last dimension into two outputs: a loc and a non-negative sc
 NormalParamExtractor(),
)
 policy_module = TensorDictModule(
 policy_net,
 in_keys=[(group, "observation")],
 out_keys=[(group, "loc"), (group, "scale")],
)
 policy_modules[group] = ProbabilisticActor(
 module=policy_module,
 spec=env.action_spec_unbatched[(group, "action")],
 in_keys=[(group, "loc"), (group, "scale")],
 out_keys=[(group, "action")],
 distribution_class=TanhNormal,
 distribution_kwargs={
 "low": env.full_action_spec_unbatched[(group,'action')].space.low,
 "high": env.full_action_spec_unbatched[(group,'action')].space.high,
 },
 return_log_prob=True,
)

print(policy_modules["listener"](env.reset()))
print("Listener working!")
print(policy_modules["speaker"](env.reset()))
print("Speaker working!")

TensorDict(
 fields={
 done: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=False)
 listener: TensorDict(
 fields={
 action: Tensor(shape=torch.Size([1, 1, 2]), device=cpu, dtype=torch.float32,
 action_log_prob: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.flo
 episode_reward: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.f
 loc: Tensor(shape=torch.Size([1, 1, 2]), device=cpu, dtype=torch.float32, is_
 observation: Tensor(shape=torch.Size([1, 1, 11]), device=cpu, dtype=torch.flo
 scale: Tensor(shape=torch.Size([1, 1, 2]), device=cpu, dtype=torch.float32, i
 batch_size=torch.Size([1, 1]),
 device=cpu,
 is_shared=False),
 speaker: TensorDict(
 fields={
 episode_reward: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.f
 observation: Tensor(shape=torch.Size([1, 1, 3]), device=cpu, dtype=torch.floa
 batch_size=torch.Size([1, 1]),
 device=cpu,
 is_shared=False),
 terminated: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=
 batch_size=torch.Size([1]),
 device=cpu,

 is_shared=False)
Listener working!
TensorDict(
 fields={
 done: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=False)
 listener: TensorDict(
 fields={
 episode_reward: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.f
 observation: Tensor(shape=torch.Size([1, 1, 11]), device=cpu, dtype=torch.flo
 batch_size=torch.Size([1, 1]),
 device=cpu,
 is_shared=False),
 speaker: TensorDict(
 fields={
 action: Tensor(shape=torch.Size([1, 1, 5]), device=cpu, dtype=torch.float32,
 action_log_prob: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.flo
 episode_reward: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.f
 loc: Tensor(shape=torch.Size([1, 1, 5]), device=cpu, dtype=torch.float32, is_
 observation: Tensor(shape=torch.Size([1, 1, 3]), device=cpu, dtype=torch.floa
 scale: Tensor(shape=torch.Size([1, 1, 5]), device=cpu, dtype=torch.float32, i
 batch_size=torch.Size([1, 1]),
 device=cpu,
 is_shared=False),
 terminated: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=
 batch_size=torch.Size([1]),
 device=cpu,
 is_shared=False)
Speaker working!

critics = {}
for group, agents in env.group_map.items():

 critic_net = MultiAgentMLP(
 n_agent_inputs=env.observation_spec[group, "observation"].shape[-1],
 n_agent_outputs=1, # 1 value per agent
 n_agents=len(agents), # n_agents
 centralised=True,
 share_params=True,
 device=device,
 depth=2,
 num_cells=256,
 activation_class=torch.nn.Tanh,
)

 critic = TensorDictModule(
 module=critic_net,
 in_keys=[(group, "observation")],
 out_keys=[(group, "state_value")],
)
 critics[group] = critic

print(critics["listener"](env.reset()))
print("Listener critic working!")
print(critics["speaker"](env.reset()))
print("Speaker critic working!")

TensorDict(
 fields={
 done: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=False)
 listener: TensorDict(
 fields={
 episode_reward: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.f
 observation: Tensor(shape=torch.Size([1, 1, 11]), device=cpu, dtype=torch.flo
 state_value: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.floa

 batch_size=torch.Size([1, 1]),
 device=cpu,
 is_shared=False),
 speaker: TensorDict(
 fields={
 episode_reward: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.f
 observation: Tensor(shape=torch.Size([1, 1, 3]), device=cpu, dtype=torch.floa
 batch_size=torch.Size([1, 1]),
 device=cpu,
 is_shared=False),
 terminated: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=
 batch_size=torch.Size([1]),
 device=cpu,
 is_shared=False)
Listener critic working!
TensorDict(
 fields={
 done: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=False)
 listener: TensorDict(
 fields={
 episode_reward: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.f
 observation: Tensor(shape=torch.Size([1, 1, 11]), device=cpu, dtype=torch.flo
 batch_size=torch.Size([1, 1]),
 device=cpu,
 is_shared=False),
 speaker: TensorDict(
 fields={
 episode_reward: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.f
 observation: Tensor(shape=torch.Size([1, 1, 3]), device=cpu, dtype=torch.floa
 state_value: Tensor(shape=torch.Size([1, 1, 1]), device=cpu, dtype=torch.floa
 batch_size=torch.Size([1, 1]),
 device=cpu,
 is_shared=False),
 terminated: Tensor(shape=torch.Size([1, 1]), device=cpu, dtype=torch.bool, is_shared=
 batch_size=torch.Size([1]),
 device=cpu,
 is_shared=False)
Speaker critic working!

from tensordict.nn import TensorDictSequential

policies = TensorDictSequential(*policy_modules.values())
collector = SyncDataCollector(
 env,
 policies,
 device=device,
 frames_per_batch=frames_per_batch,
 total_frames=total_frames,
)

replay_buffers = {}
for group in env.group_map.keys():
 replay_buffer = ReplayBuffer(
 storage=LazyTensorStorage(
 frames_per_batch, device=device
), # We store the frames_per_batch collected at each iteration
 sampler=SamplerWithoutReplacement(),
 batch_size=minibatch_size, # We will sample minibatches of this size
)
 replay_buffers[group] = replay_buffer

losses = {}
optimizers = {}
gaes = {}

for group in env.group_map.keys():

 loss_module = ClipPPOLoss(
 actor_network=policy_modules[group],
 critic_network=critics[group],
 clip_epsilon=0.2,
 entropy_coef=0.01,
 normalize_advantage=False, # Important to avoid normalizing across the agent dimension
)
 loss_module.set_keys(# We have to tell the loss where to find the keys
 reward=(group, 'reward'),
 action=(group, 'action'),
 value=(group, "state_value"),
 # These last 2 keys will be expanded to match the reward shape
 done=(group,"done"),
 terminated=(group,"terminated"),
 advantage=(group, "advantage"), # This is the key where the GAE will write
)

 loss_module.make_value_estimator(
 ValueEstimators.GAE, gamma=0.99, lmbda=0.9
) # We build GAE
 GAE = loss_module.value_estimator
 losses[group] = loss_module
 GAE.set_keys(
 advantage=(group, "advantage"), # This is the key where the GAE will write
)
 gaes[group] = GAE

optimizers = {x:torch.optim.Adam(losses[x].parameters(), lr=3e-4) for x in env.group_map.keys()}

1. Data Collection:

A batch of experiences is collected from the environment using the collector .

The batch is passed through a preprocessing step (process_batch) that ensures each agent group

has its own "done" and "terminated" keys.

These keys are expanded to match the reward tensor shape, which is required for proper alignment

during value estimation.

2. Advantage Computation (GAE):

For each agent group, Generalized Advantage Estimation (GAE) is computed without tracking

gradients.

The computed advantages and value targets are added to the data structure, enabling loss calculation

for both the policy and value functions.

3. Storing Experience:

The batch is reshaped to flatten the dimensions and then added to each group's replay_buffer .

This allows later sampling of randomized mini-batches for training while decoupling collection from

optimization.

4. Policy and Value Network Update:

For each group, a fixed number of training iterations are performed.

In each iteration, multiple mini-batches are sampled from the group's replay buffer.

For every mini-batch:

12.2 Training MAPPOkeyboard_arrow_down

The PPO loss is computed, including contributions from the policy objective, entropy

regularization, and value loss.

Backpropagation is applied, and gradient clipping may be used to improve training stability.

Each group's optimizer updates its model parameters and clears gradients afterward.

5. Logging:

At the end of each training iteration, the mean episode reward is computed separately for each group.

Rewards are selected using the "done" flag to ensure only completed episodes are evaluated.

These reward values are stored for later visualization and are displayed live via a progress bar for real-

time feedback.

def process_batch(batch):
 """
 If the `(group, "terminated")` and `(group, "done")` keys are not present, create them by ex
 `"terminated"` and `"done"`.
 This is needed to present them with the same shape as the reward to the loss.
 """
 for group in env.group_map.keys():
 keys = list(batch.keys(True, True))
 group_shape = batch.get_item_shape(group)
 nested_done_key = ("next", group, "done")
 nested_terminated_key = ("next", group, "terminated")
 if nested_done_key not in keys:
 batch.set(
 nested_done_key,
 batch.get(("next", "done")).unsqueeze(-1).expand((*group_shape, 1)),
)
 if nested_terminated_key not in keys:
 batch.set(
 nested_terminated_key,
 batch.get(("next", "terminated"))
 .unsqueeze(-1)
 .expand((*group_shape, 1)),
)
 return batch

def collect_data_and_compute_gae(batch, env, gaes, losses, replay_buffers):
 current_frames = batch.numel()
 batch = process_batch(batch)

 for group in env.group_map.keys():
 with torch.no_grad():
 gaes[group](
 batch,
 params=losses[group].critic_network_params,
 target_params=losses[group].target_critic_network_params,
)

 data_view = batch.reshape(-1)
 replay_buffers[group].extend(data_view)

 return batch, current_frames

def optimize_all_groups(env, replay_buffers, losses, optimizers, n_iters, frames_per_batch, mini
 for group in env.group_map.keys():
 for _ in range(n_iters):
 for _ in range(frames_per_batch // minibatch_size):
 subdata = replay_buffers[group].sample()
 loss_vals = losses[group](subdata)

 loss_value = (
 loss_vals["loss_objective"]
 + loss_vals["loss_entropy"]
 + loss_vals["loss_critic"]
)

 loss_value.backward()
 torch.nn.utils.clip_grad_norm_(losses[group].parameters(), 1.0)
 optimizers[group].step()
 optimizers[group].zero_grad()

pbar = tqdm(
 total=n_iters,
 desc=", ".join(
 [f"episode_reward_mean_{group} = 0" for group in env.group_map.keys()]
),
)
episode_reward_mean_map = {group: [] for group in env.group_map.keys()}

for iteration, batch in enumerate(collector):
 batch, current_frames = collect_data_and_compute_gae(batch, env, gaes, losses, replay_buffer

 optimize_all_groups(env, replay_buffers, losses, optimizers, n_iters, frames_per_batch, mini

 # Logging
 for group in env.group_map.keys():
 episode_reward_mean = (
 batch.get(("next", group, "episode_reward"))[
 batch.get(("next", group, "done"))
]
 .mean()
 .item()
)
 episode_reward_mean_map[group].append(episode_reward_mean)

 pbar.set_description(
 ", ".join(
 [
 f"episode_reward_mean_{group} = {episode_reward_mean_map[group][-1]}"
 for group in env.group_map.keys()
]
),
 refresh=False,
)
 pbar.update()

episode_reward_mean_speaker = -628.1336669921875, episode_reward_mean_listener = -628.1336669

12.2.1 Resultskeyboard_arrow_down

plt.plot(episode_reward_mean_map["listener"], label="Listener")
plt.xlabel("Training iterations")
plt.ylabel("Reward")
plt.title("Episode reward mean")
plt.show()

Let's see how the agents solve the task:

with torch.no_grad():
 env.rollout(
 max_steps=1000,
 policy=policies,
 callback=lambda env, _: env.render(),
 auto_cast_to_device=True,
 break_when_any_done=False,
)

This implementation is heavily based on the code from Matteo Bettini:

MULTI-AGENT REINFORCEMENT LEARNING (PPO) WITH TORCHRL TUTORIAL

COMPETITIVE MULTI-AGENT REINFORCEMENT LEARNING (DDPG) WITH TORCHRL TUTORIAL

Referenceskeyboard_arrow_down

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Fmultiagent_ppo.html
https://www.google.com/url?q=https%3A%2F%2Fdocs.pytorch.org%2Frl%2Fstable%2Ftutorials%2Fmultiagent_competitive_ddpg.html%23critic-network
https://www.google.com/url?q=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0%2F

Collective Intelligence – Assignment 1

First Assignment
Collective Intelligence

Agent-Based Modeling

2025

Task Description

This assignment requires you to create a custom NetLogo model based on a social, biological,
or physical phenomenon that interests you or that you wish to explore further. Please read the
requirements below carefully to complete the assignment successfully.

1. Objective:

• Develop a unique NetLogo model to simulate a phenomenon of your choice.

• You may use pre-defined models in the NetLogo library for inspiration, but you must not use
them as a solution.

2. Model Requirements:

• The environment must be a 2D grid map with horizontal and vertical wrapping enabled.

• Map size: Choose between 20× 20 and 128× 128.

• The interface must include:

– At least 5 adjustable hyperparameters (e.g., Sliders, Switches, Choosers, Inputs).

– Buttons for go, go-once, and setup.

– At least 3 reporters (via Monitors or Plots) to display model data.

• Your code should incorporate:

– Agent breeds.

– At least 3 agent attributes and 3 global variables.

– Helper functions to improve code readability and structure.

• Provide minimal documentation following the markdown format in the NetLogo Info Tab
(Info -> Edit).

3. Experiment Requirements:

• Use the BehaviorSpace tool to run an experiment:

– Vary a chosen hyperparameter across an interval where you predict a phase transition or
tipping point may occur.

– Measure 2 reporters of your choice for the experiment.

1

Collective Intelligence – Assignment 1

– Set repetitions to 10.

• Export experiment results to a CSV file.

• Create visualizations (plots) of the experiment results.

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. If you choose to present, please follow these guidelines:

1. Duration: The presentation should last 5–6 minutes and include approximately 5–6 slides.

2. Content:

• Introduction: Explain your model idea and the motivation for your topic.

• Implementation Details: Highlight key elements of your code, including interface elements
(buttons, hyperparameters) and design decisions.

• Demonstration: Include a GIF or short video of your model in action.

• Experiment Results: Present additional runs, experiments, and dynamic changes in your
model. Show plots from BehaviorSpace results and explain their significance.

3. Submission Requirements:

• Save all work into a single .nlogo file.

• Include the BehaviorSpace configuration file (.xml).

• Convert your PowerPoint presentation into a PDF and include it in your submission.

Assignment Submission and General Rules

• Submission Files:

– .nlogo file (model)

– .xml file (BehaviorSpace experiment configuration)

– PowerPoint presentation in .pdf format

– Submit a zipped file containing the .nlogo, .xml, and converted .pdf presentation to
Canvas.

• Deadline: March 12th, Wednesday 11:59 PM (strict, no late submission)

• Important Notes:

– Copying others’ code results in automatic failure (grade 0)

– Not submitting anything results in a grade of 0

– Submitting something, as long as it is not an empty NetLogo project, might result in a
minimum grade of 1

2

Collective Intelligence – Assignment 1

By completing this assignment, you will enhance your understanding of NetLogo, gain hands-on expe-
rience in modeling complex systems, and improve your analytical skills through experimentation and
visualization.

Prepared by: Tamás Takács
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

3

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

Mechanism Design
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on implementing a Multi-Agent Proximal Policy Optimization (MAPPO)
algorithm using TorchRL within a dynamic, graph-based MARL environment. Based on the famous

1

https://pytorch.org/rl/stable/index.html

Collective Intelligence – Assignment 2

board game Scotland Yard, agents operate in asymmetric roles—one as a target (Mr. X) and others
as cooperative pursuers (Policemen).
Project GitHub Link: https://github.com/elte-collective-intelligence/Mechanism-Design

The current project utilizes:

• A custom graph environment implemented in the PettingZoo AEC format.

• A centralized value function and shared policy (IDQN) for Policemen.

• A dynamic adversary (Mr. X), controlled by DQN or PPO.

• Meta-learning capabilities that adjust difficulty during training.

• Experimental Graph Neural Networks (GNNs) to process local agent neighborhoods and guide
movement strategies.

• Stable-Baselines3 for initial training, with TensorBoard + WandB logging and trajectory vi-
sualizations.

The new assignment goal is to replace the Policemen’s current IDQN policy with a MAPPO-based
TorchRL implementation, supporting Centralized Training with Decentralized Execution (CTDE).
Policemen must learn to coordinate efficiently on the graph using only local views, while Mr. X
attempts to evade detection for as long as possible. [CTDE Reference]
While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL,
if helpful for bootstrapping.

Example: Consider a team of police drones tracking a stealthy target in an urban environment. Each
drone has local neighborhood information but no global view. By learning together during training but
acting independently at test time, they must corner and capture the intruder with optimal coverage.

Environment Phases

1. Spawn Phase: All agents are randomly placed on graph nodes.

2. Pursuit Phase: Policemen must collaborate to locate and catch Mr. X using local views.

3. Evasion Phase (Mr. X): Uses stealthy navigation to maximize survival time.

Assignment Directions

You may choose between the following development directions for this assignment:

• Option 1: Incremental Migration
Maintain the current implementation based on Stable-Baselines3, PettingZoo, and Supersuit,
and gradually migrate to TorchRL. This involves:

– Converting the current environment to TorchRL’s EnvBase format.

– Replacing IDQN with MAPPO using TorchRL’s PPO implementation.

– Retaining logging (TensorBoard + WandB), curriculum integration, and Docker support.

– Adding structured unit tests, visualization tools, and configuration logic.

2

https://github.com/elte-collective-intelligence/Mechanism-Design
https://arxiv.org/abs/2409.03052

Collective Intelligence – Assignment 2

• Option 2: Reimplementation Using Native TorchRL
Build a new version of the environment directly with TorchRL-native components, including:

– MAPPO-based CTDE pipeline.

– GNN-encoded local observations.

– Fully decentralized execution logic.

– Structured logging, evaluation, and visualization tools.

Elements to Preserve:

• MAPPO-style PPO Algorithm: Centralized critic, shared policy for Policemen, trained with
PPO-Clip. [PPO-Clip]

• Map topology represented as a graph (nodes = positions, edges = moves).

• Adversarial Setup: Separate policy for Mr. X (e.g., DQN or PPO).

Elements to Improve or Redesign:

• GNN-Based State Encoding. [Graph Spaces]

• Encourage coverage, triangulation, and proximity coordination. Penalize isolated movement or
redundant overlaps.

• Curriculum Learning: Gradually increase graph size, node degrees, and evasion intelligence.
[Curriculum Learning]

• Evaluation Metrics:

– Capture rate

– Policemen clustering entropy

– Average distance to Mr. X

– Coverage heatmaps

A Possible Structured Plan for Reimplementation Using Native
TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile
| ‘-- entrypoint.sh
|-- logs/

3

https://arxiv.org/abs/1707.06347
https://gymnasium.farama.org/_modules/gymnasium/spaces/graph/
https://arxiv.org/abs/2302.03429

Collective Intelligence – Assignment 2

|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

1. Environment Setup

Define a Custom TorchRL-Compatible Environment
Create a class Env(EnvBase) in src/envs/env.py with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

Ensure all I/O uses TensorDict. Observations should be partial and relative, including distance to the
shape center and nearest neighbor. Use torchrl.envs.transforms for normalization or preprocessing.
Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition

Define Policy and Critic Modules
In src/agents/ppo_agent.py, implement:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

4

Collective Intelligence – Assignment 2

A centralized critic using ValueOperator:

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration
Use SyncDataCollector or MultiSyncDataCollector:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

Loss Function
Use ClipPPOLoss:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

4. Training Loop

Training in main.py
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging

Logging
Use TensorBoard or W&B:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

5

Collective Intelligence – Assignment 2

Evaluation
Run trained policies with local observations only (CTDE) and export GIFs using pygame, matplotlib,
or imageio. Store results in outputs/.

6. Configuration Management

Hydra Integration
Use Hydra or structured YAML configs in configs/:

• configs/env/task.yaml

• configs/algo/ppo.yaml

• configs/experiment/sweep.yaml

Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

7. Testing

Unit Tests
Place tests in test/:

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility

Add Docker Support
Create a docker/ folder with the following:
Dockerfile:

6

Collective Intelligence – Assignment 2

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)
Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.

Duration

Aim for a few well-organized slides that complement your documentation.

Suggested Structure

1. Title & Objective: Brief objective and project direction.

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

Important Notes

The core of your submission is your documentation and code, which will be the primary basis for
grading. The presentation is your opportunity to highlight contributions and insights.

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

7

Collective Intelligence – Assignment 2

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Zoltán Barta
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

8

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

Cooperative Mingle
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) sys-
tem using TorchRL. Inspired by the series Squid Game, this project requires agents to learn coordinated
decision-making and spatial negotiation in a competitive-cooperative setting.
Agents begin each episode standing on a rotating central platform. Once the platform stops spinning,
agents must quickly and cooperatively navigate toward rooms positioned around the arena, each with
limited capacity. Their goal is to fill the rooms fairly and efficiently, avoiding overcrowding or exclusion,
which results in penalties or failure.

Project GitHub Link:
https://github.com/elte-collective-intelligence/student-particle-swarm-optimization

At this stage, the project is in its early conceptual phase, no implementation or starter code has
been developed yet. The idea remains exploratory and has not been successfully realized in previous
semesters. It represents an original contribution within the context of the class.

1

https://pytorch.org/rl/stable/index.html
https://github.com/elte-collective-intelligence/student-particle-swarm-optimization

Collective Intelligence – Assignment 2

This task is best addressed using the Centralized Training with Decentralized Execution
(CTDE) paradigm. During training, agents can access global critic information to stabilize learn-
ing, but during evaluation, each agent must act independently based on partial, local observations.
See: https://arxiv.org/abs/2409.03052
While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL,
if helpful for bootstrapping.

Environment Phases

1. At the start of each episode, agents are spun into randomized positions on a central circular arena.
During this rotation phase, agents must observe others, explore the map, and begin to organize
themselves into informal teams. These teams are not predefined—agents must learn heuristics or
strategies to determine who to align with, how to split up, and what areas to claim.

2. Once the spinning stops, the arena suddenly reveals a fixed set of rooms around its perimeter—each
with limited capacity (e.g., 3 agents max). Agents must quickly and fairly occupy these rooms,
avoiding overfilling, collisions, or being left out. Rooms are claimed on a first-come, first-serve
basis.

This environment is designed to study spontaneous cooperation, social grouping, and negotiation-like
behavior.

Assignment Directions

You may choose between the following development directions for this assignment:

• Option 1: Incremental Migration (not available for Cooperative Mingle)
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and Petting-
Zoo, and gradually migrate the system to TorchRL-compatible components while preserving
existing functionality. This includes integration of configuration management (e.g., Hydra or
YAML), logging via Weights & Biases and TensorBoard, Docker for reproducibility, structured
unit testing, visualization, and a clear README. (Option not available for this task.)

• Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start
from a TorchRL-compatible environment or adapt an existing one. Design the training pipeline,
agent logic, and evaluation entirely within the TorchRL framework. Include CTDE, configuration
management, Docker, logging, visualization, testing, and documentation.

Elements to Consider

• Utilize Proximal Policy Optimization, specifically the clipped variant (PPO-Clip), as the core
learning algorithm. Optionally experiment with MADDPG, QMIX, or VDN.

• Custom Environment: Rotating phase, timed transition, discrete rooms, room capacities, colli-
sions, overshooting penalties.

• Curriculum Learning: Start with fewer agents and larger rooms, then increase difficulty.

• Shape the reward function to promote desirable behaviors such as occupancy and coordination.

• Design and track custom metrics: room fill rate, completion time, collisions, idle agents.

2

https://arxiv.org/abs/2409.03052
https://hydra.cc/
https://wandb.ai/
https://www.docker.com/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

Collective Intelligence – Assignment 2

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile
| ‘-- entrypoint.sh
|-- logs/
|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

A Possible Structured Plan for Implementation Using Native TorchRL

1. Environment Setup

Define a Custom TorchRL-Compatible Environment
Create a class Env(EnvBase) in src/envs/env.py with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

3

Collective Intelligence – Assignment 2

Ensure all I/O uses TensorDict. Observations should be partial and relative, including distance to the
shape center and nearest neighbor. Use torchrl.envs.transforms for normalization or preprocessing.
Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition

Define Policy and Critic Modules
In src/agents/ppo_agent.py, implement:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator:

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration
Use SyncDataCollector or MultiSyncDataCollector:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

Loss Function
Use ClipPPOLoss:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

4

Collective Intelligence – Assignment 2

4. Training Loop

Training in main.py
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging

Logging
Use TensorBoard or W&B:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

Evaluation
Run trained policies with local observations only (CTDE) and export GIFs using pygame, matplotlib,
or imageio. Store results in outputs/.

6. Configuration Management

Hydra Integration
Use Hydra or structured YAML configs in configs/:

• configs/env/task.yaml

• configs/algo/ppo.yaml

• configs/experiment/sweep.yaml

Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

7. Testing

Unit Tests
Place tests in test/:

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

5

Collective Intelligence – Assignment 2

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility

Add Docker Support
Create a docker/ folder with the following:
Dockerfile:

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)
Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.

Duration

Aim for a few well-organized slides that complement your documentation.

Suggested Structure

1. Title & Objective: Brief objective and project direction.

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

6

Collective Intelligence – Assignment 2

Important Notes

The core of your submission is your documentation and code, which will be the primary basis for
grading. The presentation is your opportunity to highlight contributions and insights.

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Tamás Takács
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

7

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

Pathfinding
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) sys-
tem using TorchRL, where agents must collaboratively solve multi-agent pathfinding tasks in complex,
obstacle-rich environments. This assignment explores adaptive coordination, where agents must nav-
igate dynamically generated maps, avoid hazards, and reach their targets in cooperation with team-
mates. These environments mimic real-world challenges such as robot swarm navigation, emergency
evacuation, or warehouse logistics, where route planning is made harder by changing layouts, moving
goals, and the presence of other agents.

1

https://pytorch.org/rl/stable/index.html

Collective Intelligence – Assignment 2

Project GitHub Link: https://github.com/elte-collective-intelligence/student-pathfinding
(highly recommend MG’s work)
The current project versions utilize:

• A PettingZoo AEC (Agent Environment Cycle) environment, customized to simulate 2D pathfind-
ing with discrete grid or continuous motion. [AEC API]

• The Stable-Baselines3 PPO algorithm for training shared policies. [SB3 PPO]

• Real-time visual rendering using pygame and post-processed visualizations.

• Centralized Training and Centralized Execution model. A single shared policy is trained alongside
a centralized value function that has access to shared information across agents. During evaluation,
this same centralized policy is used by all agents, meaning that each agent’s behavior is determined
by a common model, rather than acting independently based on purely local observations.

• A simple agent evaluation framework. (SB3 with TensorBoard Integration)

Agents must navigate from their spawn points to assigned targets while avoiding obstacles, minimizing
path length, and coordinating to avoid collisions or deadlocks. The environment may be static or
dynamic, with changing obstacle layouts or moving goals. This setting requires cooperative behavior,
best addressed with a Centralized Training with Decentralized Execution (CTDE) approach, where
policies are trained with access to global critic information but executed independently by each agent.
[CTDE Reference]
While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL,
if helpful for bootstrapping.

Environment Phases

1. Planning Phase (Warm-Up): Agents can scan the environment or explore without penalties.

2. Execution Phase: A timer starts and agents are evaluated based on path efficiency, collaboration,
and avoidance of congestion.

Assignment Directions

You may choose between the following development directions for this assignment:

• Option 1: Incremental Migration
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and PettingZoo,
and gradually migrate the system to TorchRL. This approach involves adapting the environment
and training loop to TorchRL-compatible components while preserving existing functionality. The
migration should also include:

– Integration of a configuration management system (e.g., Hydra or structured YAML)

– Preservation of logging via both Weights & Biases (WandB) and TensorBoard

– Docker for reproducibility and cross-platform compatibility

– Structured unit testing (at least 2 components)

– Visualization outputs (e.g., GIFs, performance plots)

2

https://github.com/elte-collective-intelligence/student-pathfinding
https://pettingzoo.farama.org/api/aec/
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://arxiv.org/abs/2409.03052
https://hydra.cc/
https://wandb.ai/
https://www.docker.com/

Collective Intelligence – Assignment 2

– A clear and well-maintained README.md with setup and usage instructions

• Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start
from a TorchRL-compatible environment (e.g., based on EnvBase) or adapt an existing one. Design
the training pipeline, agent interaction logic, and evaluation procedures entirely within the TorchRL
framework. As with the first option, the final solution should support:

– Centralized Training with Decentralized Execution (CTDE)

– Configuration management

– Docker deployment

– WandB/TensorBoard logging

– Visualization and reproducibility tools

– Testing and documentation

Elements to Preserve:

• PPO Algorithm: Continue using Proximal Policy Optimization, specifically the clipped variant
(PPO-Clip), as the core learning algorithm. [PPO-Clip] (Optionally, you could experiment with
MADDPG, QMIX, VDN)

• MPE Environment (Optional): The Multi-Agent Particle Environment (MPE) can be retained,
though you are also encouraged to consider reimplementing a simplified particle-based environ-
ment using native TorchRL. [PettingZoo MPE]

• Core Objective: The primary task remains, agents must collaboratively solve multi-agent pathfind-
ing tasks in a complex, obstacle-rich environment.

• Multi-Agent Setting

Elements to Improve or Redesign:

• Environmental Complexity: Introduce walls, traps, moving hazards, or multi-room maps with
choke points to increase coordination complexity.

• Curriculum Learning: Start with simple mazes or open maps, then gradually increase complexity
(e.g., tighter corridors, dynamic targets, agent congestion). [Curriculum Learning]

• Reward Design: Develop a reward function that balances path efficiency, obstacle avoidance,
goal completion, and collaborative movement (e.g., penalizing blocking teammates or deadlocks).
[Reward Shaping]

• Your system should encourage behaviors like traffic yielding, lane forming, or goal re-routing
when paths are blocked.

• Evaluation Metrics: Add custom metrics for training and evaluation, such as:

– Average path length

– Success rate (% agents reaching their goal)

– Collision rate

– Completion time variance

– Congestion/delay penalties

3

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://pettingzoo.farama.org/environments/mpe/
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

Collective Intelligence – Assignment 2

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile
| ‘-- entrypoint.sh
|-- logs/
|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

1. Environment Setup

Define a Custom TorchRL-Compatible Environment
Create a class Env(EnvBase) in src/envs/env.py with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

4

Collective Intelligence – Assignment 2

Ensure all I/O uses TensorDict. Observations should be partial and relative, including distance to the
shape center and nearest neighbor. Use torchrl.envs.transforms for normalization or preprocessing.
Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition

Define Policy and Critic Modules
In src/agents/ppo_agent.py, implement:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator:

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration
Use SyncDataCollector or MultiSyncDataCollector:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

Loss Function
Use ClipPPOLoss:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

5

Collective Intelligence – Assignment 2

4. Training Loop

Training in main.py
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging

Logging
Use TensorBoard or W&B:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

Evaluation
Run trained policies with local observations only (CTDE) and export GIFs using pygame, matplotlib,
or imageio. Store results in outputs/.

6. Configuration Management

Hydra Integration
Use Hydra or structured YAML configs in configs/:

• configs/env/task.yaml

• configs/algo/ppo.yaml

• configs/experiment/sweep.yaml

Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

7. Testing

Unit Tests
Place tests in test/:

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

6

Collective Intelligence – Assignment 2

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility

Add Docker Support
Create a docker/ folder with the following:
Dockerfile:

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)
Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.

Duration

Aim for a few well-organized slides that complement your documentation.

Suggested Structure

1. Title & Objective: Brief objective and project direction.

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

7

Collective Intelligence – Assignment 2

Important Notes

The core of your submission is your documentation and code, which will be the primary basis for
grading. The presentation is your opportunity to highlight contributions and insights.

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Tamás Takács
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

8

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

Patrolling
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) sys-
tem using TorchRL. In this project, autonomous drones engage in a strategic game of pursuit and
evasion. A team of patroller drones is tasked with locating and intercepting intruder drones,
which aim to reach a target destination without being detected. Patrollers must coordinate their be-
havior through indirect communication to maximize detection success, while intruders use stealth and
strategy to evade them.
The patrolling agents must learn to coordinate movement and coverage based on partial observations
and indirect cooperation. Intruders, on the other hand, act as stealthy adversaries seeking to bypass

1

https://pytorch.org/rl/stable/index.html

Collective Intelligence – Assignment 2

detection. Both teams operate under realistic observation constraints. This task is best approached
using the Centralized Training with Decentralized Execution (CTDE) paradigm. During
training, patroller agents may access shared critic and team-level information to stabilize learning.
During evaluation, however, each agent must act independently based on local observations, reflecting
realistic deployment constraints. [CTDE Reference]
While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL,
if helpful for bootstrapping.

Example: Imagine border surveillance drones patrolling a national perimeter, while intruder drones
attempt to penetrate the area. Patrollers must coordinate with minimal communication, covering blind
spots and reacting to emerging threats.

Environment Phases

1. Deployment Phase: Patrollers and intruders are spawned randomly.

2. Patrolling Phase: Patrollers move to cover territory and maximize visibility.

3. Intrusion Phase: Intruders attempt to cross undetected while patrollers intercept.

Assignment Directions

You may choose between the following development directions for this assignment:

• Option 1: Incremental Migration
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and PettingZoo,
and gradually migrate the system to TorchRL. This approach involves adapting the environment
and training loop to TorchRL-compatible components while preserving existing functionality. The
migration should also include:

– Integration of a configuration management system (e.g., Hydra or structured YAML)

– Preservation of logging via both Weights & Biases (WandB) and TensorBoard

– Docker for reproducibility and cross-platform compatibility

– Structured unit testing (at least 2 components)

– Visualization outputs (e.g., GIFs, performance plots)

– A clear and well-maintained README.md with setup and usage instructions

• Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start
from a TorchRL-compatible environment (e.g., based on EnvBase) or adapt an existing one. Design
the training pipeline, agent interaction logic, and evaluation procedures entirely within the TorchRL
framework. As with the first option, the final solution should support:

– Centralized Training with Decentralized Execution (CTDE)

– Configuration management

– Docker deployment

– WandB/TensorBoard logging

2

https://arxiv.org/abs/2409.03052
https://hydra.cc/
https://wandb.ai/
https://www.docker.com/

Collective Intelligence – Assignment 2

– Visualization and reproducibility tools

– Testing and documentation

Elements to Preserve:

• PPO Algorithm: Continue using Proximal Policy Optimization, specifically the clipped variant
(PPO-Clip), as the core learning algorithm. [PPO-Clip] (Optionally, you could experiment with
MADDPG, QMIX, VDN)

• MPE Environment (Optional): The Multi-Agent Particle Environment (MPE) can be retained,
though you are also encouraged to consider reimplementing a simplified particle-based environ-
ment using native TorchRL. [PettingZoo MPE]

• Core Objective: The primary task remains, agents must collaboratively patrol an area to detect
and intercept intruder agents based on partial local observations.

• Adversarial Multi-Agent Setting

Elements to Improve or Redesign:

• Add intruder speed boosts, directional detection cones, hiding zones, and terrain or obstacle
elements that affect visibility.

• Curriculum Learning: Gradually increase difficulty by varying the number of intruders, expanding
patrol regions, or increasing intruder speed. [Curriculum Learning]

• Design a reward function that promotes effective patrolling strategies, including interception
efficiency, area coverage, and minimizing redundant paths. [Reward Shaping]

• Track key indicators such as:

– Detection rate

– Coverage entropy

– Time to detection

– Agent distribution balance

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile
| ‘-- entrypoint.sh
|-- logs/

3

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://pettingzoo.farama.org/environments/mpe/
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

Collective Intelligence – Assignment 2

|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

1. Environment Setup

Define a Custom TorchRL-Compatible Environment
Create a class Env(EnvBase) in src/envs/env.py with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

Ensure all I/O uses TensorDict. Observations should be partial and relative, including distance to the
shape center and nearest neighbor. Use torchrl.envs.transforms for normalization or preprocessing.
Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition

Define Policy and Critic Modules
In src/agents/ppo_agent.py, implement:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

4

Collective Intelligence – Assignment 2

A centralized critic using ValueOperator:

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration
Use SyncDataCollector or MultiSyncDataCollector:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

Loss Function
Use ClipPPOLoss:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

4. Training Loop

Training in main.py
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging

Logging
Use TensorBoard or W&B:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

5

Collective Intelligence – Assignment 2

Evaluation
Run trained policies with local observations only (CTDE) and export GIFs using pygame, matplotlib,
or imageio. Store results in outputs/.

6. Configuration Management

Hydra Integration
Use Hydra or structured YAML configs in configs/:

• configs/env/task.yaml

• configs/algo/ppo.yaml

• configs/experiment/sweep.yaml

Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

7. Testing

Unit Tests
Place tests in test/:

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility

Add Docker Support
Create a docker/ folder with the following:
Dockerfile:

6

Collective Intelligence – Assignment 2

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)
Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.

Duration

Aim for a few well-organized slides that complement your documentation.

Suggested Structure

1. Title & Objective: Brief objective and project direction.

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

Important Notes

The core of your submission is your documentation and code, which will be the primary basis for
grading. The presentation is your opportunity to highlight contributions and insights.

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

7

Collective Intelligence – Assignment 2

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Zoltán Barta
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

8

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

Formation
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) sys-
tem using TorchRL, where agents collaboratively self-organize inside dynamically generated geometric
patterns (e.g., circles, squares, convex and non-convex shapes).
Project GitHub Link: https://github.com/elte-collective-intelligence/student-formation/
tree/main

The current project utilizes:

• A PettingZoo AEC (Agent Environment Cycle) environment, customized to simulate
physical formations with simple agent dynamics. [AEC API]

• The Stable-Baselines3 PPO algorithm for training shared policies. [SB3 PPO]

1

https://pytorch.org/rl/stable/index.html
https://github.com/elte-collective-intelligence/student-formation/tree/main
https://github.com/elte-collective-intelligence/student-formation/tree/main
https://pettingzoo.farama.org/api/aec/
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html

Collective Intelligence – Assignment 2

• Real-time visual rendering using pygame and post-processed visualizations with GIF exports
using PIL and imageio. [pygame]

• Centralized Training and Centralized Execution model. A single shared policy is trained
alongside a centralized value function that has access to shared information across agents. During
evaluation, this same centralized policy is used by all agents, meaning that each agent’s behavior
is determined by a common model, rather than acting independently based on purely local
observations.

• A simple agent evaluation framework. (SB3 with TensorBoard Integration, SB3 with WANDB
Integration)

Agents must collaboratively enter the shape and space themselves as evenly as possible, adapting to
both static and dynamically shifting shapes. This setting requires cooperative behavior, best addressed
with a Centralized Training with Decentralized Execution (CTDE) approach, where policies
are trained with access to global critic information but executed independently by each agent. [CTDE
Reference]
While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL,
if helpful for bootstrapping.

Example: Imagine a swarm of rescue drones dispatched over a disaster zone. They must quickly posi-
tion themselves into various geometric formations—grids, circles, spirals—to optimize communication
coverage. The formations change based on terrain and mission phase.

Environment Phases

1. Entry phase: agents approach the shape.

2. Alignment phase: agents adjust their positions.

3. Reconfiguration: mid-episode shape changes.

Assignment Directions

You may choose between the following development directions for this assignment:

• Option 1: Incremental Migration
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and Petting-
Zoo, and gradually migrate the system to TorchRL-compatible components while preserving
existing functionality. The migration should also include:

– Integration of a configuration management system (e.g., Hydra or structured YAML)

– Preservation of logging via both Weights & Biases (WandB) and TensorBoard

– Docker for reproducibility and cross-platform compatibility

– Structured unit testing (at least 2 components)

– Visualization outputs (e.g., GIFs, performance plots)

– A clear and well-maintained README.md with setup and usage instructions

2

https://www.pygame.org/news
https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052
https://hydra.cc/
https://wandb.ai/
https://www.tensorflow.org/tensorboard
https://www.docker.com/

Collective Intelligence – Assignment 2

• Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start
from a TorchRL-compatible environment or adapt an existing one. Design the training pipeline,
agent interaction logic, and evaluation procedures entirely within the TorchRL framework. As
with the first option, the final solution should support:

– Centralized Training with Decentralized Execution (CTDE)

– Configuration management

– Docker deployment

– WandB/TensorBoard logging

– Visualization and reproducibility tools

– Testing and documentation

Elements to Preserve:

• PPO Algorithm: Continue using Proximal Policy Optimization, specifically the clipped variant
(PPO-Clip), as the core learning algorithm. [PPO-Clip] (Optionally, you could experiment with
MADDPG, QMIX, VDN)

• MPE Environment (Optional): The Multi-Agent Particle Environment (MPE) can be re-
tained, though you are also encouraged to consider reimplementing a simplified particle-based
environment using native TorchRL. [PettingZoo MPE]

• Core Objective: The primary task remains, agents must coordinate to form structured spatial
arrangements within designated shapes.

• Multi-Agent Setting

Elements to Improve or Redesign:

• Environmental Complexity: Introduce static or dynamic obstacles to increase navigation
difficulty and promote more strategic coordination.

• Curriculum Learning: Implement a training curriculum that gradually increases difficulty, e.g.,
by varying shape complexity or introducing shape changes mid-episode. [Curriculum Learning]

• Reward Design: Develop a more comprehensive reward function that balances formation ac-
curacy, distance to assigned target position, agent spacing, boundary adherence, and obstacle
avoidance. [Reward Shaping]

• Evaluation Metrics: Add custom metrics for training and evaluation, such as:

– Formation symmetry

– Agent spacing variance

– Obstacle proximity penalties

– Formation completion time

3

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://pettingzoo.farama.org/environments/mpe/
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

Collective Intelligence – Assignment 2

A Possible Structured Plan for Reimplementation Using Native
TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile
| ‘-- entrypoint.sh
|-- logs/
|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

1. Environment Setup

Define a Custom TorchRL-Compatible Environment
Create a class Env(EnvBase) in src/envs/env.py with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

Ensure all I/O uses TensorDict. Observations should be partial and relative, including distance to the
shape center and nearest neighbor. Use torchrl.envs.transforms for normalization or preprocessing.

4

Collective Intelligence – Assignment 2

Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition

Define Policy and Critic Modules
In src/agents/ppo_agent.py, implement:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator:

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration
Use SyncDataCollector or MultiSyncDataCollector:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

Loss Function
Use ClipPPOLoss:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

5

Collective Intelligence – Assignment 2

4. Training Loop

Training in main.py
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging

Logging
Use TensorBoard or W&B:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

Evaluation
Run trained policies with local observations only (CTDE) and export GIFs using pygame, matplotlib,
or imageio. Store results in outputs/.

6. Configuration Management

Hydra Integration
Use Hydra or structured YAML configs in configs/:

• configs/env/task.yaml

• configs/algo/ppo.yaml

• configs/experiment/sweep.yaml

Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

7. Testing

Unit Tests
Place tests in test/:

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

6

Collective Intelligence – Assignment 2

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility

Add Docker Support
Create a docker/ folder with the following:
Dockerfile:

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)
Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.

Duration

Aim for a few well-organized slides that complement your documentation.

Suggested Structure

1. Title & Objective: Brief objective and project direction.

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

7

Collective Intelligence – Assignment 2

Important Notes

The core of your submission is your documentation and code, which will be the primary basis for
grading. The presentation is your opportunity to highlight contributions and insights.

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Tamás Takács
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

8

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

Particle Swarm Optimization
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) sys-
tem using TorchRL. The goal is to design and train a swarm of particles that collaboratively optimize a
given objective function in a multi-dimensional search space. While traditionally PSO relies on deter-
ministic position and velocity updates, this assignment explores a new angle: training particle agents
using reinforcement learning to learn optimization behavior in a swarm setting. Agents are expected to
mimic cooperative PSO-like behavior through interaction and learning, rather than rule-based updates.
Project GitHub Link:
https://github.com/elte-collective-intelligence/student-particle-swarm-optimization

At this stage, the project is in its early conceptual phase—no implementation or starter code has
been developed yet. The idea remains exploratory and has not been successfully realized in previous
semesters. It represents an original contribution within the context of the class.
Agents must coordinate their movements to converge efficiently toward the global optimum, while
preserving diversity and even spatial distribution across the search space. The system should adapt
to both static and dynamically changing objective landscapes, simulating real-world conditions where
optima may shift over time. This setting requires cooperative behavior, best addressed with a Central-
ized Training with Decentralized Execution (CTDE) approach, where policies are trained with access
to global critic information but executed independently by each agent. [CTDE Reference]

1

https://pytorch.org/rl/stable/index.html
https://github.com/elte-collective-intelligence/student-particle-swarm-optimization
https://arxiv.org/abs/2409.03052

Collective Intelligence – Assignment 2

While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL,
if helpful for bootstrapping.

Assignment Directions

You may choose between the following development directions for this assignment:

• Option 1: Incremental Migration (not available for PSO)
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and Pet-
tingZoo, and gradually migrate the system to TorchRL. This approach involves adapting the
environment and training loop to TorchRL-compatible components while preserving existing
functionality. The migration should also include:

– Integration of a configuration management system (e.g., Hydra or structured YAML)

– Preservation of logging via both Weights & Biases (WandB) and TensorBoard

– Docker for reproducibility and cross-platform compatibility

– Structured unit testing (at least 2 components)

– Visualization outputs (e.g., GIFs, performance plots)

– A clear and well-maintained README.md with setup and usage instructions

• Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start
from a TorchRL-compatible environment (e.g., based on EnvBase) or adapt an existing one.
Design the training pipeline, agent interaction logic, and evaluation procedures entirely within
the TorchRL framework. As with the first option, the final solution should support:

– Centralized Training with Decentralized Execution (CTDE)

– Configuration management

– Docker deployment

– WandB/TensorBoard logging

– Visualization and reproducibility tools

– Testing and documentation

Elements to Consider:

• Utilize Proximal Policy Optimization, specifically the clipped variant (PPO-Clip), as the core
learning algorithm. Optionally, experiment with MADDPG, QMIX, or VDN.

• Custom Environment (Optional): While benchmark functions (e.g., Sphere, Rastrigin) are suit-
able, consider implementing a custom dynamic optimization environment, where the objective
landscape shifts over time or incorporates constraints.

• Introduce static or time-varying constraints, such as obstacles or restricted zones in the search
space.

• Each particle receives a partial observation: its own coordinates, velocity, personal best score,
and optionally, a soft neighborhood summary (e.g., average position or fitness of nearby agents
within a fixed radius).

2

https://hydra.cc/
https://wandb.ai/
https://www.docker.com/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255

Collective Intelligence – Assignment 2

• Integrate a curriculum-based optimization schedule, gradually increasing task complexity (e.g.,
moving from unimodal to multimodal landscapes, increasing dimensionality, or introducing shift-
ing optima). [Curriculum Learning]

• Shape the reward function to promote desirable swarm behaviors—such as spatial dispersion (to
maintain diversity) and avoidance of premature convergence (e.g., by penalizing stagnation or
collapse into local optima) [Reward Shaping]. Can agents specialize into scouts, exploiters, or
spreaders without being told to? Design your observation and reward schemes to allow such roles
to emerge.

• Design and track custom metrics to evaluate the performance of your swarm, such as:

– Convergence speed

– Global vs. local optima ratio

– Diversity of particles (e.g., average inter-particle distance)

– Stability in dynamic environments

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile
| ‘-- entrypoint.sh
|-- logs/
|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

3

https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

Collective Intelligence – Assignment 2

1. Environment Setup

Define a Custom TorchRL-Compatible Environment
Create a class Env(EnvBase) in src/envs/env.py with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

Ensure all I/O uses TensorDict. Observations should be partial and relative, including distance to the
shape center and nearest neighbor. Use torchrl.envs.transforms for normalization or preprocessing.
Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition

Define Policy and Critic Modules
In src/agents/ppo_agent.py, implement:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator:

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration
Use SyncDataCollector or MultiSyncDataCollector:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

4

Collective Intelligence – Assignment 2

Loss Function
Use ClipPPOLoss:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

4. Training Loop

Training in main.py
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging

Logging
Use TensorBoard or W&B:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

Evaluation
Run trained policies with local observations only (CTDE) and export GIFs using pygame, matplotlib,
or imageio. Store results in outputs/.

6. Configuration Management

Hydra Integration
Use Hydra or structured YAML configs in configs/:

• configs/env/task.yaml

• configs/algo/ppo.yaml

• configs/experiment/sweep.yaml

Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

5

Collective Intelligence – Assignment 2

7. Testing

Unit Tests
Place tests in test/:

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility

Add Docker Support
Create a docker/ folder with the following:
Dockerfile:

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)
Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.

Duration

Aim for a few well-organized slides that complement your documentation.

6

Collective Intelligence – Assignment 2

Suggested Structure

1. Title & Objective: Brief objective and project direction.

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

Important Notes

The core of your submission is your documentation and code, which will be the primary basis for
grading. The presentation is your opportunity to highlight contributions and insights.

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Tamás Takács
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

7

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

Search and Rescue
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on re-implementing a Multi-Agent Reinforcement Learning (MARL)
system using TorchRL, where a swarm of rescuers must locate and assist stranded victims while
navigating an environment with obstacles and dynamic conditions. The task enforces Centralized
Training with Decentralized Execution (CTDE)—agents are trained with shared information,
but deployed with only partial local observations. [CTDE Reference]
Project GitHub Link:
https://github.com/elte-collective-intelligence/student-search
The existing project features:

1

https://pytorch.org/rl/
https://arxiv.org/abs/2409.03052
https://github.com/elte-collective-intelligence/student-search

Collective Intelligence – Assignment 2

• A PettingZoo AEC-based simulation.

• Victims and rescuers interacting on a dynamic 2D map.

• Landmarks like trees and safe zones.

• Centralized policy training (currently SB3 PPO).

• Visual rendering (PyGame/imageio) and simple evaluation tools.

The Search and Rescue scenario involves agents (rescuers) navigating an environment to locate and
assist missing persons (victims) while avoiding obstacles. The environment includes various landmarks,
such as trees and safe zones, each with specific properties affecting agent behavior.
While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL,
if helpful for bootstrapping.
Example: Picture a team of autonomous drones scanning earthquake rubble for survivors. Each drone
can see locally, but needs coordinated behavior to cover ground efficiently, rescue victims, and avoid
getting stuck.

Environment Phases

1. Exploration Phase: Rescuers disperse and search for victims.

2. Rescue Phase: Victims are located and guided to safety.

3. Obstacle Phase: Agents must avoid trees, walls, or hazards.

Assignment Directions

You may choose between the following development directions for this assignment:

• Option 1: Incremental Migration
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and Pet-
tingZoo, and gradually migrate the system to TorchRL-compatible components. The migration
should also include:

– Integration of a configuration management system (e.g., Hydra or structured YAML)

– Preservation of logging via both Weights & Biases (WandB) and TensorBoard

– Docker for reproducibility and cross-platform compatibility

– Structured unit testing (at least 2 components)

– Visualization outputs (e.g., GIFs, performance plots)

– A clear and well-maintained README.md with setup and usage instructions

• Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start
from a TorchRL-compatible environment (e.g., based on EnvBase) or adapt an existing one.
Design the training pipeline, agent interaction logic, and evaluation procedures entirely within
the TorchRL framework. As with the first option, the final solution should support:

2

https://hydra.cc/
https://wandb.ai/
https://www.docker.com/

Collective Intelligence – Assignment 2

– Centralized Training with Decentralized Execution (CTDE)

– Configuration management

– Docker deployment

– WandB/TensorBoard logging

– Visualization and reproducibility tools

– Testing and documentation

Elements to Preserve:

• PPO Algorithm: Continue using Proximal Policy Optimization, specifically the clipped variant
(PPO-Clip), as the core learning algorithm. [PPO-Clip] (Optionally: MADDPG, QMIX, VDN)

• MPE Environment (Optional): The Multi-Agent Particle Environment (MPE) can be retained,
though you are encouraged to consider reimplementing a simplified particle-based environment
using native TorchRL. [PettingZoo MPE]

• Core Objective: The primary task remains, agents must locate, reach, and rescue victims in a
shared environment, coordinating without full knowledge of each other’s positions.

• Multi-Agent Setting

Elements to Improve or Redesign:

• Introduce dynamic obstacles, varied terrain types (e.g., slippery, blocked, hazardous), and ran-
domized victim spawn logic.

• Curriculum Learning: Start with simplified scenarios, then gradually increase map size, obstacle
density, or victim mobility to foster generalization. [Curriculum Learning]

• Shape the reward to encourage fast and safe rescues, penalizing delays, collisions, and ineffective
exploration patterns. [Reward Shaping]

• Design and track custom metrics such as:

– Rescue success rate

– Time taken to complete missions

– Number of collisions with obstacles

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile

3

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://pettingzoo.farama.org/environments/mpe/
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

Collective Intelligence – Assignment 2

| ‘-- entrypoint.sh
|-- logs/
|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

1. Environment Setup
Define a custom TorchRL-compatible environment. Create a class Env(EnvBase) in src/envs/env.py
with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

Ensure all I/O uses TensorDict. Observations should be partial and relative, including distance to the
shape center and nearest neighbor. Use torchrl.envs.transforms for normalization or preprocessing.
Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition
Define policy and critic modules in src/agents/ppo_agent.py:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator:

4

Collective Intelligence – Assignment 2

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.
3. PPO Training Setup
Collector configuration:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

Loss function:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

4. Training Loop
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging
Logging:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

Evaluation: Run trained policies with local observations only (CTDE) and export GIFs using pygame,
matplotlib, or imageio. Store results in outputs/.
6. Configuration Management
Use Hydra or structured YAML configs in configs/. Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

7. Testing
Unit tests in test/:

5

Collective Intelligence – Assignment 2

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility
Create a docker/ folder with the following:
Dockerfile:

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.
Duration: Aim for a few well-organized slides that complement your documentation.
Suggested Structure:

1. Title & Objective: Brief objective and project direction.

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

Important Notes: The core of your submission is your documentation and code, which will be the
primary basis for grading. The presentation is your opportunity to highlight contributions and insights.

6

Collective Intelligence – Assignment 2

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Zoltán Barta
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

7

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

Sorting & Clustering
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) sys-
tem using TorchRL, where multiple agents (ants) interact in a shared 2D environment containing
scattered items of different categories. Items are scattered randomly at spawn and do not have pre-
defined destinations. Agents must dynamically form spatial clusters based on category, rather than
placing items at fixed goal locations. The agents must learn to pick up, sort and cluster these
items into coherent spatial groups across the map, based on their types.
Project GitHub Link:
https://github.com/elte-collective-intelligence/student-sorting-clustering

The current project versions utilize:

1

https://pytorch.org/rl/stable/index.html
https://github.com/elte-collective-intelligence/student-sorting-clustering

Collective Intelligence – Assignment 2

• A PettingZoo AEC (Agent Environment Cycle) environment, customized to simulate 2D pathfind-
ing with discrete grid or continuous motion.

• A TensorFlow based PPO implementation.

• Real-time visual rendering using pygame and post-processed visualizations.

• Centralized Training and Centralized Execution model. A single shared policy is trained alongside
a centralized value function that has access to shared information across agents. During evaluation,
this same centralized policy is used by all agents, meaning that each agent’s behavior is determined
by a common model, rather than acting independently based on purely local observations.

• A simple agent evaluation framework.

Agents must learn to:

• Perceive local item types and neighborhood density.

• Decide which item to move and where to place it.

• Avoid interfering with teammates while cooperatively building category-specific clusters.

• Adapt to varying map layouts, object types, and dynamic item spawning conditions.

This setting requires cooperative behavior, best addressed with a Centralized Training with De-
centralized Execution (CTDE) approach, where policies are trained with access to global critic
information but executed independently by each agent. [CTDE Reference]
While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL,
if helpful for bootstrapping.
Note: This task is loosely inspired by ant-based clustering models, where agents interact locally
with their environment to collectively sort objects into piles without explicit coordination or global
knowledge.

Assignment Directions

You may choose between the following development directions for this assignment:

• Option 1: Incremental Migration
Maintain the current implementation based on TensorFlow (SB3) and gradually migrate the
system to TorchRL. This approach involves adapting the environment and training loop to
TorchRL-compatible components while preserving existing functionality. The migration should
also include:

– Integration of a configuration management system (e.g., Hydra or structured YAML)

– Inclusion of logging via both Weights & Biases (WandB) and TensorBoard

– Docker for reproducibility and cross-platform compatibility

– Structured unit testing (at least 2 components)

– Visualization outputs (e.g., GIFs, performance plots)

– A clear and well-maintained README.md with setup and usage instructions

2

https://arxiv.org/abs/2409.03052
https://hydra.cc/
https://wandb.ai/
https://www.docker.com/

Collective Intelligence – Assignment 2

• Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Start from a TorchRL-compatible
environment (e.g., based on EnvBase) or adapt an existing one. Design the training pipeline,
agent interaction logic, and evaluation procedures entirely within the TorchRL framework. As
with the first option, the final solution should support:

– Centralized Training with Decentralized Execution (CTDE)

– Configuration management

– Docker deployment

– WandB/TensorBoard logging

– Visualization and reproducibility tools

– Testing and documentation

Elements to Preserve:

• PPO Algorithm: Continue using Proximal Policy Optimization, specifically the clipped variant
(PPO-Clip), as the core learning algorithm. [PPO-Clip] (Optionally: MADDPG, QMIX, VDN)

• Core Objective: The primary task remains, agents must learn to pick up, sort and cluster cate-
gorized items into coherent spatial groups across the map, based on their types.

• Multi-Agent Setting

Elements to Improve or Redesign:

• Environmental Complexity: Add multiple item types (e.g., red, green, blue blocks) with varying
spawn locations. Include distractors, obstacles, or limited pickup range. Optionally allow agents
to pick up, carry, or drop items in 2D space. Consider map setups with limited clustering zones
or spatial constraints.

• PettingZoo Support (Optional): Leverage existing tools or port environments to TorchRL format.

• Curriculum Learning: Start with simple and small maps, then gradually increase complexity
(e.g., more item categories, obstacles). [Curriculum Learning]

• Reward Design: Develop a reward function that balances sorting efficiency (sorting items in their
respective cluster), obstacle avoidance, time efficiency, and collaborative movement (e.g., penal-
izing blocking teammates or deadlocks). [Reward Shaping] Reward shaping should encourage
correct placement (item ends up near similar items), penalize misplacement (e.g., placing a red
item in a blue cluster), and incentivize space-efficient clustering.

• Evaluation Metrics: Add custom metrics for training and evaluation, such as:

– Clustering purity

– Mean sorting accuracy

– Conflict rate

– Idle time

• For clustering purity or accuracy, you can calculate the mean intra-cluster distance or use
DBSCAN-style heuristics over item positions after an episode.

3

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

Collective Intelligence – Assignment 2

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile
| ‘-- entrypoint.sh
|-- logs/
|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

1. Environment Setup
Define a custom TorchRL-compatible environment. Create a class Env(EnvBase) in src/envs/env.py
with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

Ensure all I/O uses TensorDict. Observations should be partial and relative, including distance to the
shape center and nearest neighbor. Use torchrl.envs.transforms for normalization or preprocessing.
Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

4

Collective Intelligence – Assignment 2

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition
Define policy and critic modules in src/agents/ppo_agent.py:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator:

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.
3. PPO Training Setup
Collector configuration:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

Loss function:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

4. Training Loop
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging
Logging:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

5

Collective Intelligence – Assignment 2

Evaluation: Run trained policies with local observations only (CTDE) and export GIFs using pygame,
matplotlib, or imageio. Store results in outputs/.
6. Configuration Management
Use Hydra or structured YAML configs in configs/. Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

7. Testing
Unit tests in test/:

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility
Create a docker/ folder with the following:
Dockerfile:

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.
Duration: Aim for a few well-organized slides that complement your documentation.
Suggested Structure:

1. Title & Objective: Brief objective and project direction.

6

Collective Intelligence – Assignment 2

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

Important Notes: The core of your submission is your documentation and code, which will be the
primary basis for grading. The presentation is your opportunity to highlight contributions and insights.

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Tamás Takács
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

7

https://creativecommons.org/licenses/by-nc-nd/4.0/

Collective Intelligence – Assignment 2

TurtleBot3s
Collective Intelligence

Multi-Agent Reinforcement Learning

2025

Task Description

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) sys-
tem using TorchRL. Inspired by real-world cooperative robotics, this challenge requires a team of
TurtleBot3 agents to learn coordinated navigation and obstacle avoidance in dynamic envi-
ronments simulated in ROS2 Humble and Gazebo. Agents must operate in a shared arena with
static and dynamic obstacles, reaching individual goals without colliding with one another or the
environment.
Project GitHub Link:
https://github.com/elte-collective-intelligence/student-turtlebot3s

You will start with an existing MARL project built using custom Deep Q-Networks (DQN) integrated
with ROS2 nodes. The main task is to migrate this project to use TorchRL’s native ecosystem.
This task is best addressed using the Centralized Training with Decentralized Execution
(CTDE) paradigm. During training, agents can access global state information and train with a cen-
tralized critic to stabilize learning. During evaluation, each TurtleBot3 agent must act independently
based on partial, local sensor data (such as LiDAR, odometry, and goal pose). [CTDE Reference]
While the final goal is to use TorchRL’s native environment structure (EnvBase, TensorDict, etc.), you
may initially use PettingZoo environments with the official PettingZooWrapper provided by TorchRL
if helpful for bootstrapping.

1

https://pytorch.org/rl/stable/index.html
https://medium.com/%40nilutpolkashyap/setting-up-turtlebot3-simulation-in-ros-2-humble-hawksbill-70a6fcdaf5de
https://docs.ros.org/en/humble/Tutorials/Advanced/Simulators/Gazebo/Gazebo.html?
https://github.com/elte-collective-intelligence/student-turtlebot3s
https://arxiv.org/abs/2409.03052

Collective Intelligence – Assignment 2

Assignment Directions

Adapt the Existing TurtleBot3 Environment Using Native TorchRL and MAPPO

• Rebuild the existing ROS2 + Gazebo-based MARL project using TorchRL’s native APIs, replac-
ing the current DQN implementation with a Multi-Agent Proximal Policy Optimization
(MAPPO) architecture.

• Adapt the custom simulation environment to be compatible with EnvBase and TensorDict (rather
than using PettingZoo).

• Design a full training pipeline using TorchRL that supports:

– Centralized Training with Decentralized Execution (CTDE)

– MAPPO implementation using TorchRL’s policy and value networks

– Integration of a configuration management system (e.g., Hydra or structured YAML)

– Inclusion of logging via both Weights & Biases (WandB) and TensorBoard

– Docker for reproducibility and cross-platform compatibility

– Structured unit testing (at least 2 components)

– Visualization outputs (e.g., GIFs, performance plots)

– A clear and well-maintained README.md with setup and usage instructions

Elements to Preserve:

• Existing ROS2 Humble and Gazebo simulation setup, including TurtleBot3 motion primitives,
sensor models, and real-time physics-based interactions.

• The core challenge remains multi-agent goal-reaching without collisions, where agents must coor-
dinate spatially in a confined shared arena with limited sensing.

• Multi-Agent Setting.

Elements to Improve or Redesign:

• Use Proximal Policy Optimization, specifically the clipped variant (PPO-Clip), as the core learning
algorithm. [PPO-Clip] (Optionally: MADDPG, QMIX, VDN)

• Extend the task dynamics by introducing tighter corridors, dynamic door states, or shifting ob-
stacles (e.g., mobile barriers or rotating gates) to enforce collision-aware path planning.

• Implement curriculum learning: Start with low-density, obstacle-free arenas and gradually intro-
duce more agents, goal proximity overlaps, and cluttered layouts. [Curriculum Learning]

• Refine the reward function to penalize overshooting, deadlocks, or collisions, while positively
rewarding coordinated timing, goal occupancy success, and spatial distribution. [Reward Shaping]

• Optionally, inject LiDAR noise or add occlusion logic to simulate more realistic sensing and en-
courage robust policies.

• Design and track custom metrics, such as:

– Average time-to-goal per agent

– Number of idle or blocked agents per episode

– Collision count and type (agent-agent, agent-wall)

2

https://hydra.cc/
https://wandb.ai/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

Collective Intelligence – Assignment 2

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

marl-task/
|-- configs/
| |-- base.yaml
| |-- env/
| |-- algo/
| |-- agent/
| ‘-- experiment/
|-- docker/
| |-- Dockerfile
| ‘-- entrypoint.sh
|-- logs/
|-- outputs/
|-- models/
| ‘-- ppo/
|-- src/
| |-- envs/
| |-- agents/
| |-- rollout/
| ‘-- main.py
|-- test/
| |-- test_env.py
| ‘-- test_metrics.py
|-- .gitignore
|-- requirements.txt
|-- README.md
‘-- LICENSE

1. Environment Setup
Define a custom TorchRL-compatible environment. Create a class Env(EnvBase) in src/envs/env.py
with the following methods:

• reset(self) -> TensorDict

• step(self, actions: TensorDict) -> TensorDict

Define:

• observation_spec

• action_spec

• reward_spec

• done_spec

Ensure all I/O uses TensorDict. Observations should be partial and relative, based on each robot’s
local sensor data and goal.
Optional: PettingZoo Wrapper
Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environ-
ments:

3

Collective Intelligence – Assignment 2

Listing 1: PettingZoo Wrapper Example
from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

2. Agent and Model Definition
Define policy and critic modules in src/agents/ppo_agent.py:
A shared TensorDictModule policy:

Listing 2: Shared Policy
policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator:

Listing 3: Centralized Critic
critic = ValueOperator(critic_network, in_keys=[...])

This supports the CTDE paradigm: centralized critic with decentralized policy execution.
3. PPO Training Setup
Collector configuration:

Listing 4: Collector Configuration
collector = SyncDataCollector(

create_env_fn=env_fn,
policy=policy,
frames_per_batch=2048,
total_frames=...

)

Loss function:

Listing 5: PPO Loss Module
loss_module = ClipPPOLoss(

actor=policy,
critic=critic,
clip_epsilon=0.2,
entropy_coef=0.01

)

4. Training Loop
Set up the training loop using collector, replay_buffer, loss_module, and optimizer:

Listing 6: Training Loop
for batch in collector:

for _ in range(ppo_epochs):
loss = loss_module(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()

5. Evaluation and Logging
Logging:

Listing 7: TensorBoard Logging
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

4

Collective Intelligence – Assignment 2

Evaluation: Run trained policies with local observations only (CTDE) and export GIFs using pygame,
matplotlib, or imageio. Store results in outputs/.
6. Configuration Management
Use Hydra or structured YAML configs in configs/. Launch with:

Listing 8: Launch Command
python src/main.py +experiment=task +algo=ppo

7. Testing
Unit tests in test/:

Listing 9: Unit Test Example
def test_env_reset():

env = Env(...)
td = env.reset()
assert "observation" in td

8. CTDE Framework Details

• The shared policy is trained with access to a centralized value function.

• Execution uses only local observations per agent.

• During inference, policies should operate without access to the global state or other agents’
observations.

• Ensure the actor’s input keys are restricted to local observations, while the critic receives richer
information.

9. Docker for Reproducibility
Create a docker/ folder with the following:
Dockerfile:

Listing 10: Dockerfile Example
FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

Build and run:

Listing 11: Docker Build and Run
docker build -t marl-task .
docker run --rm marl-task

PowerPoint Presentation

While presenting your work is not mandatory, not presenting will limit your maximum grade
to 3. The presentation serves as a concise overview of your project.
Duration: Aim for a few well-organized slides that complement your documentation.
Suggested Structure:

1. Title & Objective: Brief objective and project direction.

5

Collective Intelligence – Assignment 2

2. System Architecture: High-level overview (environment, agent setup, training loop).

3. Environment & Task Setup: Describe environment, agent logic, and dynamics.

4. Key Design Choices: Reward shaping, curriculum, metrics, logging.

5. Results & Visualizations: GIFs, reward curves, training plots, insights.

6. Conclusion & Future Work: Key takeaways.

Important Notes: The core of your submission is your documentation and code, which will be the
primary basis for grading. The presentation is your opportunity to highlight contributions and insights.

Assignment Submission and General Rules

• All development must be carried out within a GitHub repository.

• For teams:

– Collaboration strategy (e.g., shared/individual branches) is up to you.

– Task division must be clearly defined in the project’s README.

• For individuals: use a separate branch in the repository.

• Submit a single ZIP file to Canvas with:

– The entire project repository (excluding large model files/checkpoints).

– The presentation in PDF format.

• Collaboration is highly encouraged; this is a large-scale assignment.

Prepared by: Zoltán Barta
Date: 2025

Licensed under CC BY-NC-ND 4.0. © Zoltán Barta, 2025.

6

https://creativecommons.org/licenses/by-nc-nd/4.0/

	Preface
	Course Structure
	Assignments
	Practice Notebooks
	Included Materials
	Task Description
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Environment Phases
	Assignment Directions
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Environment Phases
	Assignment Directions
	A Possible Structured Plan
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Environment Phases
	Assignment Directions
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Environment Phases
	Assignment Directions
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Environment Phases
	Assignment Directions
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Assignment Directions
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Environment Phases
	Assignment Directions
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Assignment Directions
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules
	Task Description
	Assignment Directions
	A Possible Structured Plan
	PowerPoint Presentation
	Assignment Submission and General Rules

